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Εκτεταμένη Περίληψη





Εισαγωγή

Η θεωρητική φυσική του προηγούμενου αιώνα χαρακτηρίστηκε από την ανάπτυξη της

Κβαντικής Θεωρίας Πεδίου (ΚΘΠ), η οποία είχε πληθώρα εφαρμογών. Μέσω αυτού

του πλαισίου κατανοήθηκαν αρκετά θεμελιώδη φαινόμενα σε διάφορους κλάδους, όπως

η φυσική συμπυκνωμένης ύλης και η σωματιδιακή φυσική. Παρόλα αυτά οι περισσότεροι

υπολογισμοί στην ΚΘΠ βασίζονται στην θεωρία διαταραχών, έτσι πολλοί υπολογισμοί,

οι οποίοι αφορούν την μη διαταρακτική περιοχή ορισμένων θεωριών και αφορούν σημαν-

τικά ερωτήματα, δεν μπορούν να υλοποιηθούν. Πολλά ενδιαφέροντα φαινόμενα όπως ο

Εγκλωβισμός, η Υπεραγωγιμότητα Υψηλών Θερμοκρασιών, η Υπερρευστότητα και το

Πλάσμα Κουάρκ - Γκλουονίων είναι εγγενώς μη διαταρακτικά, επομένως δεν μπορεί να

υπάρξει εκτεταμένη ποσοτική, αλλά και ποιοτική, περιγραφή μέσω της απλής εφαρμογής

των τεχνικών της ΚΘΠ.

΄Ενας μοντέρνος τρόπος να ξεπεραστεί αυτό το εμπόδιο είναι η αναγνώριση ενός δυϊσ-

μού. ΄Ενας δυϊσμός σχετίζει με τετριμμένα δύο θεωρίες, έτσι ώστε η μη διαταρακτική

περιοχή της μίας θεωρίας να αντιστοιχεί στην διαταρακτική περιοχή της άλλης. ΄Ετσι,

όποτε υπάρχει ένας δυϊσμός, μη διαταρακτικοί υπολογισμοί στην μια θεωρία σχετίζον-

ται με διαταρακτικούς υπολογισμούς στην δυϊκή θεωρία. Το πρώτο παράδειγμα δυϊσ-

μού αφορά τον δυϊσμό μεταξύ της θεωρίας sine-Gordon και του μοντέλου Thirring

[11]. Εφόσον η θεωρία sine-Gordon [12, 13] είναι μποζονική, ενώ το μοντέλο Thirring

φερμιονικό, αυτό το παράδειγμα αναδεικνύει ένα περίεργο χαρακτηριστικό των δυϊσ-

μών. Εν γένει μπορεί να συσχετίζουν θεωρίες εντελώς διαφορετικής φύσης. ΄Ενα πολύ

σημαντικότερο άλμα όσον αφορά τους δυϊσμούς έλαβε χώρα στις αρχές της δεκαετίας

του 90 , οπότε και ανακαλύφθηκαν οι δυϊσμοί μεταξύ υπερσυμμετρικών θεωριών βα-

θμίδας [14, 15]. Ο δυϊσμός Seiberg-Witten επιτρέπει τον ακριβή υπολογισμού της εν-

εργού δράσης των N = 2 υπερσυμμετρικών θεωριών βαθμίδας, οι οποίας μοιάζουν με

την Κβαντική Χρωμοδυναμική. Αυτή η περιγραφή επιτρέπει την ποσοτική, αλλά και

ποιοτική, περιγραφή του Εγκλωβισμού, ο οποίος στις θεωρίες αυτές υλοποιείται ως η

υπεραγώγιμη φάση της θεωρίας, με τα φορτία χρώματος να εγκλωβίζονται λόγω του

ανάλογου του φαινομένου Meissner.

Μια αυστηρή απόδειξη ενός δυϊσμού είναι δύσκολη, παρόλα αυτά η ύπαρξη του δυϊσ-

μού μπορεί να υποστηριχθεί με αρκετούς τρόπους. Για να υπάρχει ένας δυϊσμού εί-

ναι απαραίτητο να ταιριάζουν οι συμμετρίες και οι ανωμαλίες των δυϊκών θεωριών.

Επιπλέον, όποτε είναι εφικτό να επεκταθεί ένας διαταρακτικός υπολογισμός στην μη

διαταρακτική περιοχή, αυτός πρέπει να ταιριάζει με τον αντίστοιχο διαταρακτικό υπ-

ολογισμό στην δυϊκή θεωρία. Αν υπάρχει υπερσυμμετρία, τέτοιοι μη διαταρακτικοί

υπολογισμοί ενίοτε είναι εφικτοί. Η υπερσυμμετρία είτε αποτρέπει ποσότητες από το

να λάβουν κβαντικές διορθώσεις είτε επιτρέπει την τοπικοποίηση ολοκληρωμάτων δι-

αδρομών [16, 17], ενσωματώνοντας όλες της κβαντικές διορθώσεις ως υπερ-ορίζουσες
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ενός βρόγχου.

Μια υπερβολικά ενδιαφέρουσα κατηγορία δυϊσμών αφορά τους δυϊσμούς μεταξύ Θεω-

ριών Βαθμίδας και Βαρύτητας. Συνήθως αυτοί σχετίζουν μια θεωρία βαρύτητας σε

(d+1)-διάστατο ασυμπωτικά Anti-de Sitter χωροχρόνο με μια Σύμμορφη Θεωρία Πεδίου

στις d διαστάσεις. Αυτή η κατηγορία δυϊσμών υλοποιεί την Ολογραφική Αρχή [18,19],

αφού το σύνορο του AdS χωροχρόνου δρα ως ολογραφική οθόνη. Ο πιο μελετημένος

και πιο ισχυρά θεμελιωμένος δυϊσμός Θεωρίας Βαθμίδας / Βαρύτητας είναι η αντιστοιχία

AdS/CFT [20–22].

Εφόσον οι ΣΘΠ περιγράφουν συστήματα κοντά στα κρίσιμα σημεία, ο δυϊσμός Θεω-

ρίας Βαθμίδας/Βαρύτητας σχετίζεται με πολλά ενδιαφέροντα φυσικά συστήματα. Μια

από τις πλέον επιτυχημένες εφαρμογές του αφορά την περιγραφή της υδροδυναμικής

συμπεριφοράς του Πλάσματος Κουαρκ – Γκλουονίων (ΠΚΓ). Απλά επιχειρήματα στην

βαρυτική θεωρία υποδεικνύουν την ύπαρξη ενός καθολικού άνω ορίου για τον λόγο του

ιξώδους προς την πυκνότητα εντροπίας [23–26]. ΄Ολα τα ρευστά που περιγράφονται από

το συγκεκριμένο μοντέλο οφείλουν να σέβονται το λεγόμενο όριο KSS. Είναι άκρως

ενδιαφέρον ότι όλα τα γνωστά ρευστά σέβονται αυτό το όριο, ενώ τα πειράματα στο

RHIC υποδεικνύουν ότι ο συγκεκριμένος λόγος για το ΠΚΓ συμπίπτει με το όριο KSS.

Η εφαρμοσμένη αντιστοιχία AdS/CFT αποτελεί ένα άκρως ενεργό πεδίο έρευνας με έμ-

φαση στην περιγραφή των διαφόρων φάσεων στην Φυσική Συμπυκνωμένης ύλης [27–29]

και στην Υπερρευστότητα [30,31].

Η αντιστοιχία AdS/CFT αποτελεί μια δυναμική ισοδυναμία μεταξύ της IIB θεω-

ρίας χορδών στον χωροχρόνο AdS5 × S5
, με N μονάδες ροής μέσω της σφαίρας Σ

5
,

και της N = 4 υπερσυμμετρικής θεωρίας Yang Mills με ομάδα βαθμίδας SU(N). Η

θεωρία βαθμίδας χαρακτηρίζεται από την τάξη της ομάδας βαθμίδας N και την σταθερά

ζεύξης ’t Hooft λ, ενώ η θεωρία χορδών χαρακτηρίζεται από την σταθερά ζεύξης της

και το μήκος της χορδής. Το όριο N → ∞ και λ → ∞ αντιστοιχεί σε κλασική υπ-

ερβαρύτητα όσον αφορά την βαρυτική θεωρία, όπου όλα τα κβαντικά φαινόμενο και τα

φαινόμενα που σχετίζονται με το πεπερασμένο μήκος χορδής είναι αμελητέα. Αυτή η

περιοχή έχει μελετηθεί εκτενέστατα στην βιβλιογραφία, βλέπε [32] για μια ανασκόπηση.

