

Fast neutron reactions with ²⁴¹Am: a detailed TALYS study

Polychronis Karpodinis¹, Theo. J. Mertzimekis¹, Sofia Kolovi²

¹ Department of Physics, University of Athens, GR-15784, Athens, Greece

² LPC / CNRS IN2P3, Université Clermont Auvergne, Aubière, France

29th Annual Symposium of the Hellenic Nuclear Physics Society 24 & 25 September 2021 NCSR Demokritas, Athens, Greece

Introduction - ²⁴¹Am

• Relatively large abundance in radioactive waste of conventional thermal reactors:

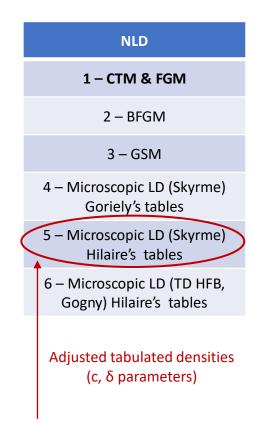
$$\overset{238}{\longrightarrow} U \xrightarrow{(n,\gamma)} \overset{239}{\longrightarrow} U \xrightarrow{\beta} \overset{239}{\xrightarrow{235}} Np \xrightarrow{\beta} \overset{239}{\xrightarrow{23565 d}} Pu$$

$$\overset{239}{\longrightarrow} Pu \xrightarrow{2(n,\gamma)} \overset{241}{\longrightarrow} Pu \xrightarrow{\beta} \overset{241}{\xrightarrow{14.35 y}} 2^{241} Am$$

- Potential hazards for humans: $^{241}Am \rightarrow ^{237}Np + 5\alpha + \gamma$
 - ²⁴¹Am is mainly concentrated in the bones, liver and lungs
 - $\bullet \, \alpha\text{-particles}$ deposit a large amount of equivalent dose
 - γ-rays

Introduction – Motivation

- Fast neutrons will be of central role in 4th generation fission reactors
 - Determine the competitive decay channels of ²⁴¹Am and the corresponding cross sections
 - How these channels affect neutron flux inside the reactor via (*n*,*xn*) reactions
- Reduce ²⁴¹Am abundance in nuclear waste: transmutation following the neutron capture
- Reuse ²⁴¹Am as a fuel (e.g. RTGs): neutron induced fission
- TALYS calculations not optimally aligned with experimental data

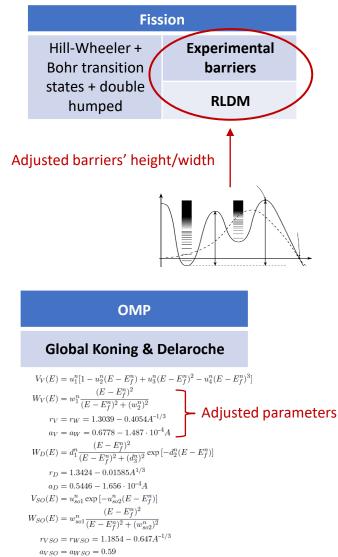

- Energy range of interest: 10KeV 20MeV
 - activated channels: (*n*,*γ*), (*n*,*n*'), (*n*,2*n*), (*n*,*f*)
- CN reactions dominate \rightarrow Hauser Feshbach calculations \rightarrow main ingredients: OMP, NLD, γ SF, Fission Barriers
- Cross section data: EXFOR database (*n*,*n*') not available
- Large number of models/parameters combinations to run:
 - Divide and conquer → unit testing to focus on smaller energy ranges and affecting models and parameters set
- Automated TALYS runs with various models and parameters combinations – variable energy step
- Automated postprocessing of TALYS output and calculation of residual error (RRMSE) → elimination of combinations, add new combinations, calculate again until minimizing RRMSE

The Models

$$\rho(U, J, P)_{renorm} = e^{c\sqrt{(U-\delta)}} \times \rho(U-\delta, J, P)$$

γSF

1 – Kopecky-Uhl generalised Lorentzian


2 - Brink-Axel Lorentzian

3 – Hartree-Fock BCS tables

4 – Hartree-Fock- Bogolyubov tables

- 5 Goriely's hybrid model
- 6 Goriely T-dependent HFB
 - 7 T-dependent RMF
- 8 Gogny D1M HFB+QRPA

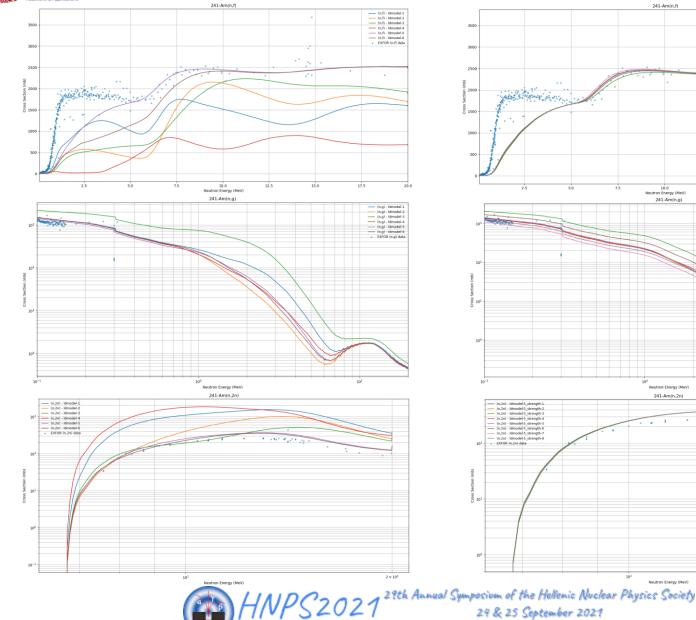
Not significantly affects the calculations of cross section for the (n,f) and (n,2n) channels. Default model works well for (n,γ) , as well

