The Case for Nonlocal Modifications of Gravity

中國深圳 2018年3月26日

Why change GR? It needs too much "dark" stuff

- Dark Matter binds cosmic structures Galaxies & clusters
- 2. Dark Energy drives cosmic acceleration
 - a) Now
 - b) Primordial inflation

Dark Matter can be made to work, but

- Still no direct detection
 - XENON1T & PandaX-II null
 - Nothing at LHC either
- Unexplained regularities
 - Next slide
- Incorrect Distributions
 - Observation $\rightarrow \rho(r) \sim 1/r^2$
 - Simulations $\Rightarrow \rho(r) \sim 1/r^3$
- Why is the baryonic ``tail'' wagging the CDM dog?
 - $M_c \sim 5.3 \times M_b$

Observed Regularities in rotationally supported systems

- Baryonic Tully-Fisher Relation:
 - Asymptotic $v^4 = a_0 GM$
 - $a_0 \sim 1.2 \times 10^{-10} \, m/_{s^2}$
- Milgrom's Law:
 - Start needing DM for $g(r) < a_0$
- Freeman's Law:
 - Surface density $\Sigma < \frac{a_0}{G}$
- Sancisi's Law:
 - Bumps trace baryons
- Similar regularities for pressure-supported systems
 - All just accidents for DM!

Dark Energy can be made to work, but

•
$$\mathcal{L} = \frac{R\sqrt{-g}}{16\pi G} - \frac{1}{2} \partial_{\mu} \phi \partial_{\nu} \phi g^{\mu\nu} \sqrt{-g} - V(\phi) \sqrt{-g}$$

1) $+ 3H^2 = 8\pi G \left[\frac{1}{2} \dot{\phi}_0^2 + V(\phi_0) \right]$
2) $-2\dot{H} - 3H^2 = 8\pi G \left[\frac{1}{2} \dot{\phi}_0^2 - V(\phi_0) \right]$

- Given $H(t) \rightarrow$ Reconstruct $V(\varphi)$ to support it
 - $(1+2) \rightarrow -2\dot{H} = 8\pi G \dot{\phi}_0^2 \rightarrow \phi_0(t) = \phi_i \pm \int_{t_i}^t dt' \sqrt{\frac{-2\dot{H}(t')}{8\pi G}}$
 - Rotate the graph \rightarrow gives $t(\varphi_0)$
 - $(1-2) \rightarrow 2\dot{H} + 6H^2 = 16\pi G V(\phi_0) \rightarrow V(\phi) = \frac{\dot{H}(t(\phi)) + 3H^2(t(\phi))}{8\pi G}$
- But who ordered that?
 - Why is $\varphi(t, \vec{x}) \sim \varphi_0(t)$ so spatially homogeneous?
 - Why is $G^2 V(\phi_0) \sim 10^{-122}$ so small?
 - Why is there no 5th force?

f(R) can give (2b) but not (2a) or (1)

- Unique solution for Λ CDM is $f(R) = R 2\Lambda$
 - Dunsby et al, arXiv:1005.2205
 - Other f(R) models show deviations at 0th order!
 - New scalar DoF requires screening mechanism
 - And why acceleration now?
- Cannot give Tully-Fisher: $v^4 = a_0 GM(r) = \left[\frac{1}{2}c^2rb'\right]^2$
 - $ds^2 = -[1 + b(r)](cdt)^2 + [1 + a(r)]r^2dr^2 + r^2d\Omega^2$
 - $\frac{\delta S}{\delta b} = \frac{c^4}{16\pi G} \left[\frac{c^2}{2a_0} \partial_r (r^2 b'^2) \right] \frac{1}{2} r^2 \rho = 0 \text{ has } \mathbf{3} \partial_r \mathbf{'s}$

•
$$R = -b'' + \frac{2(a'-b')}{r} + \frac{2a}{r^2} \rightarrow f(R)$$
 could give 2, or $4 \partial_r$'s

Choices for modifying gravity

- 1. Employ additional fields
 - E.g., Bekenstein's TeVeS
 - Is this less epicyclic than DM & DE?
- 2. Employ only the metric
 - a) Only local, invariant, stable option is $R \rightarrow f(R)$
 - b) So either retain locality & abandon invariance
 - For example, Horava gravity & massive gravity
 - But GR170817 says graviton speed is nearly *c*
 - c) Or else retain invariance & abandon locality

Isaac Newton's Take on Nonlocality

"that one body may act upon another at a distance thro' a Vacuum, without the Mediation of any thing else, by and through which their Action and Force may be conveyed from one to another, is to me so great an Absurdity that I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever fall into it."