Κανείς μπορεί να εστιάσει σε μια άλλη ενδιαφέρουσα περιοχή αφήνοντας την στα-

θερά ζεύξης ’t Hooft πεπερασμένη. Αυτό το όριο αντιστοιχεί σε κλασσική θεωρία

χορδών, φαινόμενα που σχετίζονται με το πεπερασμένο μήκος χορδής είναι παρόντα

και σημαντικά, αλλά τα κβαντικά φαινόμενα εξακολουθούν να είναι αμελητέα. Γενικά

οι κλασσικές χορδές διαδίδονται πολύ περίπλοκα, αφού οι παρουσία τους επιδρά στην

γεωμετρία του χώρου στον οποίο διαδίδονται. Για να απλουστεύσουμε αυτή την κατάσ-

ταση μπορούμε η ανάδραση της χορδής στην γεωμετρία του χώρου πρέπει να μειωθεί.

Αυτό επιτυγχάνεται από πεπερασμένη μεν, αλλά αρκετά μεγάλη δε, σταθερά ζεύξης ’t

Hooft. Αυτή η επιλογή καθιστά την κίνηση της χορδής ολοκληρώσιμη, μια ιδιότητα του

επάγεται από τα Μη Γραμμικά Σίγμα Μοντέλα σε Συμμετρικούς Χώρους. Κλασσικές
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λύσεις της θεωρίας χορδών [33], οι οποίες διαδίδονται σε συμμετρικούς χώρους, όπως

AdS5×S5
και AdS4×CP3

έπαιξαν σημαντικό ρόλο στην βαθύτερη κατανόηση της αντισ-

τοιχίας AdS/CFT. Στις δημοσιεύσεις [2–5] εκμεταλλευόμαστε την ολοκληρωσιμότητα

προκειμένου να κατασκευάσουμε ιδιαίτερα περίπλοκες κλασσικές λύσεις της θεωρίας

χορδών, οι οποίες όμως μπορούν να μελετηθούν αναλυτικά και σχετίζονται με ενδι-

αφέρονται φαινόμενα.

Στο θερμοδυναμικό όριο, ήτοι στο όριο όπως οι σύνθετοι τελεστές περιλαμβάνουν

πολύ μεγάλο αριθμό πεδίων, η ολοκληρώσιμη δομή του ΜΓΣΜ μπορεί να αξιοποιηθεί

προκειμένου να κατασκευαστεί μια αντιστοίχιση ανάμεσα στα διατηρούμενα φορτία των

κλασσικών χορδών και τις ανώμαλες διαστάσεις και τα φορτία των δυϊκών τελεστών

[34, 35]. Παρόλο που αυτή η αντιστοίχιση είναι γνωστή, είναι εντελώς αφηρημένη και

βασίζεται στην ταυτοποίηση των φασματικών καμπύλων. Δεν είναι καθόλου τετριμ-

μένη η εύρεση συγκεκριμένου τελεστή και συγκεκριμένης κλασσικής λύσης της θεω-

ρίας χορδών που σχετίζονται μεταξύ τους. Μπορούν να αξιοποιηθούν αρκετές τεχνικές

προκειμένου να μελετηθεί η αντιστοιχία AdS/CFT σε αυτό το όριο, κυρίως από την

πλευρά της θεωρίας πεδίου [36]. Στην εργασία [10] βρίσκουμε της λύση του βο-

ηθητικού συστήματος, του αντιστοιχεί στην διάδοση χορδών στον χώρο R × S2
. Η

γενίκευση αυτής της κατασκευής στον χώρο υπερ-πηλίκο PSU(2, 2|4)/SO(1, 5) ×
SO(6) θα μπορούσε να συνεισφέρει στην κατεύθυνση της άμεσης συσχέτισης κλασ-

σικών λύσεων της θεωρίας χορδών και δυϊκών τελεστών.

΄Οπως αναφέρθηκε, ο δυϊσμός Θεωρίας Βαθμίδας / Βαρύτητας υποδεικνύει ότι στο

όριο μεγάλου N και μεγάλης σταθεράς ζεύξης ’t Hooft η βαυρική θεωρία ανάγεται

στην κλασσική υπερβαρύτητα. Στο όριο αυτό υπάρχει μια συνταγή για τον υπολο-

γισμό της Ολογραφικής Εντροπίας Διεμπλοκής, η οποία προτάθηκε από τους Ryu και

Takayanagi [37–39] και μετέπειτα αποδείχτηκε στο πλαίσια της αντιστοιχίας AdS/CFT

[40,41]. Η εντροπία διεμπλοκής είναι η εντροπία von Neumann του ανηγμένου τελεστή

πυκνότητας, ο οποίος περιγράφει τους βαθμούς ελευθερίας ενός υποσυστήματος. Αυτό

το υποσύστημα ορίζεται να περιλαμβάνει τους βαθμούς ελευθερίας που υπάρχουν σε

μια συγκεκριμένη περιοχή του χώρου, η οποία ορίζεται από μια καμπύλη διεμπλοκής.

Ο υπολογισμός της εντοπίας διεμπλοκής στην κβαντική θεωρία πεδίου είναι ιδιαιτέρως

δύσκολος, ακόμα και για την ελεύθερη θεωρία [42–46]. Σύμφωνα με την συνταγή των

Ryu και Takayanagi, η ολογραφική εντροπία διεμπλοκής είναι ανάλογη του εμβαδού

μιας ελάχιστης επιφάνειας συν-διάστασης 2, η οποία έχει ως σύνορό της την καμπύλη

διεμπλοκής και εκτείνεται στο εσωτερικό του χώρου. Παρόλο που αυτός ο κανόνας

είναι ιδιαίτερα απλός, στην πράξη η εφαρμογή του είναι πολύ δύσκολη, καθώς πρέπει

να είναι γνωστή η έκφραση της ελάχιστης επιφάνειας για να υπολογιστεί το εμβαδόν

της. Ακόμα και όταν ο χώρος είναι αμιγώς AdS, πολύ λίγες ελάχιστες επιφάνειες είναι

γνωστές σε τυχαίο αριθμό διαστάσεων. Αυτές είναι κυρίως ελάχιστες επιφάνειες που

αντιστοιχούν σε σφαιρικές επιφανείες ή υπερεπιφάνειες διεμπλοκής.

5



Αντιμετωπίζουμε αυτό το πρόβλημα με δύο διαφορετικούς τρόπους. Πρώτα εστιά-

ζουμε στον χώρο AdS4. Σε αυτή την περίπτωση οι ελάχιστες επιφάνειες συν-διάστασης

2 είναι 2-διάστατα Ευκλείδεια κοσμικά σεντόνια, οπότε υπάρχουν περισσότερα εργαλεία

διαθέσιμα σε σχέση με την τυχούσα περίπτωση. Αυτές οι ελάχιστες επιφάνειες εί-

ναι λύσεις των εξισώσεων ένος ΜΓΣΜ. Συγκεκριμένα, στατικές ελάχιστες επιφάνειες

συν-διάστασης 2 στον AdS4 είναι ισοδύναμες με ελάχιστες επιφάνειες συν-διάστασης 1

στον υπερβολικό χώρο H3
. Γενικά τέτοιου είδους ελάχιστες επιφάνειες εμβαπτισμένες

στον Hd
, παρουσιάζουν μεγάλο ενδιαφέρον, καθώς είναι το ολογραφικό ανάλογο των

βρόγχων Wilson σε ισχυρή ζεύξη [47, 48]. Στην εργασία [9] πραγματευόμαστε την

εφαρμογή της μεθόδου ένδυσης σε τέτοιες ελάχιστες επιφάνειες. Σε σχέση με την

γενική περίπτωση, για τυχαίο αριθμό διαστάσεων, στην εργασία [8] παρουσιάζουμε μια

εξίσωση γεωμετρικής ροής, η οποία περιγράφει της ελάχιστες επιφάνειες και μπορεί να

χρησιμοποιηθεί για να μελετηθούν ορισμένα χαρακτηριστικά τους.