2021 29th Annual Symposium of the Hellenic Nuclear Physics Society 24 & 25 September 2021 NCSR Demokritas, Athens, Greece

Results – all NLD/γSF models

(n.f) - Idmodel-5_strength
 EXFOR (n.f) data

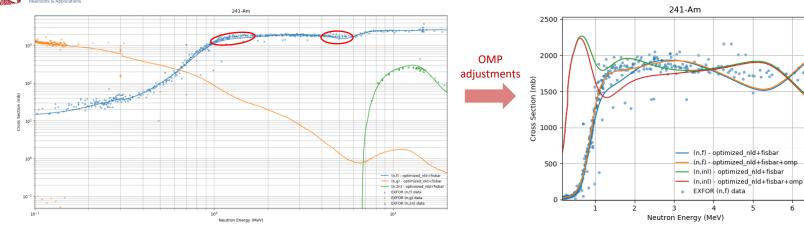
(n.g) - idmodel-5_strength (n.g) - idmodel-5_strength (n.g) - idmodel-5_strength (n.g) - idmodel-5_strength (n.g) - idmodel-5_strength

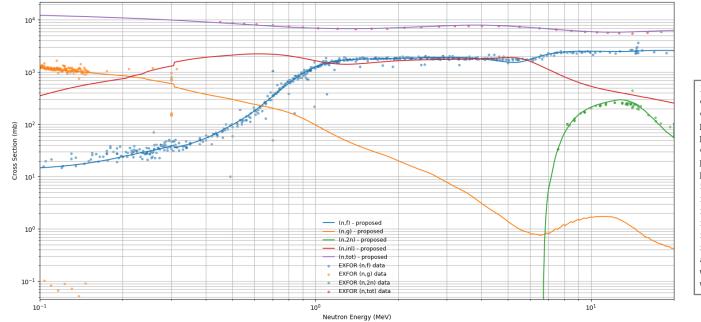

(n,q) - Idmodel-5 st

 2×10^{1}

12.5

 $X = \{x_i, x_i, x_i\} \in \mathbb{R}^d$

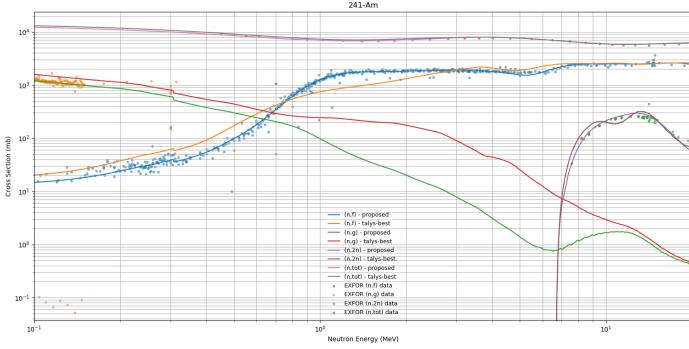

15.0


NCSR Demokritos, Athens, Greece

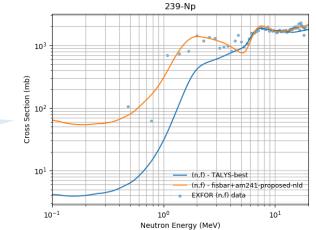
Results – NLD 5/Fission barriers/OMP

241-Am

TALYS configuration


ldmodel 5	
ctable 95 242	-2.000 1
ctable 95 241	-0.100 1
ptable 95 242	-2.000 1
ptable 95 241	0.100 1
ctable 95 242	-0.150 2
ptable 95 241	-0.300 2
ptable 95 242	0.400
fisbar 95 241	5.600 1
fisbar 95 240	5.700 1
fisbar 95 242	5.500 2
fisbar 95 241	4.900 2
fisbar 95 240	5.600 2
rvadjust n 1.	0.4 4.6 1.3 0.98
avadjust n 1.	0.4 4.6 1.3 1.05
wladjust n 1.	0.4 4.6 1.3 0.5
w2adjust n 1.	0.4 4.6 1.3 0.5

HNPS2021^{29th} Annual Symposium of the Hellenic Nuclear Physics Society 24&25 September 2021 NCSR Demokritos, Athens, Greece



Results – TALYS best comparison/²³⁹Np

The proposed adjusted NLD successfully applied to the isotone ²³⁹Np (+ fission barrier adjustments)

29th Annual Symposium of the Hellenic Nuclear Physics Society 24 & 25 September 2021 NCSR Demokritos, Athens, Greece

Conclusions

- Very good agreement of adjusted TALYS calculations with experimental data in the 10KeV-20MeV energy range:
 - Adjusted microscopic Skyrme/Hilaire NLD model
 - Proposed fission barrier heights for ²⁴²Am, ²⁴¹Am, ²⁴⁰Am
 - Koning-Delaroche OMP adjustment for the range 1-2MeV
- Proposed excitation function for the inelastic channel
- Adjusted Skyrme/Hilaire NLD successfully applied to the isotone ²³⁹Np (similar phase space)

