Spectroscopy around N=20 shell closure: β -n decay studies of ^{32,33}Mg and ^{34,35}Al.

Collaboration : <u>J.C. Angélique¹</u>, A. Buta², C. Timis⁹, N.L. Achouri¹, P. Baumann⁴, C Borcea², A. Buta², W. Catford⁹, S. Courtin⁴, J.M. Daugas⁸, P. Dessagne⁴, F. De Oliveira³, Z. Dlouhy⁷, S. Grévy¹, D. Guillemaud-Mueller⁵, R. Hadeler⁴, A. Knipper⁴, F.R. Lecolley¹, J.L. Lecouey¹, M. Lewitowicz³, E. Liénard¹, C. Miehe⁴, J. Mrazek⁷, F. Negoita², N.A. Orr¹, Y. Penionzhkevich⁶, J. Peter¹, S. Pietri¹⁰, E. Poirier⁴, M. Stanoiu⁵, O. Tarasov³, C. Timis², G. Walter⁴.

¹ Laboratoire de Physique Corpusculaire F-14050 Caen Cedex, France.

² National Institute for Physics and Nuclear Engineering, P.O Box MG6, Bucharest, Romania.

³ Grand Accélérateur National d'Ions Lourds, F-14021 Caen Cedex, France.

⁴ Institut de Recherche Subatomique, BP20, F-67037 Strasbourg Cedex, France.

⁵ Institut de Physique Nucléaire, F-91406 Orsay Cedex, France.

⁶ Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia.

⁷ Nuclear Physics Institute, 250 68 Rez, Czech Republic.

⁸ CEA/DAM BP 12 91680 Bruyères-le-Châtel Cedex, France.

⁹ Department of Physics, University of Surrey, Guilford GU2 5Xh, UK.

¹⁰ CEA/Saclay DAPNIA 91191 Gif sur Yvette Cedex, France.

Contact person : angelique@lpccaen.in2p3.fr

An experimental spectroscopic investigation of some neutron rich Mg and Al isotopes around the shell closure N=20 at performed. The delayed neutron and γ spectra, following the β -decay of ^{32,33}Mg and ^{34, 35}Al have been measured using the delayed neutron detector array TONNERRE coupled with high efficiency γ - EXOGAM clover detectors, one LEPS of Surrey and eight low energy neutron detectors from IReS Strasbourg [1],[2]. A detailed analysis of such spectra allows one to construct the level schemes of their daughters, ^{31,32,33}Al and ^{33,34,35}Si. The resulting spectroscopic information will provide stringent tests of large scale shell model calculations including np – nh excitations aimed at the understanding of the structural effects occurring in this region. For example, the figure 1 below shows the decay scheme of ³⁵Al deduced from these measurements [3]. Based on triple β - γ -n coincidences, eight new levels above the neutron separation energy in ³⁴Si were for the first time observed. In addition, we have reported the *logft* and intensity values for the transitions associated. These levels will be compared with the few previously existing data and shell models calculations [4].

Figure 1: Decay scheme proposed for ³⁵Al.

References:

- [1] A. Buta et al: NIMA 455/2 412-423.
- [2] J.C. Angélique et al: GANIL Proposal E333 and references therein.
- [3] C. Timis, PhD Thesis, Caen University, 13 september, 2001.
- [4] S. Nummela et al, Phys. Rev. C63 (2001). 044316.