Η ολογραφική εντροπία διεμπλοκής σχετίζεται με δύο άκρως σημαντικά ανοιχτά

ερωτήματα της θεωρητικής φυσικής: το παράδοξο της πληροφορίας των μελανών οπών

(βλέπε [49] για μια ανασκόπηση) , αλλά και την ίδια την φύση της βαρύτητας. Σύμ-

φωνα με την αντιστοιχία AdS/CFT μπορούμε να μελετήσουμε την ισχυρώς συζευγμένη

κβαντική βαρύτητα μέσω της δυϊκής ΣΘΠ. Καθώς η ακτινοβολία Hawking που εκπέμ-

πεται από της μελανές οπές καθώς εξατμίζονται, είναι θερμική [50], φαίνεται ότι χάνεται

πληροφορία [51]. Αυτό το φαινόμενο έρχεται σε ρήξη με την μοναδιακή εξέλιξη μιας

αμιγούς κατάστασης, η οποία είναι βασική ιδιότητα της κβαντικής θεωρίας. Δεδομέ-

νου ότι η ΣΘΠ είναι κατά προφανή τρόπο μοναδιακή θεωρία, η αντιστοιχία AdS/CFT

υποδεικνύει ότι η βαρυτική περιγραφή του φαινόμενου οφείλει και αυτή να είναι μονα-

διακή. Επιπλέον υπάρχουν συγκεκριμένες προτάσεις για την επίλυση τους παραδόξου

της πληροφορίας των μελανών οπών στο πλαίσιο της συμπληρωματικότητας (η οποία

εισήχθη ως έννοια στο [52]) [53–55], αλλά και [56] για μια διαφορετική οπτική. Οι

τελευταίες εξελίξεις στο θέμα βρίσκονται στα άρθρα ανασκόπησης [57,58].

Ακόμα και στο πλαίσιο της Γενικής Σχετικότητας υπάρχει μια αξιοσημείωτη ομοιότητα

ανάμεσα στην φυσική των μελανών οπών και την θερμοδυναμική [59, 60]. Υπό ορισ-

μένες προϋποθέσεις, συγκεκριμένα ότι η εντροπία που αντιστοιχεί σε έναν ορίζοντα

είναι ανάλογη του εμβαδού του, μπορούν να εξαχθούν οι εξισώσεις Einstein ως συνέπια

της κλασσικής θερμοδυναμικής [61]. Αυτή η ιδέα μετεξελίχθηκε στο πλαίσιο την αν-

τιστοιχίας AdS/CFT, προκειμένου να συσχετιστεί η βαρύτητα με την κβαντική διεμ-

πλοκή [62–65]. Εκ κατασκευής η συνταγή των Ryu και Takayanagi αναπαράγει νόμο εμ-

βαδού και επιτρέπει την ποσοτική συσχέτιση της κβαντικής διεμπλοκής με την βαρύτητα

[66, 67]. Τέλος, η ολογραφική εντροπία διεμπλοκής συσχετίζεται τόσο με τον Εγκλω-

βισμό [68] όσο και με την ροή της ομάδας επανακανονικοποίησης [69,70].

Παρουσιάζει ιδιαίτερο ενδιαφέρον η μελέτη αυτών των φαινομένων απευθείας στο

πλαίσιο της ΚΘΠ. Η κβαντική διεμπλοκή είναι μια ιδιότητα σύνθετων κβαντικών συστη-
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μάτων, η οποία δεν έχει κλασικό ανάλογο. Παρουσιάζεται όταν τα συστατικά ενός

συστήματος, το οποίο βρίσκεται σε αμιγή κατάσταση, δεν μπορούν να αντιστοιχηθούν

σε συγκεκριμένη κατάσταση. Η κβαντική διεμπλοκή διαδραμάτισε σημαντικό ρόλο

στην ανάπτυξη της κβαντικής μηχανικής, καθώς χρησιμοποιήθηκε για να τεθεί εν αμ-

φιβόλω η ισχύς της. Οι μετρήσεις διεμπλεγμένων υποσυστημάτων είναι συσχετισμένες,

ανεξάρτητα από την μεταξύ τους απόσταση. Ο Αϊνστάιν θεώρησε αυτή την συμπερ-

ιφορά ασυμβίβαστη με την τοπική αιτιότητα, και χρησιμοποίησε αυτό το γεγονός για

να επιτεθεί στην κβαντική μηχανική [71]. Παρόλα αυτά, αυτή η συμπεριφορά είναι

έχει επιβεβαιωθεί πειραματικά. ΄Οσο περίεργο και να είναι διαισθητικά, η φύση δουλεύει

με αυτό τον τρόπο. Στις μέρες μας η κβαντική διεμπλοκή είναι βασικός παράγοντας

τεχνολογικών εφαρμογών, όπως η κβαντική πληροφορία και οι κβαντικοί υπολογιστές.

Η κβαντική διεμπλοκή μπορεί να ποσοτικοποιηθεί μέσω της εντροπίας διεμπλοκής

(όταν το συνολικό σύστημα είναι σε αμιγή κατάσταση). Η εντροπία διεμπλοκής σχετίζε-

ται με αρκετά φυσικά συστήματα, όπως η κβαντική πληροφορία [72–75] και η φυσική

συμπυκνωμένης ύλης. Στην τελευταία, η εντροπία διεμπλοκής χρησιμοποιείται για να

μελετηθεί η κρίσιμη συμπεριφορά συστημάτων, αλλά και η ροή της ομάδας επανακανον-

ικοποίησης [45,76–80]. Παρουσιάζει μεγάλο ενδιαφέρον το γεγονός ότι η εντοπία διεμ-

πλοκής που σχετίζεται με την βασική κατάσταση της ελεύθερης βαθμωτής ΚΘΠ υπ-

ακούει νόμο εμβαδού [42–44, 81, 82], ακριβώς όπως η εντροπία των μελανών οπών.

Στην εργασία [1] γενικεύουμε την προσέγγιση της εργασίας [42] σε μια μέθοδο για

τον διαταρακτικό υπολογισμό του φάσματος του ανηγμένου τελεστή πυκνότητας καθώς

και της εντροπίας διεμπλοκής. Στις εργασίες [6, 7] μελετάμε την ελεύθερη βαθμωτή

ΚΘΠ με μάζα σε πεπερασμένη θερμοκρασία. Δείχνουμε ότι σε αυτή την περίπτωση η

αμοιβαία πληροφορία υπακούει νόμο εμβαδού και ότι υπάρχει ένας φυσικός τρόπος να

διαχωριστούν οι κβαντικές από τις κλασσικές συσχετίσεις στην αμοιβαία πληροφορία.
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Διεμπλοκή στην Θεωρία Πεδίου

Μελετάμε την διεμπλοκή στην βαθμωτή θεωρία πεδίου στην βασική κατάσταση και σε

πεπερασμένη θερμοκρασία T . Αναπτύσσουμε μια αναλυτική διαταρακτική μέθοδο υπ-

ολογισμού του φάσματος του ανηγμένου τελεστή πυκνώτητας και της εντροπίας διεμ-

πλοκής. Σε πεπερασμένη θερμοκρασία η εντροπία διεμπλοκής παύει να είναι μέτρο

της κβαντικής διεμπλοκής. Μελετάμε την αμοιβαία πληροφορία, η οποία ορίζεται ως

I
(
A,AC

)
:= SA + SAC − SA∪AC . Δείχνουμε ότι η αμοιβαία πληροφορία εφαπτόμενων

υποσυστημάτων υπακούει νόμο εμβαδού. Μπορεί να αποδειχθεί ότι στο όριο T → ∞
η αμοιβαία πληροφορία συμπίπτει με την αμοιβαία πληροφορία η οποία προκύπτει από

κλασικές κατανομές πιθανότητας.

Αρμονικός Ταλαντωτής σε Θερμοκρασία T Ο τελεστής πυκνότητας ενός

αρμονικού ταλαντωτή σε πεπερασμένη θερμοκρασία T είναι

ρ (x, x′) =

√
ω

π
(a+ b)e−

a(x2+x′2)
2 e−bxx

′
,

όπου a ≡ ω coth ω
T

και b ≡ −ω csch ω
T
.

Η εντροπία von Neumann είναι η θερμική εντροπία, η οποία δίνεται από την έκφραση

Sτη = − ln
(
1− e−

ω
T

)
+
ω

T

1

e
ω
T − 1

.

