Low-energy states of 11 N and two-proton radioactivity of 12 O*

C. Angulo¹, E. Casarejos¹, P.J. Woods², F.C. Barker³, P. Descouvemont⁴, M. Aliotta²,

T. Davinson², P. Demaret¹, M. Gaelens¹, P. Leleux¹, Z. Liu², M. Loiselet¹, A.S. Murphy²,

A. Ninane¹, I.A. Roberts², G. Ryckewaert¹, J.S. Schweitzer⁵, F. Vanderbist¹

¹ Centre de Recherches du Cyclotron and Institut de Physique Nucléaire,

Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.

² School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, UK.

³ Department of Theoretical Physics, Research School of Physical Sciences and Engineering,

The Autralian National University, Canberra ACT 0200, Australia.

⁴ Physique Nucléaire Théorique et Physique Mathématique CP229,

Université Libre de Bruxelles, B-1050 Brussels, Belgium.

⁵ University of Connecticut, Storrs, CT 06269-3046, USA.

The properties of light exotic nuclei are a major source of interest in nuclear physics research [1]. The ¹¹N nucleus, mirror nucleus of ¹¹Be, is unstable to one proton decay. While understanding the low-energy resonances of ¹¹N is an important test of nuclear models, the energy and decay width of the ¹¹N ground state are the most important ingredients in predicting the two-proton decay width of the ground state of ¹²O [2]. A comprehension of the factors influencing two-proton decay rates, and the associated mechanisms for two-proton decay, is a major challenge for nuclear physics theory and experiment [3,4,5].

A considerable experimental and theoretical effort has been devoted to elucidating the lowenergy structure of ¹¹N [6] but there remains important disagreement between experimental results and also with theoretical predictions, particularly with respect to the ground state properties. Here, we presents a new, high precision, study of the low-energy resonances of ¹¹N using the resonant elastic scattering method in inverse kinematics [7]. We have used a ¹⁰C beam and a (CH₂)_n target at the CYCLONE facility at Louvain-la-Neuve to study the centre-of-mass energy range from 0.7 to 2.8 MeV above the ¹⁰C+p threshold. Recoil protons were detected using a Compact Disk silicon strip detector based Δ E-E telescope called "CD-PAD" which allows for a clean separation of protons, α - and β -particles [8]. The absolute ¹⁰C+p elastic cross sections have been analysed in the framework of the *R*-matrix model [9] and precise values of the energies and the widths of the $1/2^+$ ground and the $1/2^-$ first excited states of ¹¹N have been obtained. The present results are used to calculate the two-proton decay width of the ¹²O ground state.

* This work is supported by the Belgian program P5/07 on inter-university attraction poles of the Belgian-state Federal Services for Scientific, Technical and Cultural Affairs and the UK Engineering & Physical Science Research Council (EPSRC).

- [1] B. Jonson, Phys. Rep. **389** (2004) 1.
- [2] R.A. Kryger et al., Phys. Rev. Lett. 74, 860 (1995).
- [3] L.V. Grigorenko *et al.*, Phys. Rev. Lett. **88**, 042502 (2002).
- [4] J. Giovinazzo et al., Phys. Rev. Lett. 89, 102501 (2002).
- [5] M. Pfützner *et al.*, Eur. Phys. J. A14, 279 (2002).
- [6] V. Guimarães et al., Phys. Rev. C 67, 064601 (2003), and references therein.
- [7] E. Casarejos *et al.*, Phys. Rev. C, submitted.
- [8] A.N. Ostrowski et al., Nucl. Instrum. Meth. A 480, 448 (2002).
- [9] A.M. Lane and R.G. Thomas, Rev. Mod. Phys. **30**, 257 (1958).