Differential Cross-section Measurements for Deuteron Elastic Scattering on ${}^{11}_5B$

<u>Th. Tsakiris</u>¹, D. Cosic³, N. Dimitrakopoulos¹, M. Kokkoris¹, M. Krmpotić³, A. Lagoyannis², F. Maragkos¹, G. Provatas³, A. Ziagkova¹

1) Department of Physics, National Technical University of Athens, 15780, Zografou, Athens, Greece

2)Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, NCSR "Demokritos", 15341 Agia Paraskevi, Athens, Greece

3)Division of Experimental Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

Motivation

Implementation of Boron in the p-type semiconductor industry calls for the accurate quantitative determination of its depth profile concentrations in near surface layers of various matrices. The cross section values of the ¹¹B(d,d₀)¹¹B elastic scattering were determined in the energy range $E_{d,lab} = 1300 - 1860$ keV via relative measurements for the backscattering angles of 150°, 160°, 170°, allowing a potential combination of d-EBS & d-NRA.

29th Symposium of the Hellenic Nuclear Physics Society 24-25 September 2021

Experimental Setup

- Van de Graff Tandem 5.5 MV Accelerator N.C.S.R. "Demokritos", Athens, Greece
- Final beam Energy determined via NMR
- Estimated ripple 3 keV
- High precision goniometer (~0.1°), N.C.S.R.
 "Demokritos"
- 6 Silicon Surface Barrier detectors
 θ: 120°- 170° (step: 10°)

<u>The Target</u>

Constructed at *Ruđer Bošković Institute*.

^{nat}**B** consists of: ¹⁰**B** (19.9%), ¹¹**B** (80,1%).

- Self supporting thin foil consisting of 3 layers:
- AI foil (backing of the target)
- ^{nat}B sputtered on top of the Al
- ¹⁹⁷Au evaporated on the surface (for normalization purposes)

29th Symposium of the Hellenic Nuclear Physics Society

Target Stoichiometry

- Complementary measurements: $E_{p,lab} = 2750, 2920 \text{ keV} \ \vartheta = 140^{\circ}, 160^{\circ}$
- Use of the SIMNRA code [1] version 7.03
- Datasets [2],[3] used for ¹¹B(p,p₀) cross section.

[1] M. Mayer, Improved Physics in SIMNRA 7, Nucl. Instrum. Methods B332 (2014) 176-180

[2] M. Chiari et al. Nucl. Instr. Meth. B 184 (2001) 309

[3] M. Kokkoris+(2010), Jour. Nucl. Instrum. Methods in Physics Res., Sect.B, Vol.268, p.3539

29th Symposium of the Hellenic Nuclear Physics Society 24-25 September 2021

Data Analysis

Cross section results obtained via the relative technique:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{1_{5}B(d,d_{0})}^{\mathrm{E},\theta} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{Au(d,d_{0})}^{\mathrm{E}',\theta} \frac{\mathrm{Y}_{1_{5}B(d,d_{0})}}{\mathrm{Y}_{\mathrm{Au}(d,d_{0})}} \frac{\mathrm{N}_{\mathrm{t,Au}}}{\mathrm{N}_{\mathrm{t,11}_{\mathrm{B}}}}$$

• $\left(\frac{d\sigma}{d\Omega}\right)_{1}^{E,\theta} B(d,d_0)$: Diff. cross section of ¹¹B(d,d_0) scattering, detection

angle $\boldsymbol{\vartheta}$, energy at the half of the target thickness \boldsymbol{E} (accelerator energy calibration taken into account).

Y_x

• $\left(\frac{d\sigma}{d\Omega}\right)_{Au(d,d_0)}^{E',\theta}$: Screened Rutherford diff. cross section of ¹⁹⁷Au(d,d_0)

scattering for the final ion beam energy E'.

- $N_{t,x}$: Total number of x nuclei present in the target (determined via the SIMNRA code).
 - : The integrated yield of the experimental elastic peak x

Derived Spectra

- Extremely rich spectra with several peaks of interest
- Peaks integrated using the SpectrW code [4].
- Carbon in 2 separate target layers creates double peaks.

[4] Kalfas C.A. et al., SPECTRW: A software package for nuclear and atomic spectroscopy, Nucl. Instr. Methods A830 (2016) 265-274.

29th Symposium of the Hellenic Nuclear Physics Society 24-25 September 2021

Results & Conclusions

- Extreme peak overlap from the parasitic carbon in target backside, information could not be extracted for backscattering angles ϑ : 120°, 130°, 140°
- The ¹¹B(d,d₀) differential cross sections values were determined for the energy range: E_{d,lab}=1300-1860 keV, θ= 150°, 160°& 170°.
- Values below the ¹¹B(d,d₀) Rutherford ones
- Overlapping resonances observed in the energy range of interest
- No noticeable angle distribution in the differential cross sections

