

V.K.B. Kota¹, T.S. Kosmas², D.K. Papoulias² and R. Sahu³.

INTRODUCTION

Realistic nuclear structure calculations are presented for the event rates due to coherent elastic neutrino-nucleus scattering (CEvNS), assuming neutrinos from (π -DAR), from nuclear reactors and from Earth's interior. From the perspective of nuclear physics, the present calculations have been carried out within the framework of the deformed shell-model (DSM), based on realistic nuclear forces and assessed on the reproducibility of spectroscopic nuclear properties [1].

CEVNS IN THE STANDARD MODEL

The Standard Model CEvNS cross section, for a nucleus (A, Z) with mass m_A reads [2]

$$\left(\frac{d\sigma}{dT_A}\right)_{\rm SM} = \frac{G_F^2 m_A}{2\pi} \left[g_V^\rho Z F_\rho(Q^2) + g_V^\rho N F_n(Q^2)\right]^2 \left[2 - \frac{2T_A}{E_\nu} - \frac{m_A T_A}{E_\nu^2}\right]$$

- \blacktriangleright *G_F*: Fermi constant
- \succ T_A : nuclear recoil energy
- \blacktriangleright E_v : neutrino energy
- \succ $F_{p,n}(Q^2)$: proton/neutron nuclear form factor
- Standard Model couplings to Z^0 boson: $g_V^p = 1/2 2 \sin^2 \theta_W$ and $g_V^n = -1/2$

FIGURE 1

Square of proton (solid line) and neutron (dotted line) form factors for ^{70,73,76}Ge, ^{64,70}Zn and ²⁸Si as a function of $u=q^2b_\ell^2/2.$

ACKNOWLEDGMENTS

The work of DKP is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project "Reinforcement of Postdoctoral Researchers - 2nd Cycle" (MIS-5033021), implemented by the State Scholarships Foundation (IKY).

Operational Programme iman Resources Developmer **Education and Lifelong Learning** Co-financed by Greece and the European Union

COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING (CEVNS) EVENT RATES FOR Ge, Zn & SI DETECTOR MATERIALS ¹Physical Research Laboratory, Ahmedabad 380 009, India, ²Division of Theoretical Physics, University of Ioannina, Greece, and ³National Institute of Science and Technology, Palur Hills, Berhampur 761 008, Odisha, India

- NUCLEAR STRUCTURE CALCULATIONS WITHIN DSM Assume axial symmetry
- Model space: a set single-particle (sp) orbitals + an effective two-body Hamiltonian
- Lowest-energy intrinsic states: by solving the HF single-particle equation self-consistently
- **Excited intrinsic configurations:** via particle-hole excitations over the lowest intrinsic state
- lntrinsic states $\chi_{K}(\eta)$: do not have definite angular momenta

States of good angular momentum, projected from an intrinsic state $\chi_{\mathcal{K}}(\eta)$

$$|\psi_{MK}^{J}(\eta)\rangle = \frac{2J+1}{8\pi^2\sqrt{N_{JK}}}\int d\Omega D_{MK}^{J^*}(\Omega)$$

- \triangleright N_{JK}: normalization constant
- $R(\Omega) = \exp(-i\alpha J_z) \exp(-i\beta J_y) \exp(-i\gamma J_z): \text{ general rotation operator }$
- **Δ**: Euler angles (α , β , γ)
- $|\psi_{MK}^{J}(\alpha)\rangle$ projected from different intrinsic states are not in general orthogonal to each other
- Band mixing calculations are performed after appropriate orthonormalization

The resulting eigenfunctions are of the form [3]

$$|\varphi_{M}^{J}(\eta)\rangle = \sum_{K,\alpha} S_{K\eta}^{J}(\alpha) |\psi_{MK}^{J}(\alpha)\rangle, \quad S_{K\eta}^{J}(\alpha)$$

TABLE 1

Nucleus Property	Germanium			2
	⁷⁰ Ge	⁷³ Ge	⁷⁶ Ge	⁶⁴ Zr
isotopic abundance (%)	20.52	7.76	7.75	49.2
ground state spin (J^{π})	0+	9/2+	0+	0+
h.o. length (fm)	1.894	1.907	1.920	1.86

Nuclear structure properties of the studied isotopes.

LABORATORY AND EARTH NEUTRINO SOURCES

- pion decay at rest
- \triangleright reactor antineutrinos \bar{v}_e geoneutrinos

FIGURE 2

 $\Omega(\Omega)|\chi_{\kappa}(\eta)\rangle$

(): expansion coefficients

RESULTS: EXPECTED EVENT RATES Differential number of CEvNS events [4,5]

- \blacktriangleright d $\Phi_{\nu_{\alpha}}/dE_{\nu}$: neutrino flux for the flavor α
- \succ t_{run} : exposure time
- ► *N*_{target}: number of target nuclei

FIGURE 3

Differential number of events for the different laboratory and Earth neutrino sources.

CONCLUSIONS FIGURE 4

parametrization, calculated as $\mathcal{R} = \frac{|R_{\text{DSM}} - R_{\text{KN}}|}{R_{\text{DSM}}}$ [5].

References:

- Interacting Boson Model", CRC Press (2016) ISBN: 978-1498753692.
- 2. D.K. Papoulias, Phys.Rev. **D** 102 (2020) 11, 113004.

- 5. V.K.B. Kota, T.S. Kosmas, D.K. Papoulias, R. Sahu, submitted.

Percentage difference between DSM calculations and those involving the effective Klein-Nystrand form factor

1. V.K.B. Kota, R. Sahu, "Structure of Medium Mass Nuclei: Deformed Shell Model and Spin-Isospin

3. R. Sahu, D.K. Papoulias, V.K.B. Kota, and T.S. Kosmas, Phys. Rev. C 102 no. 3, (2020) 035501. 4. D.K. Papoulias, T.S. Kosmas, R. Sahu, V.K.B. Kota, M. Hota, Phys. Lett. B 800 (2020) 135133.