Για T → 0 προκύπτει ότι a = ω & β = 0. Σε αυτό το όριο, ο ταλαντωτής βρίσκεται

στην βασική κατάσταση, η οποία ειναι αμιγής.

Ζεύγος Συζευγμένων Ταλαντωτών Η Χαμιλτονιανή ενός ζεύγους συζευγ-

μένων ταλαντωτών είναι

H =
1

2

(
p2

1 + p2
2 + k0(x2

1 + x2
2) + k1(x1 − x2)2

)
.

Αναπτύσσοντας στους κανονικούς τρόπους ταλάντωσης παίρνουμε την Χαμιλτονιανή

H =
1

2

(
p2

+ + p2
− + ω2

+x
2
+ + ω2

−x
2
−
)
.

όπου

x± =
x1 ± x2√

2
p± =

p1 ± p2√
2

ω2
+ = k0 ω2

− = k0 + 2k1

Ο τελεστής πυκνότητας του ζεύγους των συζευγμένων ταλαντωτών είναι

ρ (x+, x+
′, x−, x−

′) = ρ (x+, x+
′)⊗ ρ (x−, x−

′)

=

√
(a+ + b+) (a− + b−)

π
e−

a+(x+
2+x+

′2)+a−(x−2+x−
′2)

2

e−b+x+x+
′
e−b−x−x−

′
,
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όπου

a± ≡ ω± coth
ω±
T
, b± ≡ −ω± csch

ω±
T
.

Ολοκληρώνοντας στους βαθμούς ελευθερίας του συμπληρωματικού υποσυστήματος

xC , έχουμε τον ανηγμένο τελεστή πυκνότητας

ρA (x, x′) =

∫
dxCρ

(
x, x′, xC , xC

)
=

√
γ − β
π

e−
(x2+x′2)γ

2 exx
′β,

όπου

γ − β = 2
(a+ + b+) (a− + b−)

a+ + a− + b+ + b−
, γ + β =

1

2
(a+ + a− − b+ − b−) .

Μπορεί να αποδειχθεί ότι το φάσμα του ανηγμένου τελεστή πυκνότητας είναι

pn = (1− ξ) ξn, ξ ≡ β

γ + α
=

√
γ+β
γ−β − 1√
γ+β
γ−β + 1

.

Η αντίστοιχη εντροπία διεμπλοκής είναι

SA = − ln (1− ξ)− ξ

1− ξ
ln ξ.

Ειδικά για το ζεύγος συζευγμένων ταλαντωτών, λόγω συμμετρίας, ισχύει ότι SAC = SA.

Επομένως, η αμοιβαία πληροφορία δίνεται από την σχέση

I
(
A : AC

)
= 2SA − Sth,

όπου Sth είναι η θερμική εντροπία των δύο κανονικών τρόπων ταλάντωσης. ΄Εχει ενδι-

αφέρον ότι για T →∞ η αμοιβαία πληροφορία τείνει σε μια πεπερασμένη τιμή I∞.

Ενεργώς Περιγραφή Κανείς μπορεί να παρατηρήσει ότι ο ανηγμένος τελεστής

πυκνότητας ταυτίζεται με έναν τελεστή πυκνότητας ενός αρμονικού ταλαντωτή σε πεπερασ-

μένη θερμοκρασίας, αρκεί να γίνουν κάποιες αντιστοιχήσεις. Δεν υπάρχει τοπικό

πείραμα το οποία να εκτελεστεί στον ένα από τους δύο συζευγμένους ταλαντωτές

σε πεπερασμένη θερμοκρασία T , το οποία να έχει διαφορετικά αποτελέσματα από ένα

πείραμα που εκτελείται σε ένα ενεργό αρμονικό ταλαντωτή ιδιοσυχνότητας

ωeff = α

σε ενεργό θερμοκρασία

Teff = − α

ln ξ
.
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Η προέλευση του I∞ Στο κλασσικό όριο υποθέτουμε ότι η πιθανότητα να βρεθεί

ένα σωματίδιο στην θέση x είναι αντιστρόφως ανάλογη του μέτρου της ταχύτητάς του

pE (x) =
ω

π
√

2E − ω2x2
.

Σε πεπερασμένη θερμοκρασία T η χωρική κατανομή πιθανότητας είναι

pcan (x;ω, T ) =

∫ ∞
1
2
ω2x2

p (E) pE (x) dE =
ω√
2πT

e−
ω2x2

2T ,

όπου p (E) είναι η πυκνότητα πιθανότητας της ενέργειας στην κανονική συλλογή. Για

ένα ζεύγος ταλαντωτών ισχύει ότι

p (x1, x2;T ) = pcan

(
x1 + x2√

2
;ω+, T

)
pcan

(
x1 + x2√

2
;ω−, T

)
=
ω+ω−
2πT

e−
ω2

+(x1+x2)2+ω2
−(x1−x2)2

4T .

Η κατανομή πιθανότητας του κάθε ταλαντωτή προκύπτει ολοκληρώνοντας την θέση του

άλλο. Μετά από πράξεις βρίσκουμε ότι

p (x1;T ) =

∫
p (x1, x2;T ) dx2 =

ω∞eff√
2πT

e−
(ω∞eff)2

x2
1

2T ,

όπου ω∞eff =

√
2ω2

+ω
2
−

ω2
++ω2

−
.

Πλέον μπορούμε να υπολογίσουμε το κλασσικό ανάλογο της εντροπίας διεμπλοκής

Scl
A = Scl

AC = −
∫
p (x1;T ) ln p (x1;T ) dx1 =

1

2

(
1− ln

(ω∞eff)2

2πT

)

καθώς και την θερμική εντροπία

Scl
A∪AC = −

∫
p (x1, x2;T ) ln p (x1, x2;T ) dx1dx2 = 1− ln

ω+ω−
2πT

.

Προκύπτει ότι η κλασσική αμοιβαία πληροφορία δίνεται από την σχέση

Icl
(
A : AC

)
= ln

(ω0
eff)

2

(ω∞eff)2 = ln
ω2

+ + ω2
−

2ω+ω−
= I∞.

Είναι ανεξάρτητη της θερμοκρασίας και ισούται με την ασυμπτωτική τιμή της αμοιβαίας

πληροφορίας στο όριο T →∞.
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Σύστημα Συζευγμένων Αρμονικών Ταλαντωτών Η Χαμιλτονιανή του συστή-

ματος θα έχει την μορφή

H =
1

2

N∑
i=1

p2
i +

1

2

N∑
i,j=1

xiKijxj,

όπου K συμμετρικός πίνακας με θετικές ιδιοτιμές. Οι κανονικές συντεταγμένες σχετί-

ζονται με της συντεταγμένες μέσω ενός ορθογώνιου μετασχηματισμού

yi = Oijxj, qi = Oijpj,

Αναπτύσσοντας στους κανονικούς τρόπους ταλάντωσης παίρνουμε την Χαμιλτονιανή

H =
1

2

N∑
i=1

q2
i +

1

2

N∑
i=1

ω2
i y

2
i .

όπου KDij ≡ ωi
2δij και K = OTKDO. Κατά αναλογία με το ζεύγος τον συζευγμένων

ταλαντωτών μπορεί να βρεί κανείς το φάσμα του ανηγμένου τελεστή πυκνότητας. Το

φάσμα εξαρτάται από τις ιδιοτιμές ενός πίνακα. Στην πράξη δεν μπορεί να υπολογιστεί

ακριβώς με αναλυτικές μεθόδους.

Χρησιμοποιούμε τρεις διαφορετικές προσεγγίσεις:

• Ανάπτυγμα σε υψηλές θερμοκρασίες. Προκύπτουν καθολικά αποτελέσματα για

όλα τα αρμονικά συστήματα.

• Ανάπτυγμα χαμηλών θερμοκρασιών: Ιδιαίτερα σύνθετα αποτελέσματα. Προκύπ-

τουν εκθετικές διορθώσεις στα αποτελέσματα της μηδενικές θερμοκρασίας.

• Ανάπτυγμα 1/µ: Χρησιμοποιούμε το αντίστροφο της μάζας του πεδίου ως δι-

αταρακτική παράμετρο.

