RDM Lifetime Measurements in ¹⁰⁷Cd and ¹⁰³Pd.

<u>K. Andgren</u>¹, S.F. Ashley², P.H. Regan², E.A. McCutchan³, N.V. Zamfir³, L. Amon⁴, R.B. Cakirli⁴, R.F. Casten³, R.M. Clark⁵, G. Gürdal^{3,6}, K.L. Keyes⁷, D.A. Meyer³, M.N. Erduran⁴, A. Papenberg⁷, N. Pietralla⁸, C. Plettner³, G. Rainovski⁸, R.V. Ribas⁹, N.J. Thomas^{2,3}, J. Vinson³, D.D. Warner¹⁰, V. Werner³ and E. Williams³
1Dept. of Physics, Royal Institute of Technology, S-106 91 Stockholm, Sweden.
²Dept. of Physics, University of Surrey, Guildford GU2 7XH, UK.
³WNSL, Yale University, New Haven, CT 06520, USA.
⁴Dept. of Physics, Istanbul University, Istanbul, Turkey.
⁵Lawrence Berkeley National Lab, Berkeley, CA 94720, USA.
⁶Clark University, Worcester, Massachusetts, 01610-1477, USA.
⁷Institute of Physical Research, University of Paisley, Paisley PA1 2BE, UK.
⁸Dept. of Physics and Astronomy, SUNY, Stony Brook, NY 11794, USA.

⁹Instituto de Física, Uni. de São Paulo, SP, Caixa Postal 05315-970, Brazil.

¹⁰CCLRC, Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK.

Lifetimes for decays linking near-yrast states in ¹⁰⁷Cd and ¹⁰³Pd have been measured using the Differential Decay Curve Method and, for the higher-spin transitions, the Doppler Shift Attenuation Method. The nuclei of interest were populated via the ⁹⁸Mo(¹²C,3n x α)¹⁰⁷Cd,¹⁰³Pd fusion-evaporation reactions at an incident beam energy of ~ 60 MeV, using the WNSL Yale Tandem Accelerator. From the measured lifetimes, transition probabilities have been deduced and compared with the theoretical B(E2) values for the limiting cases of harmonic vibrational and axially deformed rotational systems. Our initial results suggest a rotor-like behaviour for the structure based on the $h_{\frac{11}{2}}$ orbital in ¹⁰⁷Cd and ¹⁰³Pd. A comparison of the obtained transition probabilities to the values in the even-even ¹⁰⁶Cd and ¹⁰²Pd isotopes will be made, and the deformation driving properties of the $h_{\frac{11}{2}}$ orbital will be discussed.