Measurement of elastic backscattering differential cross sections for protons on ^{nat}O in the energy range E= 4- 6 MeV, suitable for EBS

K. Bosbotinis¹, M. Kokkoris¹, A. Lagoyannis², F. Maragkos¹,

E. Taimpiri^{1,2}

¹ Department of Physics, National Technical University of Athens, 15780, Zografou, Athens, Greece

² Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, NCSR "Demokritos", 15341 Agia Paraskevi, Athens, Greece

Motivation

- Oxygen is one of the most abundant light elements on Earth, ever present in practically all complex materials, either as a constituent or as a contaminant
 - There is an ever growing need for accurate depth profiling in larger depths, in order to determine the exact concentrations of oxygen in various samples like superconductors, geological materials etc.
 - p EBS is the most suitable technique for this purpose
 - We collected new experimental differential cross section data at six different angles, never measured before, aiming at obtaining a new set of coherent measurements.
 - We will use these data to expand the current evaluation beyond 4 MeV.

Experimental setup

- 5.5 MV Tandem Van de Graaff accelerator and high precision goniometer (~0.1°) of N.C.S.R. Demokritos in Athens, Greece .
- Proton energy beam from 4-6 MeV with energy step 5-15 keV.
- Beam energy determined via NMR and verified by the 991.89 keV resonance of the ²⁷Al(p,γ) reaction. Ripple ~ 1.6 keV, magnet offset ~ 0.04 keV.
- 6 Silicon surface Barrier detectors at angles 120°-170° with a 10° step.

The target

- Self supporting thin foil consisted of three layers:
- ¹²C foil (backing of the target).
- Na₂HPO₄ oxygen enriched evaporated on top of ¹²C foil.
- ¹⁹⁷Au evaporated on the top surface for normalization purposes.
- Target was constructed at N.C.S.R. "Demokritos".

Target stoichiometry

- Measurements for E_{p,lab}= 2000, 3200 and 3900 keV, θ=
 140°, 150°, 160°, 170° (evaluated differential cross section data will be used for all elements from Sigma Calc 2.0).
- Use **SIMNRA** code [1] to simulate experimental spectrum.

Fig 1: Scattering chamber with the Au+ Na₂HPO₄ + ¹²C target and 6 detectors. Small aluminum tubes used to reduce background from scattered particles on the goniometer walls and faraday

cup.

Fig 2: Tandem Van de Graaff accelerator at "Demokritos".

Data analysis

The relative measurement technique was used to calculate the excitation functions [2]

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{E,\theta}^{nat \ 0} = \begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{E',\theta,Au} \cdot \frac{Y_{160}}{Y_{Au}} \cdot \frac{\frac{N_{t,Au}}{N_{t,nat \ 0}}}{\frac{N_{t,nat \ 0}}{N_{t,nat \ 0}}}$$

Factor yet to be determined!

- $\left(\frac{d\sigma}{d\Omega}\right)_{E,\theta}^{nat_0}$: Differential cross section of the $^{nat}O(p,p_0)$ for scattering angle θ and energy at half of the target thickness E (after machine calibration)
- $\left(\frac{d\sigma}{d\Omega}\right)_{E',\theta,Au}$: Screened Rutherford differential cross section of the Au(p,p₀) scattering for the final ion beam energy E['].
- Y_a: integrated yield of the experimental elastic peak of ¹⁶O and Au
- N_t: Total number of ¹⁹⁷Au and ¹⁶O nuclei present in the target

Fig 3: Typical spectrum at 4060 keV proton lab energy and θ =150°. The TV spectroscopy code was used to analyze the experimental spectra.

Preliminary results

Summary & Future perspectives

- The ¹⁶O(p,p₀)¹⁶O elastic scattering excitation functions were determined for 6 backscattering angles in the 4–6 MeV proton energy range
- The target stoichiometry will be determined via the dedicated measurements and the SIMNRA code.
- We will derive the differential cross section values of ¹⁶O(p,p₀) at the six backscattering angles measured, creating a coherent set of cross section data.
- R-matrix calculations for the theoretical reproduction of the data will be performed aiming at the expansion of the current evaluation for proton energies 4 - 6 MeV.

REFERENCES

[1] M. Mayer, Improved physics in SIMNRA 7, NIM B, 2014, Pages 176-180

[2] Preketes-Sigalas, K. & Ntemou, E. & Kokkoris M., Differential cross-section measurements of the elastic ⁷Li(d,d₀) scattering for analytical purposes, NIM B, 2017, Pages 99-103