Διακριτοποημένη ΚΘΠ στις 3+1 διαστάσεις Αναπτύσσουμε το βαθμωτό

πεδίο σε σφαιρικές αρμονικές και εισάγουμε ένα σφαιρικό πλέγμα προκειμένου να δι-

ακριτοποιούμε την ακτινική συντεταγμένη. Η Χαμιλτονιανή του πεδίου γράφεται

H =
1

2a

∑
`,m

N∑
j=1

[
π2
`m,j +

(
j +

1

2

)2(
ϕ`m,j+1

j + 1
− ϕ`m,j

j

)2

+

(
` (`+ 1)

j2
+ µ2a2

)
ϕ2
`m,j

]

Τόσο η εντροπία διεμπλοκής, όσο και η αμοιβαία πληροφορία, μπορούν να υπολο-

γιστούν ως άθροισμα συνεισφορών από τους διαφορετικούς τομείς της θεωρίας, ως

SΕΕ/I (N, n) =
∞∑
`=0

(2`+ 1)S`/I` (N, n) H =
∞∑
`=0

(2`+ 1)H`
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Λόγω εκφυλισμού σε κάθε ` αντιστοιχούν (2`+ 1) ταυτόσημοι τομείς.

Υποθέτουμε ότι η επιφάνεια διεμπλοκής κείτεται ανάμεσα στην θέση n και στην

θέση (n+ 1) του σφαιρικού πλέγματος. Ορίζουμε

nR := n+
1

2
,

ώστε η ακτίνα της επιφάνειας διεμπλοκής να είναι ίση με

R = nRa.

Για να αθροίσουμε σε όλα τα ` χρησιμοποιούμε τον τύπο Euler-MacLaurin

b∑
n=a

f (n) =

∫ b

a

dxf (x) +
f (a) + f (b)

2

+
∞∑
k−1

B2k

(2k)!

[
d2k−1f (x)

dx2k−1

∣∣∣∣
x=b

− d2k−1f (x)

dx2k−1

∣∣∣∣
x=a

]
,

όπου οι συντελεστές Bk είναι οι αριθμοί Bernoulli.

Σε κυρίαρχη τάξη θα έχουμε

I '
∫ ∞

0

d` (2`+ 1) I` (N, n, ` (`+ 1)).

Μας ενδιαφέρει κυρίως η συμπεριφορά του ολοκληρώματος για μεγάλα R. Δεν είναι

τετριμμένο να απομονώσουμε αυτή την συμπεριφορά καθώς το nR εμφανίζεται στην

ολοκληρωτέα ποσότητα μέσω του συνδυασμού `(`+ 1)/n2
R και το ` παίρνει απεριόριστα

μεγάλες τιμές κατά την ολοκλήρωση. Αυτή η δυσκολία μπορεί να ξεπεραστεί ορίζοντας

την μεταβλητή ολοκλήρωσης `(`+ 1)/n2
R = y. Τότε

I ' n2
R

∫ ∞
0

dyI`

(
N, nR −

1

2
, yn2

R

)
,

το οποίο μπορεί να αναπτυχθεί για μεγάλα nR.

Νόμος Εμβαδού Κάθε τομέας ο οποίος αντιστοιχεί σε ορισμένο ` αποτελεί ένα

σύστημα ταλαντωτών με πίνακα ζεύξεων

Kij =
1

a

[(
2 +

l (l + 1)

i2
+ µ2a2

)
δij − δi+1,j − δi,j+1

]
.

Εκτελώντας ένα ανάπτυγμα για μεγάλες μάζες του πεδίου, μπορεί να βρει κανείς την

αμοιβαία πληροφορία

I = n2
R

coth
[

1
2aT

√
2 + a2µ2

]
4aT

√
2 + a2µ2

+O (nR) .
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Το ανάπτυγμα υψηλών θερμοκρασιών αυτής της έκφρασης είναι

I = n2
R

(
1

2 (2 + a2µ2)
+

1

24a2T 2
− 2 + a2µ2

1440a4T 4
+O

(
1

T 6

))
+O (nR) .

Στο όριο χαμηλών θερμοκρασιών, χρησιμοποιούμε τις εκφράσεις του σχετικού αναπ-

τύγματος για το σύστημα συζευγμένων ταλαντωτών και εκτελούμε την ολοκλήρωση στα

` χρησιμοποιώντας την προσέγγιση σαγματικού σημείου. Η αμοιβαία πληροφορία δίνεται

από την σχέση

I ' IT=0 + 2n2
R

√
2πT

4

√
3 (2 + µ2a2)

2

×

[
2 log

(
4
(
2 + µ2a2

))
− 1−

√
2 + µ2a2

T

]
exp

[
−
√

2 + µ2a2

T

]
.

Μπορεί να δει κανείς ότι ο αναλυτικός υπολογισμός προσεγγίζει αρκετά καλά την

αριθμητική προσομοίωση για μεγάλες τιμές της μάζας του πεδίου.
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Μέθοδοι Ολοκληρωσιμότητας σε ΜΓΣΜ

Σύμφωνα με την συνταγή Ryu και Takayanagi η ολογραφική εντροπία διεμπλοκής που

αντιστοιχεί σε μια περιοχή του χώρου δίνεται από την σχέση

S =
Area(Ã)

4GN

,

όπου Ã είναι μια κατάλληλη ελάχιστη επιφάνειες συν-διάστασης 2. Τέτοιες στατικές

ελάχιστες επιφάνειες εμβαπτισμένες στον AdS4 είναι 2-διάστατες. Οι εξισώσεις που

ικανοποιούν μπορούν να προκύψουν από ένα ΜΓΣΜ. Τα ΜΓΣΜ σε Συμμετρικούς

Χώρους είναι ολοκληρώσιμα, γεγονός που μας επιτρέπει να διερευνήσουμε την σχέση

της κβαντικής διεμπλοκής με την ολοκληρωσιμότητα. Καθώς η μετρική του κοσμικού

σεντονιού είναι Ευκλείδεια δημιουργούνται περιπλοκές. Για να αποκτήσουμε φυσική

διαίσθηση μελετάμε χορδές οι οποίες διαδίδονται στην πολλαπλότητα R×S2
. Ως επί το

πλείστον θα βασιστούμε στην Αναγωγή Pohlmeyer, στη Μέθοδο ΄Ενδυσης και στους

μετασχηματισμούς Bäcklund.

Αναγωγή Pohlmeyer Η Αναγωγή Pohlmeyer συνίσταται στο γεγονός ότι οι εξ-

ισώσεις για την εμβάπτιση της λύσεις του ΜΓΣΜ στον χώρο που διαδίδεται, ο οποίος

μπορεί να θεωρηθεί ως υπόχωρος ενός επίπεδου χώρου, είναι πολυδιάστατες γενικεύ-

σεις της εξίσωσης sine-Gordon. Οι θεωρίες αυτές είναι γνωστές ως υποδείγματα sine-

Gordon Συμμετρικών Χώρων. ΄Ενα πολύ σημαντικό γεγονός είναι ότι αντικαθιστώντας

μια λύση της ανηγμένης κατά Pohlmeyer θεωρίας στις εξισώσεις του ΜΓΣΜ, αυτές κα-

θίστανται γραμμικές. Επίσης πρέπει να επισημανθεί πως υπάρχει ολόκληρη οικογένεια

λύσεων του ΜΓΣΜ, η οποία αντιστοιχεί σε συγκεκριμένη λύσης της ανηγμένης κατά

Pohlmeyer θεωρίας.

