The Geiger-Nuttall law broken in the lightest Po isotopes*

 <u>A.N. Andreyev¹</u>, S. Antalic², D. Ackermann^{3,8}, S. Franchoo⁴, F. P. Heßberger³, S. Hofmann^{3,9}, M. Huyse⁵, I. Kojouharov³, B. Kindler³, P. Kuusiniemi³, S.R. Lesher⁵, B. Lommel³, R. Mann³, G. Münzenberg^{3,7}, K. Nishio³, R.D. Page⁶, J. Ressler⁷, B. Streicher², B. Sulignano³, P. Van Duppen⁵, D. Wiseman⁶
¹TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3, Canada
²Department of Nuclear Physics, Comenius University, Bratislava, SK-84248, Slovakia
³Gesellschaft fur Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany
⁴IPN Orsay, F-91406 Orsay Cedex France
⁵Instituut voor Kern- en Stralingsfysica, University of Leuven, B-3001 Leuven, Belgium
⁶Oliver Lodge Laboratory, University of Liverpool, Liverpool L697ZE, UK
⁷Department of Chemistry, Simon Fraser University, Burnaby BC Canada V5A-1S6
⁸Inst. f. Physik, Johannes Gutenberg-University, D–55099 Mainz, Germany

⁹Physikalisches Institut, J.W. Goethe-Universität, D–60054 Frankfurt, Germany

Shape coexistence is a well-established phenomenon in vicinity of the Z=82 shell closure. Unfortunately, due to low production cross-section and high background from fission, the most neutron-deficient Po isotopes cannot be presently reached with in-beam techniques, ¹⁹⁰Po being the lightest Po isotope studied with this method (σ (¹⁹⁰Po)~ 200 nb) [1]. On the other hand, α decay is proved to be a very sensitive tool to study shape coexistence in nuclei, providing information on both parent and daughter states involved in the decay. Furthermore, nuclei with production cross-sections in the sub-nanobarn region become accessible.

This contribution reviews the results of the recent experiments at the velocity filter SHIP (GSI, Darmstadt) in which two new very neutron-deficient isotopes 186,187 Po were identified [2] and decay properties of $^{188-192}$ Po were re-studied in details.

A striking observation from our experiments is the strong retardation of the α decay of the even-even ^{186,188,190}Po isotopes in comparison with the Geiger-Nuttall law, which stipulates a linear decrease of the half-life as a function of the decay energy: $\text{Log}(T_{1/2}) \sim Q_{\alpha}^{-1/2}$. For example, in ¹⁸⁶Po the measured half-life is more than two orders of magnitude *longer* in comparison with the expected value from the Geiger-Nuttall law using a linear fit for the heavier isotopes ^{196–210}Po [2]. The observed effect is even stronger than the deviation from systematics when crossing the N=126 neutron shell.

In the contribution we will link the observed behavior to the configuration change between the parent Po and daughter Pb nuclei close and beyond the neutron mid-shell at N=104.

* This work was supported by the Access to Large Scale Facility programme under the Training and Mobility of Researchers programme of the European Union within the contract HPRI-CT-1999-00001, by the EXOTAG contract HPRI-1999-CT-50017, by the FWO-Vlaanderen and by the Interuniversity Attraction Poles Programme - Belgian State - Federal Office for Scientific, Technical and Cultural Affairs (IAP grant P5/07) and UK EPSRC. A.N.A. and J.R. were partially supported by the NSERC of Canada.

[1] D. Wiseman *et al*, Contribution to this Conference.

[2] A. N. Andreyev *et al*, to be published.