Spectroscopy of the proton drip-line nucleus ¹⁹Na by elastic and inelastic scattering*

<u>N.L. Achouri</u>¹, C. Angulo², J.C. Angélique¹, E. Berthoumieux³, E. Casarejos², M. Couder², T. Davinson⁴, P. Descouvemont⁵, C. Ghag⁴, A.S. Murphy⁴, I. Ray⁶, I.G. Stefan⁶
¹Laboratoire de Physique Corpusculaire, 6 Boulevard du Maréchal Juin, 14000 Caen, France.
²Centre de Recherches du Cyclotron, UCL, Louvain-la-Neuve, Belgium.
³DAPNIA/SPhN, Bât. 703, CEA, Gif sur Yvette Cedex, France.
⁴School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, UK.
⁵PNTPM, Université Libre de Bruxelles, Brussels, Belgium.
⁶GANIL, Boulevard Becquerel, Caen, France.

The structure of nuclei near the drip lines is one of the major current interests in nuclear physics. Proton-rich light nuclei are a remarkable case since the level scheme is not known for many of them. The ¹⁹Na proton drip-line nucleus was investigated using the ¹⁸Ne+p resonant elastic scattering in inverse kinematics at the CYCLONE RIB facility at, Louvainla-Neuve. A low-energy intense ¹⁸Ne beam was used to bombard polyethylene foils of different thicknesses. In a first experiment, the recoil protons were detected at a large angular range with TOF technique using the LEDA system [1]. The $1/2^+$ second excited state of ¹⁹Na was observed at an energy of 1066±3 keV above the ¹⁸Ne+p threshold with a proton width of 101 ± 3 keV [2]. In order to complete the information on the ¹⁹Na low-energy states, a second experiment was performed at CYCLONE using ¹⁸Ne+p elastic and inelastic scattering. For this new experiment, a ΔE -E detection system ("CD-PAD" detectors) was used to identify the recoil protons [3]. Preliminary results confirm the presence of two new states as predicted by the GCM model. Two resonant peaks are clearly observed in the proton energy spectrum (Figure 1), one in the elastic part (at about 9 MeV) and the other one in the inelastic part (at about 6 MeV). Analysis in progress using the R-matrix model will provide the energy and the proton widths of these levels.

Figure 1: Proton energy spectrum for a 2 mg/cm³ CH₂ target and a 66 MeV ¹⁸Ne beam (see text).

* This work is supported by the European Community-Access to Research Infrastructure action.

- [1] T. Davinson et al., Nucl. Instrum. Meth A454 (2000) 350.
- [2] C. Angulo et al., Phys. Rev. C67, 014308 (2003).
- [3] A.N. Ostrowski et al., Nucl. Instrum. Meth. A480 (2002) 448.