Μέθοδος ΄Ενδυσης Οι εξισώσεις κίνησης ΜΓΣΜ σε Συμμετρικούς Χώρους μπορούν

να εξαχθούν από την συνθήκη ∂+∂−Ψ = ∂−∂+Ψ ενός πρωτοτάξιου συστήματος συζευγ-

μένων γραμμικών μερικών διαφορικών εξισώσεων, το επονομαζόμενο βοηθητικό σύστημα:

∂±Ψ(λ) =
1

1± λ
(∂±g) g−1Ψ(λ), λ ∈ C : φασματική παράμετρος

Αυτό προϋποθέτει την αντιστοίχιση της λύσης του ΜΓΣΜ σε ένα στοιχείο ενός κατάλληλου

χώρου πηλίκου. Αυτό οφείλεται στο γεγονός ότι το βοηθητικό σύστημα αναπαράγει

τις εξισώσεις του Κύριου Χειραλικού Υποδείγματος. Εν γένει θεωρούμε την ‘αρ-

χική’ συνθήκη Ψ(0) = g. Για την εφαρμογή της Μεθόδου ΄Ενδυσης απαιτείται η

επίλυση του βοηθητικού συστήματος και η εφαρμογή ορισμένων δεσμών. Δοθείσης

της λύσης του βοηθητικού συστήματος, μπορεί κανείς να κατασκευάσει συστηματικά
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ολόκληρη κλάση λύσεων του ΜΓΣΜ. Εκτελώντας έναν μετασχηματισμό βαθμίδας, ορί-

ζουμε Ψ′(λ) = χ(λ)Ψ(λ) ώστε το g′ = Ψ′(0) να είναι ένα νέο στοιχείου του χώρου

πηλίκου, το οποίο θα αντιστοιχεί σε μια νέα λύση του ΜΓΣΜ. Ο παράγοντας χ ονομάζε-

ται παράγοντας ένδυσης και είναι μερομορφική συνάρτηση της φασματικής παραμέτρου

λ. Οι εξισώσεις κίνησής του είναι

(1± λ) (∂±χ)χ−1 + χ (∂±g) g−1χ−1 = (∂±g
′) g′−1

Οφείλουμε να απαιτήσουμε την αυτοσυνέπεια του βοηθητικού συστήματος κάτω από τις

απεικονίσεις που ορίζουν τον χώρο πηλίκο.

Μετασχηματισμοί Bäcklund Τα υποδείγματα sine-Gordon Συμμετρικών Χώρων

έχουν μετασχηματισμούς Bäcklund, οι οποίοι είναι ανάλογοι τον μετασχηματισμών έν-

δυσης του ΜΓΣΜ. Οι μετασχηματισμοί Bäcklund είναι ζεύγη συζευγμένων μη γραμ-

μικών μερικών διαφορικών εξισώσεων. Για την εξίσωση sine-Gordon, οι μετασχημα-

τισμοί είναι

∂−

(
a+ a′

2

)
= − 1

α
m− sin

(
a− a′

2

)
,

Λύσεις οι οποίες έχουν εξαχθεί από μετασχηματισμούς Βα̈ςκλυνδ, ξεκινώντας από την

ίδια λύση, μπορούν να συνδυαστούν αλγεβρικά χρησιμοποιώντας αθροιστικούς τύπους,

προκειμένου να προκύψουν νέες λύσεις. Είναι ιδιαίτερα σημαντικό ότι ένας μετασχημα-

τισμός ένδυσης στο ΜΓΣΜ, πραγματοποιεί αυτόματα έναν μετασχηματισμό Bäcklund,

στην ανηγμένη κατά Pohlmeyer θεωρία.

Ελλειπτικές χορδές στον R×S2
Η δράση της μποζονικής θεωρίας χορδών στον

χώρο R× S2
είναι

S = T

∫
dξ+dξ−

[
−∂+X

0∂−X
0 + ∂+

~X · ∂− ~X + ν
(
~X · ~X − 1

)]
.

Εύκολα μπορεί να δει κανείς ότι οι εξισώσεις κίνησης είναι:

X0(ξ+, ξ−) = m+ξ
+ +m−ξ

−, ∂+∂− ~X = −m+m− cos a ~X.

και συνοδεύονται από τους δεσμούς Virasoro

∂± ~X · ∂± ~X = m2
±.

Ορίζουμε το πεδίο Pohlmeyer μέσω των σχέσεων

∂+
~X · ∂− ~X = m+m− cos a, ~X ·

(
∂+

~X × ∂− ~X
)

= m+m− sin a.
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Μέσω της αναγωγής Pohlmeyer προκύπτει ότι το πεδίο Pohlmeyer ικανοποιεί την

εξίσωση sine-Gordon

∂+∂−a = µ2 sin a, µ2 = −m+m−.

Οι λύσεις της εξίσωσης sine-Gordon, οι οποίες εκφράζονται μέσω ελλειπτικών

συναρτήσεων, είναι

cosϕ
(
ξ0, ξ1;E

)
= ∓ 1

µ2

(
2℘
(
ξ0/1 + ω2; g2 (E) , g3 (E)

)
+
E

3

)
,

όπου ℘ είναι η ελλειπτική συνάρτηση του Weierstrass και E ελεύθερη παράμετρος.

Αντικαθιστώντας στις εξισώσεις κίνησης του ΜΓΣΜ, βλέπουμε ότι για κάθε συνιστώσα,

αυτές διαχωρίζονται σε δύο προβλήματα Schrödinger, το ένα δεν έχει δεν έχει δυναμικό,

ενώ το άλλο έχει το δυναμικό Lamé . ΄Ετσι, οι ιδιοσυναρτήσεις της εξίσωσης Lamé

−d
2y

dx2
+ 2℘ (x+ ω2) y = λy, λ = −℘(a).

είναι τα ‘συστατικά’ των συγκεκριμένων κλασσικών λύσεων της θεωρίας χορδών. Αν

η παράμετρος a δεν συμπίπτει με κάποια ημιπερίοδο της συνάρτησης Weierstrass, οι

ιδιοσυναρτήσεις έχουν την μορφή

y± (x; a) =
σ (x+ ω2 ± a)σ (ω2)

σ (x+ ω2)σ (ω2 ± a)
e−ζ(±a)x

Απαιτώντας η λύση να ικανοποιεί τον γεωμετρικό δεσμό, δηλαδή | ~X| = 1 καθώς και

τους δεσμούς Virasoro, προκύπτει ότι

~X =
1

`


Re
(
y+ (ξ1; a) e−i`ξ

0
)

−Im
(
y+ (ξ1; a) e−i`ξ

0
)√

x1 − ℘ (ξ1 + ω2)


όπου ` =

√
x1 − ℘ (a) και x1 = E/3. Από τους δεσμούς Virasoro προκύπτει ότι η

παράμετρος a σχετίζεται με τις παραμέτρους m± μέσω της σχέσης

℘(a) = −E
6
−
m2

+ +m2
−

4
.

Για να εμφανίσουμε τον φυσικό χρόνο στις εκφράσεις, πρέπει να εκτελέσουμε έναν

μετασχηματισμό Lorentz στο κοσμικό σεντόνι, ώστε να επιλέξουμε την στατική βαθμίδα

X0 = µσ0.
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Αρχική λύση ∂±gg
−1

BMN Σταθερός

Ελλειπτικές χορδές Εξαρτάται μόνο

από μια μεταβλητή
1

Γενική περίπτωση Εξαρτάται και

από τις δυο μεταβλητές

Ενδεδυμένες χορδές στον R×S2
΄Ενα βασικό ερώτημα είναι πόσο εύκολη είναι

η εφαρμογή της μεθόδου ένδυσης στην πράξη. Στον πίνακα που ακολουθεί παραθέτουμε

τις τρεις διαφορετικές περιπτώσεις που μπορεί να συναντήσει κανείς. Για να επιλύσουμε

το βοηθητικό σύστημα, εκφράζουμε την λύση του ΜΓΣΜ ως X = UX0, όπου U =

U2U1 και

U1 =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , U2 =

cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 , X0 =

0

0

1

 .

Κατασκευάζουμε ένα στοιχείο του χώρου πηλίκου ως g = J(I − 2XXT ), όπου

J = I − 2X0X
T
0 . Ομοίως ορίζουμε,

Ψ = JUJV̂ , V̂ =
(
~̂
V1

~̂
V2

~̂
V3

)
.

Το βοηθητικό σύστημα αποκτά την μορφή

∂0/1V̂i = A0/1V̂i,

όπου για ελλειπτικές λύσεις ο ένας από τους πίνακες A0/1 εξαρτάται μόνο από την μια

μεταβλητή. ΄Ετσι η μια εξίσωση μπορεί να λυθεί ως γραμμικό σύστημα με σταθερούς

συντελεστές με την δεύτερη εξίσωση να προσδιορίζει τις άγνωστες συναρτήσεις.

Παραλείποντας έναν ιδιαίτερα τεχνικό υπολογισμό, η ενδεδεδυμένη λύση εξαρτάται

μη τετριμμένα από την φασματική παράμετρο λ μέσω της παραμέτρου ã, η οποία ορίζεται

από την σχέση

℘(ã) = −E
6
−
m2

+

4

(
1− λ
1 + λ

)2

−
m2
−

4

(
1 + λ

1− λ

)2

.