Was Newton too Harsh?

- I don't think so (others here disagree)
 - Nonlocal theories have extra initial value data
 - Ostrogradskian instabilities
 - Contrary statements use Euclidean momentum space
 - We live in Minkowski signature
 - Instability precludes temporal Fourier transform
 - Euclidean k-space assumes the result & is not valid
- I believe fundamental theory is local
 - But quantum effective field equations are nonlocal
 - And loops of massless quanta can give big IR effects
 - Gravitons are massless!

Flat EM with vacuum polarization Macroscopic nonlocality can happen!

- Charge runs in the UV, not IR, because $m_e \neq 0$
 - $-\nabla^2 \left[\Phi(r) + \int_0^\infty dk \frac{k \sin(kr)}{2\pi^2 r} \chi_e(k) \widetilde{\Phi}(k) \right] = Q \delta^3(\vec{x})$
 - $\chi_e(k) = \delta \chi_e + \frac{4\alpha}{\pi} \int_0^1 dx \, x(1-x) \left\{ \ln\left(\frac{2\Lambda}{m_e}\right) 1 \frac{1}{2} \ln\left[1 + x(1-x)\frac{k^2}{m_e^2}\right] \right\}$

•
$$\chi_e(k) = -\frac{2\alpha}{\pi} \int_0^1 dx \, x(1-x) \ln\left[1 + x(1-x)\frac{k^2}{m_e^2}\right]$$
 vanishes at $k = 0$

- Small $r \rightarrow \Phi(r) = \frac{Q}{4\pi r} \left[1 + \frac{2\alpha}{3\pi} \ln\left(\frac{1}{m_e r}\right) + \cdots \right]$
- But $m_e = 0 \rightarrow$ running in both UV & IR

•
$$\chi_e(k) = -\frac{2\alpha}{\pi} \int_0^1 dx \, x(1-x) \ln[x(1-x)k^2R^2]$$
 vanishes for $k \sim \frac{1}{R}$

• All
$$r \rightarrow \Phi(r) = \frac{Q}{4\pi r} \left[1 + \frac{2\alpha}{3\pi} \ln\left(\frac{R}{r}\right) + \cdots \right]$$

- Perturbation theory breaks down at large r!
 - RG valid for IR $\rightarrow \Phi(r) = \frac{Q}{4\pi} \times \left[1 \frac{4\alpha}{3\pi} \ln\left(\frac{R}{r}\right)\right]^{-\frac{1}{2}}$

Inflation produces scalars & gravitons

- Recall the primordial power spectra
 - $\Delta_{\mathcal{R}}^2(k)$ (resolved to 3 digits!) $\Delta_h^2(k)$ (hope soon)
- Each wave vector \vec{k} has growing occupation
 - Inflatons $\rightarrow N_s(t,k) = \frac{\pi \Delta_R^2(k)}{4Gk^2} \times \varepsilon(t)a^2(t)$
 - Gravitons $\rightarrow N_h(t,k) = \frac{\pi \Delta_h^2(k)}{64Gk^2} \times a^2(t)$
- These particles interact!
 - With themselves & with other quanta

Inflationary gravitons alter EM & GR

- EM on de Sitter background (co-moving, $a(t) = \exp[Ht]$)
 - Photons get secular enhancement (arXiv:1408.1448)
 - $F_{0i}^{1\,loop}(t,k) \rightarrow \frac{1}{\pi} GH^2 \ln(a) \times F_{0i}^{tree}(t,k)$
 - Coulomb potential runs in the IR (arXiv:1308.3453)

