

IN DEPTH ANALYSIS OF A SEDIMENT CORE FROM NORTH AEGEAN SEA

Mitsios, I.K.¹*, Pappa, F.K.², Patiris, D.L.², Rouni, P.K.¹, Anagnostakis, M.J.¹, Tsabaris, C.²

¹ Nuclear Engineering Department, School of Mechanical Engineering, National Technical University of Athens, Building K, Zografou Campus, Iroon Polytechneiou 9 Zografou, 15780, Athens, Greece

² Hellenic Centre for Marine Research, 46,7 km Athens Sounio ave., P.O. Box 712, P.C. 19013 Anavyssos, Attiki, Greece

*iasoniatis@mail.ntua.gr

Introduction and Scope

The vertical distribution of radionuclides and trace elements in marine sediment cores provides information regarding the <u>sediment composition</u>, <u>sedimentation rate</u> as well as, <u>deposition and transfer</u> processes.

A sediment core of 39 cm length was grabbed from the deep-sea trench (1540 m depth) southern of Samothrace Island, Aegean Sea.

The core was divided into 39 sediment samples in accordance to the depth of the core.

Each sample was dried to remove humidity and pulverized to obtain density comparable with that of calibration source.

Each sediment sample was analyzed at NED-NTUA by means of γ-spectrometry and Neutron Activation Analysis to determine the vertical distribution of radionuclides and trace elements.

γ-spectrometry & neutron activation

γ-spectrometry analysis

All samples were analyzed using an XtRa detector (104.5% rel. eff.) coupled with a Compton Suppression System (CSS).

Selected samples, were sealed for radon in order to establish equilibrium between ²²⁶Ra and its progenies.

For γ-spectrometry analysis, all sample geometries were calibrated via Monte-Carlo simulation and were experimentally validated.

Neutron activation

Selected core specimens underwent Neutron Activation Analysis using an ²⁴¹Am-Be source of ~10Ci. <u>Two irradiation scenarios were</u> <u>applied:</u>

<u>1st:</u> irradiation for 15d → 1d+5d γ -spectrometry analysis <u>2nd:</u> irradiation for 1h → 15min γ -spectrometry analysis

Standard Reference Material NIST 2702 "Inorganics in Marine Sediment" was used for the quantitative analysis (comparative method).

IN DEPTH ANALYSIS OF A SEDIMENT CORE FROM NORTH AEGEAN SEA

Mitsios, I.K., Pappa, F.K., Patiris, D.L., Rouni, P.K., Anagnostakis, M.J., Tsabaris, C.

γ-spectrometry results

Neutron activation analysis results

1st irradiation scenario results:

Sample Depth (cm)	Mn (ppm)	As (ppm)	Cr (ppm)	Zn (ppm)	Co (ppm)	Rb (ppm)	Fe (ppm)	K (ppm)	Na (ppm)
1-2	3013 ± 83	24 ± 6	164 ± 48	428 ± 316	28 ± 13	150 ± 90	39086 ± 3295	23073 ± 971	17809 ± 283
5-6	3447 ± 93	23 ± 5	139 ± 46	ND	31 ± 13	129 ± 77	43697 ± 3080	24062 ± 954	18138 ± 284
9-10	3504 ± 94	20 ± 5	156 ± 45	387 ± 258	22 ± 10	104 ± 68	44355 ± 2901	23378 ± 909	19040 ± 300
17-18	3509 ± 95	19 ± 5	120 ± 37	ND	23 ± 11	104 ± 68	44222 ± 2914	22968 ± 911	17259 ± 274
23-24	3051 ± 83	21 ± 6	114 ± 63	702 ± 424	ND	ND	39832 ± 4769	22757 ± 877	16910 ± 267
27-28	2968 ± 80	18 ± 5	96 ± 43	502 ± 292	17 ± 9	105 ± 66	42722 ± 2794	22695 ± 883	17366 ± 276
33-34	2981 ± 81	14 ± 4	126 ± 40	ND	22 ± 10	102 ± 66	41378 ± 2789	23327 ± 890	17872 ± 290
38-39	2461 ± 67	22 ± 5	129 ± 40	ND	23 ± 10	101 ± 66	40666 ± 2845	21776 ± 847	18151 ± 284
0 5 10	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►		0 5 10			0 5 10		*Strong indication of <u>Sm</u> in the samples,	
15 20 25 30 35 40 40	Ce-141 60 80 100 120 ppm		$ \begin{array}{c} 15\\ 20\\ +12\\ 0\\ 30\\ 35\\ 40\\ 12\\ \end{array} $	i → -i i → -i i → -i i → -i 14 ppm ¹⁶ 18 20		15 (b) 20 ff 25 30 35 40 20	La-140	however, quantification was not possible due to strong Uranium interference.	

 2^{nd} irradiation scenario results: <u>Al</u> \rightarrow 64500-73000ppm & <u>V</u> \rightarrow 107-183ppm

Conclusions

- The vertical distribution of most natural radionuclides showed no significant variation. The mean activity ratios of ²²⁶Ra/²³⁴Th was 0.94 ± 0.03 (radioactivity equilibrium) and ²²⁸Ra/²³⁴Th was 1.60 ± 0.05 (typical range 0.8 1.4). For the area, both findings indicate steady and calm sedimentation processes.
- The vertical distribution of anthropogenic ¹³⁷Cs was very low and almost constant. No peak related to nuclear incidents was observed indicating very low sedimentation rate (expected for deep sea). After deposition at the seafloor, ¹³⁷Cs diffuses through the sediment pores obtaining almost uniform vertical distribution.
- Unsupported ²¹⁰Pb activity was about six times higher than ²²⁶Ra, indicating high radon fluxes.
- Most major and trace elements detected are within the expected range based on literature – with the exception of K and Na that show an increased concentration.

References

- ✤ A. El-Taher et al., Appl. Radiat. Isot. 171-181, 151 (2019)
- ✤ B. Müller, The Open Geol. J., 32-64 (2012)
- ✤ C. Tsabaris et al., J. Environ. Radioact. 1-8, 144 (2015)
- C. Tsabaris et al., Radiat. Prot. Dosim. 474-487, 150(2012)
- ✤ I. S. Ribeiro et al., J. Radioanal. Nucl. Chem. 299-303, 305 (2015)
- ✤ J. A. Alfonso et al., J. Radioanal. Nucl. Chem. 219-224, 300 (2014)
- L. Baba-Ahmed et al., Radiochim. Acta. 939-948, 106 (2018)
- M.I. Savva et al., Appl. Radiat. Isot. 361-364, 87 (2014)
- M.J. Anagnostakis et al., Environ. Int. 3-8, 22 (1996)
- ✤ T. K. Peppas et al., J. Hazard. Mater. 255-262, 181 (2010)
- ✤ W. Lin et al., Mar. Geol. 424 (2020)
- ✤ Y.-H. Li et al., Treatise on Geochemistry, (2003)