Συγκρίνοντας με την παράμετρο a των ελλειπτικών λύσεων, βλέπουμε ότι η μια προκύπτει

από την άλλη με έναν μετασχηματισμό των m±. Είναι ιδιαίτερα κρίσιμο ότι αυτός

ο μετασχηματισμός αφήνει το γινόμενο m+m− αναλλοίωτο. Αυτό σημαίνει ότι αν

θεωρούσαμε με κλασσική λύση με παράμετρο a, αυτή θα ικανοποιούσε τις εξισώσεις

κίνηση, τον γεωμετρικό δεσμό, θα αντιστοιχούσαν στην ίδια λύση της ανηγμένης κατά
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Pohlmeyer θεωρίας, αλλά θα υπάκουαν δεσμούς Virasoro με μιγαδικές σταθερές. Στην

απλούστερη περίπτωση μπορούμε να κατασκευάσουμε έναν παράγοντα ένδυσης ο οποίος

θα έχει πόλους στον μοναδιαίο κύκλο, συγκεκριμένα για λ = exp(±iθ1).

Μελετούμε εκτενώς τις φυσικές ιδιότητες των ενδεδυμένων ελλειπτικών χορδών,

καθώς και των εικόνων τους στην ανηγμένη κατά Pohlmeyer θεωρία. Εδώ θα αναφερ-

θούμε μόνο στην ύπαρξη μιας κλάσης λύσεων, η οποία αντιστοιχεί στις αστάθειες

των ελλειπτικών χορδών. Αυτές οι αστάθειες υπάρχουν όποτε μπορεί να διαδοθεί

ένα ταχιονικό σολιτόνιο στο υπόβαθρο της αντίστοιχης ελλειπτικής λύσης της ανηγ-

μένης κατά Pohlmeyer θεωρίας. Οι συνοριακές συνθήκες είναι πολύ σημαντικές για

τον προσδιορισμό των ασταθειών που επιτρέπεται να διαδοθούν. Αυτά τα συμπεράσ-

ματα επιβεβαιώνονται και από γραμμική ανάλυση ευστάθειας στην θεωρία sine-Gordon.

Η ανάλυση βασίζεται στην δομή των ενεργειακών ζωνών του δυναμικού n = 1 Lamé .

Η επίλυση του βοηθητικού συστήματος για τυχαία αρχική λύση Ας

θεωρήσουμε μια τυχαία λύση η οποία σε πολικές συντεταγμένες παραμετροποιείται από

τις γωνίες θ και φ. Χωρίς να μπούμε σε λεπτομέρειες, μπορούμε να προσδιορίσουμε τις

στήλες
~̂
Vj που λύνουν το βοηθητικό σύστημα. Προκύπτει ότι

~̂
Vj =

~τ1

(~τ0 × ~τ1) · ~X0

∂0V̂
3
j −

~τ0

(~τ0 × ~τ1) · ~X0

∂1V̂
3
j + V̂ 3

j
~X0,

όπου

~τ0/1 =

τ 1
0/1

τ 2
0/1

0

 ,

τ 1
0/1 = sin θ

(
1 + λ2

1− λ2
∂0/1φ−

2λ

1− λ2
∂1/0φ

)
τ 2

0/1 = −1 + λ2

1− λ2
∂0/1θ +

2λ

1− λ2
∂1/0θ

με τα στοιχειά της τρίτης γραμμής να δίνονται κατασκευάζονται από την αρχική λύση

ως

V̂ 3
i = Xi|m±→m± 1∓λ

1±λ
.

Από αυτή την κατασκευή προκύπτουν πολλά συμπεράσματα. Η λύση τους βο-

ηθητικού συστήματος για τυχαία αρχική λύση, κατασκευάζεται συνδυάζοντας την αρ-

χική λύση με μια οιωνοί λύση. Αυτή μπορεί να κατασκευαστεί συστηματικά αρκεί να

γνωρίζει κανείς όλη την οικογένεια λύσεων του ΜΓΣΜ η οποία αντιστοιχεί στην ίδια

λύση της εξίσωσης sine-Gordon. Αυτά τα δεδομένα αρκούν προκειμένου να εισαχ-

θεί ένα σολιτόνιο στο υπόβαθρο της συγκεκριμένης λύσης της εξίσωσης sine-Gordon,

χωρίς να χρειαστεί η επίλυση των εξισώσεων του μετασχηματισμού Bäcklund. Ου-

σιαστικά, στην προκειμένη περίπτωση η μέθοδος ένδυσης υλοποιεί την μη γραμμική

υπέρθεση που παρουσιάσαμε. Τα σολιτόνια της εξίσωσης sine-Gordon, είναι η εικόνα

της μη γραμμικής υπέρθεσης στην ανηγμένη κατά Pohlmeyer θεωρία.
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Ενδεδυμένες ελάχιστες επιφάνειες Για τις ελάχιστες επιφανειες στον H3

χρησιμοποιούμε την απεικόνιση

Y ∈ R(1,3) → g =
(
I + 2Y0Y

T
0 J
) (
I + 2Y Y TJ

)
∈ SO(1, 3)/SO(3)

όπου I είναι ο ταυτοτικός πίνακας, J = diag{−1, 1, 1, 1} η μετρική του R(1,3)
και Y0

ένα σταθερό διάνυσμα στον υπερβολικό χώρο H3
, δηλαδή ένα διάνυσμα που ικανοποιεί

την σχέση Y T
0 JY0 = −1. Επιλέγοντας Y T

0 =
(
1 0 0 0

)
έχουμε

g = J + 2JY Y TJ.

Το βοηθητικό σύστημα έχει την ίδια μορφή

∂±Ψ =
1

1± λ
[
(∂±g) g−1

]
Ψ,

αλλά οι τελεστές παραγώγισης ∂± ορίζονται ως ∂+ = ∂ και ∂− = ∂̄. Αυτό έχει ως

αποτέλεσμα η συνθήκη ‘πραγματικότητας’ να αποκτά την μορφή Ψ̄(λ̄) = Ψ(−λ).

Κατά αντιστοιχία, στην απλούστερη περίπτωση μπορούμε να κατασκευάσουμε έναν

παράγοντα ένδυσης ο οποίος θα έχει πόλους στον άξονα των φανταστικών αριθμών,

συγκεκριμένα για λ = iµ1 και λ = −iµ−1
1 . Προκύπτει ότι η ενδεδυμένη λύση σχετίζεται

με την αρχική μέσω της σχέσης

Y ′ = i

(
Y

µ1

+
µ1 + µ−1

1

2

JW

W TY

)
, W = Ψ(iµ1)p, W TJW = 0.

Η ανωτέρω ανάλυση δεν εξαρτάται από το πλήθος των διαστάσεων, όποτε καταλήγουμε

στο ακόλουθο συμπέρασμα: ΄Ενας μετασχηματισμός ένδεισης με τον απλούστερο παρά-

γοντα ένδυσης χρησιμοποιώντας τον χώρο πηλίκο SO(1, d)/SO(d) συσχετίζει λύσεις

του Ευκλείδειου ΜΓΣΜ στον υπερβολικό χώρο Hd
και λύσεις του Ευκλείδειου ΜΓΣΜ

στον χώρο de Sitter dSd.

Αυτή η περιπλοκή μας αναγκάζει να μελετήσουμε πολλαπλούς μετασχηματισμούς

ένδυσης

∂±Ψk(λ) =
1

1± λ
(∂±gk−1) g−1

k−1Ψk(λ), gk−1 = Ψk (0) .

Αποδεικνύεται ότι μπορούμε να κατασκευάσουμε πραγματικές λύσεις επαγωγικά χρησι-

μοποιώντας την σχέση

Yk =

(
1−

1 + µ−1
k−1µ

−1
k

X

)
Yk−2 +

1

2X

1 + µk−1µk
µk − µk−1

×
[(
µk + µ−1

k

) JVk
V T
k Yk−2

−
(
µk−1 + µ−1

k−1

) JVk−1

V T
k−1Yk−2

]
,
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όπου

X = 1 +
1

2

(1 + µ2
k)
(
1 + µ2

k−1

)
(µk − µk−1)2

V T
k JVk−1

(V T
k Yk−2)

(
V T
k−1Yk−2

)
και

Vk = Ψk−1(iµk)pk, Vk−1 = Ψk−1(iµk−1)pk−1.

