29th Symposium of Hellenic Nuclear Physics Society

24-25 September 2021, NCSR "Demokritos", Greece

Fast Neutron Beam Dosimetry Characterization for Biomedical Sample Irradiations

<u>**A.Kalamara**^{1,2}</u>, M.Grigalavicius⁴, M.I.Savva¹, T.Vasilopoulou¹,

A.Lagoyannis³, K.L.Stefanopoulos², T.Theodossiou⁴ and I.E.Stamatelatos¹

¹ INRASTES, NCSR "Demokritos", Greece.

² INN, NCSR "Demokritos", Greece.

³ INPP, NCSR "Demokritos", Greece.

⁴ Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.

Presenting author email: a.kalamara@ipta.demokritos.gr

FRINGE

Investigation on **neutron generated electronic excitation** as a foundation for a radically **new cancer therapy**

Irradiations are performed in order to experimentally verify the FRINGE principles at:

- Swiss Spallation Neutron Source (SINQ) facility, at Paul Scherrer Institut (PSI, Switzerland) for thermal neutrons
- Tandem Accelerator at National Centre for Scientific Research "Demokritos" (NCSRD) for fast neutrons

Funded under Horizon 2020 FET Open No 828922

- Characterization of the neutron beams at the NCSRD Tandem Accelerator Laboratory
- Evaluation of dosimetric characteristics in vials containing photo-sensitizer solutions
- Provision of theoretical data for understanding the FRINGE experiments

METHODOLOGY

Monte Carlo simulations

NeuSDesc code (Neutron Source Description) input:

- Neutron producing reactions: ⁷Li(p,n), ²H(d,n), ³H(d,n)
- Target description (solid LiF, deuterium gas cell, solid TiT)
- Entrance foil description (Mo)

Output: Neutron spectrum according to the reaction kinematics

- MCNP 6.1 code (Neutron Transport) input:
 - Neutron spectrum from NeuSDesc
 - Geometry of the irradiation setup

Output: Neutron energy distribution and energy deposition in the irradiated samples

- Cuvettes with photo-sensitizer solutions (10 slices of 1 mm)
- Scoring quantities:
 - Neutron fluence and energy distribution over the cuvette
 - Energy deposition (+f6) with respect to depth taking into account all particles in the problem
- A. Kalamara et al., HNPS 2021, 24-25 September 2021

Different compounds in DMSO (C_2H_6OS , $\rho=1.1004$ g/cm³) solvent:

- 10 mM TPP-Gd-Klaui (C₅₅H₅₁CoGdN₄O₉P₃)
- 10 mM TPP-Gd-Tp (C₅₃H₃₈BGdN₁₀)
- 10 mM TPFP-Gd-Klaui (C₅₅H₃₁CoF₂₀GdN₄O₉P₃)
- 10 mM 40Me-TPP-Gd-Klaui (C₅₉H₅₉CoGdN₄O₁₃P₃)

Different solvents with TPP-Gd-Klaui compound:

- DMSO (C₂H₆OS, ρ=1.1004 g/cm³)
- DMSO-d6 ((CD₃)₂SO, ρ=1.19 g/cm³)
- Acetone (C_3H_6O , $\rho=0.7845$ g/cm³)
- Acetone-d6 ((CD₃)₂CO, ρ=0.872 g/cm³)
- A. Kalamara et al., HNPS 2021, 24-25 September 2021

RESULTS

- □ The neutron spectra from the reactions ⁷Li(p,n), ²H(d,n) and ³H(d,n) at the NCSRD Tandem Accelerator were determined by coupling the NeuSDesc and MCNP 6.1 codes.
- Neutron energy deposition in the cuvette for different combinations of compounds and solvents tested in FRINGE experiments was calculated.
- □ The strong dependence of energy deposition on the selection of the solvent was demonstrated.
- A. Kalamara et al., HNPS 2021, 24-25 September 2021