•
$$\Phi(r) = \frac{Q}{4\pi a r} \left[1 + \frac{G}{3\pi a^2 r^2} + \frac{1}{\pi} G H^2 \ln(a H r) + O(G^2) \right]$$

- GR on de Sitter background (co-moving, $a(t) = \exp[Ht]$)
 - Gravitons get secular de-enhancement (arXiv:1307.1422)

•
$$C_{0i0j}^{1\,loop}(t,k) \rightarrow -\frac{8}{\pi}GH^2\ln(a) \times C_{0i0j}^{tree}(t,k)$$

• Potential screened for large r & t (arXiv:1510.03352 from φ 's)

•
$$\Phi(r) = -\frac{GM}{ar} \left[1 + \frac{G}{20\pi a^2 r^2} - \frac{GH^2}{10} \left(\frac{1}{3} \ln(a) + 3 \ln(aHr) \right) + O(G^2) \right]$$

• Perturbation theory breaks down for large r & t

Tedious criticisms from the "head-in-the-sand" faction

- 1) "Effects are gauge dependent"
 - Not true for arXiv:1510.03352 from scalars
 - Clear flat space antecedents
 - Pulsar timing & G/r^2 corrections
- 2) "IR gravitons have small curvature"

 - Predictions falsified (arXiv:1606.02417)
 - Confusing IR divergences with IR effects
- 3) "Effects are not observable"
 - Measure nearby $q_1 = 0 \& q_2 \neq 0$
- 4) "The calculations are difficult"
 - Grow up!

i	1	a	$\frac{1}{b-2}$	$\frac{(a-3)}{(b-2)^2}$
0	$+\frac{3}{4}$	$-\frac{3}{4}$	$-\frac{3}{2}$	$+\frac{3}{4}$
1	0	0	0	+1
2	0	0	0	0
3	0	0	+3	-2
4	$+\frac{17}{4}$	$-\frac{3}{4}$	0	$-\frac{1}{4}$
5	-2	$+\frac{3}{2}$	$-\frac{3}{2}$	$+\frac{1}{2}$
Total	+3	0	0	0

More on the gauge issue

- Why the EFE's are gauge dependent
 - Effective field is disturbed by some *source*
 - And measured by some *observer*
 - Source & observer interact with QG!
- ArXiv:1708.06239 → graviton correction to scalar force
 - $\mathcal{L}_{GF} = -\frac{1}{2a} F_{\mu} F^{\mu}$ $F_{\mu} = \partial^{\nu} h_{\mu\nu} \frac{b}{2} \partial_{\mu} h^{\nu}_{\nu}$
 - $-iM_0^2(x;x') = C_0(a,b) \times \frac{G\partial^6}{4\pi^3} \left[\frac{\ln(\mu^2 \Delta x^2)}{\Delta x^2} \right]$
 - $C_0(a,b) = \frac{3}{4} \frac{(b-1)}{(b-2)^2} \left[(b-5) (b-3)a \right]$ from $-\infty$ to $+\infty$
- QG correlations from source & observer cancel gauge dependence
 - Table on previous slide
- "Just because something is gauge dependent does not mean it is zero!"

Still no derivation . . .

- So models are purely phenomenological
- But inflationary origin explains two things
 - 1) There is an initial time, corresponding to when the QFT state was released; and
 - We should expect modifications on large scales, not small scales, because inflation produces IR gravitons.

Guidance from Perturbation Theory

• What are the de Sitter factors of ln(a) generally?

•
$$\frac{1}{\Box}R \to -4\ln\left(\frac{a(t)}{a_i}\right)$$

- Advantages
 - Simplest nonlocal scalar (cf. effective field theory)
 - Dimensionless

 no mass parameters
 - Grows during inflation
 - Quiescent during radiation domination (R = 0)
 - Using R (or $R_{\mu\nu}$) \rightarrow GR radiation unchanged

Nonlocal Cosmology (Late Time Acceleration)

- $\Delta \mathcal{L} = \frac{1}{16\pi G} R f\left(\frac{1}{\Box}R\right) \sqrt{-g}$
 - arXiv:0706.2151 with Deser
 - No dimensionful parameter needed
- Can choose f(X) to reproduce Λ CDM
 - arXiv:0904.0961 with Deffayet
- Onset naturally delayed to very late times
 - R = 0 during Radiation Domination
 - $\frac{1}{\Box}R$ grows only logarithmically thereafter
- $\frac{1}{\Box}R$ changes sign from cosmology to bound systems
 - No compensation mechanism needed to preserve solar system
- Agrees with structure formation data better than GR
 - arXiv:1701.00434 and arXiv:1711.08759

Nonlocal MOND

arXiv:1106.4984 & 1405.0393 with Deffayet & Esposito-Farese

•
$$\Delta \mathcal{L} = \frac{1}{16\pi G} a_0^2 f_y(Z) \sqrt{-g}$$

•
$$Z[g] = \frac{4}{a_0^2} g^{\mu\nu} \partial_\mu \left(\frac{1}{\Box} R_{\rho\sigma} u^\rho u^\sigma\right) \partial_\nu \left(\frac{1}{\Box} R_{\alpha\beta} u^\alpha u^\beta\right)$$

•
$$ds^2 = -[1+b(r)] dt^2 + [1+a(r)] dr^2 + r^2 d\Omega^2$$

•
$$Z = {b'}^2 / {a_0^2} + \cdots$$

- $f_y(Z) = \frac{1}{2}Z \frac{1}{6}Z^{3/2} + o(Z^2) \rightarrow \frac{1}{2}Z \exp\left[-\frac{1}{3}\sqrt{Z}\right]$ for Z > 0
 - $\frac{1}{2}$ Z term cancels weak field GR term
 - $-\frac{1}{6}Z^{3/2}$ gives the weak field MOND equation
 - Large Z > 0 suppressed \rightarrow no change to solar system
- Cosmology has Z < 0
 - Choose $f_y(Z)$ to almost reproduce Λ CDM (arXiv:1608.07858)
 - Structure formation problematic (arXiv:1804.01669)

Primordial Inflation

- What are the de Sitter factors of ln(a) generally?
 - L loops $\rightarrow [GH^2\ln(a)]^L$
 - Perhaps $GH^2 \ln(a) \rightarrow \frac{1}{\Box} \left(\frac{1}{12} GRR_{\rho\sigma} u^{\rho} u^{\sigma} \right)$?
- Advantages
 - Grows during inflation
 - Quiescent during radiation domination (R = 0)
 - Matter domination reactivates (but *R*₀₀ sign changes)
 - Using R (or $R_{\mu\nu}$) \rightarrow GR radiation unchanged
- Why not localize? → Ghosts!
 - $f\left(\frac{1}{\Box}Q\right)\sqrt{-g} \leftrightarrow f(\phi)\sqrt{-g} \partial_{\mu}\phi\partial_{\nu}\psi g^{\mu\nu}\sqrt{-g} Q\psi\sqrt{-g}$
 - $A_{\pm} \equiv \phi \pm \psi \Rightarrow \partial_{\mu} \phi \partial_{\nu} \psi g^{\mu\nu} = \frac{1}{4} (\partial_{\mu} A_{+} \partial_{\nu} A_{+} \partial_{\mu} A_{-} \partial_{\nu} A_{-}) g^{\mu\nu}$

Conclusions

- GR needs ``dark'' stuff on cosmic scales
 - DM & DE both ``work", but are epicyclic
- $R \rightarrow f(R)$ only invariant, local, stable $g_{\mu\nu}$ model
 - Cannot replace DM or late DE but can describe inflation
- Nonlocal gravity is a new frontier
 - Can replace DM, late DE and inflation
- Not fundamental, rather (I believe) an EFT
 - Vacuum polarization from inflationary gravitons
 - Hence there is an initial time & only modifications at large scales
- Challenges
 - Derive it from 1st principles
 - Avoid ghosts, avoid modifying gravitational radiation
 - Get structure formation right