Υπάρχουν αρκετές ενδείξεις ότι το σύνορο της ενδεδυμένης επιφάνειας προσδιορίζε-

ται από την σχέση X = 0. Τέλος, μπορεί να δείξει κανείς ότι το εμβαδόν της ελάχιστης

επιφάνειας μετασχηματίζεται ως

Ak =

∫
Dk
dudv (∂+Yk−2)T J∂−Yk−2

−
∫
∂Dk

d`n̂ · ~∇ ln
[((

V T
k Yk−2

) (
V T
k−1Yk−2

)
X
)2
]
.
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Ολογραφική Εντροπία Διεμπλοκής

Παραμετροποίηση ελάχιστων επιφανειών μέσω γεωμετρικών ροών Ας

υποθέσουμε ότι θέλουμε να μελετήσουμε ελάχιστες επιφάνειες σε ένα χώρο με στοιχείο

μήκους

ds2 = f (r) dr2 + hij
(
r, xk

)
dxidxj,

ο οποίος έχει ένα σύνορο. Η ελάχιστη επιφάνεια παραμετροποιείται ως

r = ρ, xi = X i (ρ, ua)

Μελετώντας την εμβάπτιση της ελάχιστης επιφάνειας, μπορούμε να κατασκευάσουμε μια

γεωμετρική ροή η οποία περιγράφει την ελάχιστη επιφάνεια ως εξέλιξη της επιφάνειας

διεμπλοκής.

Στην περίπτωση του υπερβολικού χώρου Hd
(για τον οποίο ισχύει hij = f(ρ)δij και

f(ρ) = 1/ρ2
) η εξίσωση ροής είναι

ρ∂ρ

(
c
√

det γ

ρ

)
+

(d− 1)
√

det γ

cρ
= 0,

1

c2
= 1 +

∂xi

∂ρ

∂xi

∂ρ
.

όπου γ είναι η ορίζουσα της επαγόμενης μετρικής. Αυτός ο φορμαλισμός μας επιτρέπει

να εκτελέσουμε έναν πλήρως ολογραφικό υπολογισμό. Απλοϊκά το ανάπτυγμα των xi

είναι

xi (ρ;ua) =
∑

m=0,2,4,...

xi(m) (ua) ρm

Ωστόσο, σε τάξη d χρειάζονται επιπρόσθετες συνεισφορές. Αν το d είναι περιττό,

μπορούν να εμφανιστούν περιττοί όροι στο ανάπτυγμα, ενώ αν το d είναι άρτιο απαιτούν-

ται λογαριθμικοί όροι.

Το εμβαδόν της ελάχιστης επιφάνειας θα έχει ένα ανάπτυγμα της μορφή

A (Λ) =
d−2∑
n=1

an
εn
− a0 ln ε + νον-διvεργεντ τερμς.

Προκύπτει ότι οι πρώτοι συντελεστές είναι:

ad−2 =
1

d− 2

∫
dd−2u

√
detG =

1

d− 2
A d ≥ 3

ad−4 =

{
− d−3

2(d−2)2(d−4)

∫
dd−2u

√
detGK2, d ≥ 4

−1
8

∫
d2u
√

detGK2, d = 4

ad−6 =

{
d−5

4(d−2)2(d−4)(d−6)

∫
dd−2u

√
detG

[
d2−5d+8

2(d−2)2
K4 −K2KabKab −K2K

]
, d ≥ 6

1
128

∫
d4u
√

detG
[

7
16
K4 −K2KabKab −K2K

]
, d = 6
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Ο πρώτος νόμος της θερμοδυναμικής της διεμπλοκής και οι εξισώ-

σεις Αϊνστάιν Υποθέτουμε ότι έχουμε ένα σύστημα σε αμιγή κατάσταση, η οποία

εξαρτάται από κάποιες παραμέτρους. Μεταβάλλοντας την κατάσταση έχουνε

δSA = Tr (HAδρA) = δ〈HA〉, ρA = e−HA .

όπου HA είναι η αρθρωτή Χαμιλτονιανή. Αυτή η ισότητα μοιάζει με τον πρώτο θερμοδ-

υναμικό νόμο και ισχύει τετριμμένα για κάθε κβαντικό σύστημα.

Ας την μελετήσουμε υπό το πρίσμα της αντιστοιχίας AdS/CFT. Επιλέγουμε την

βασική στάθμη της θεωρίας, η οποία αντιστοιχεί σε γεωμετρία AdS και θεωρούμε

σφαιρικές επιφάνειες διεμπλοκής. Η μεταβολή της αρθρωτής Χαμιλτονιανής είναι

δ〈HA〉 =
π

R

∫
B

dd−1x(R2 − |~x|2)δ〈T00(x)〉

όπου Tµν είναι ο ολογραφικός τανυστής ενέργειας - ορμής. Η αρθρωτή Χαμιλτονιανή

είναι τοπική συνάρτησή του, λαθώς η αντίστοιχη αρθρωτή ροή είναι τοπική.

Θεωρούμε ότι η αλλαγή της κατάστασης οφείλεται σε βαρυτικές διαταραχές. Εν

γένει η διαταραγμένη γεωμετρία θα δίνεται από ένα ανάπτυγμα Fefferman - Graham:

ds2 =
1

z2

(
dz2 + dxµdxµ + zdHµνdx

µdxν
)
,

ώστε ο χώρος να είναι ασυμπτωτικά AdS. Χρησιμοποιώντας ολογραφική επανακανον-

ικοποίηση μπορούμε να δείξουμε ότι ο ολογραφικός τανυστής ενέργειας-ορμής σχετίζε-

ται με τις διαταραχές μέσω της σχέσης

Tµν =
d

16πGN

Hµν (z = 0, x)

Η μεταβολή του εμβαδού της ελάχιστης επιφάνειας είναι

δΑρεα =
1

2

∫
B̃

√
det γabγ

cdδγcd =
1

2R

∫
B̃

dd−1x(R2Hii − xixjHij).

Απαιτώντας την ισχύ του πρώτου θερμοδυναμικού νόμου της διεμπλοκής, δηλαδή

δSA = δ〈HA〉, προκύπτει ότι

Hµ
µ = 0, ∂µH

µν = 0,
1

zd+1
∂z
(
zd+1∂zHµν

)
+ ∂2Hµν = 0

Αυτές είναι οι γραμμικοποιημένες εξισώσεις Αϊνστάιν στο υπόβαθρο του AdS.

Αν η ισοδυναμία μεταξύ του πρώτου θερμοδυναμικού νόμου και των εξισώσεων

Αϊνστάιν ισχύει γενικά, θα πρέπει να ισχύει για κάθε επιφάνεια διεμπλοκής. Οι σφαιρικές

επιφάνειες διεμπλοκής είναι πολύ ειδικές. Είναι ορίζοντες Killing και όλες οι εξωτερικές

τους καμπυλότητες μηδενίζονται.
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Δυστυχώς η αρθρωτή Χαμιλτονιανή δεν είναι γνωστή πέρα από τις σφαιρικές επιφάνειες

διεμπλοκής. Για τις στατικές ελλειπτικές ελάχιστες επιφάνειες στον AdS4 αν και δεν

μπορεί να προσδιοριστεί, προκύπτει ότι είναι μη τοπική συνάρτηση του Tµν .

Εστιάζοντας στον συνδετικό κρίκο, δηλαδή στις βαρυτικές διαταραχές, κατασκευάσαμε

τον διαδότη από το σύνορο στο εσωτερικό στην βαθμίδα Fefferman - Graham, ο οποίος

είναι

H(d)
µν (xµ; z) =

16πGN

d

1

Vd

∫
Bd
dduTµν

(
x0 + zu0, ~x+ iz~u

)
,

όπου Bd είναι η μοναδιαία μπάλα στις d διαστάσεις. Αντικαθιστώντας στην έκφραση

αυτή τον ολογραφικό τανυστή ενέργειας ορμής, μπορούμε να υπολογίσουμε τις γραμ-

μικοποιημένες βαρυτικές διαταραχές που επάγει. Μέσω αυτού του φορμαλισμού δώσαμε

εναλλακτικές αποδείξεις της ισοδυναμίας του πρώτου νόμου της θερμοδυναμικής της

διεμπλοκής για σφαιρικές επιφάνειες διεμπλοκής.
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Introduction

Theoretical physics of the previous century was marked by the development of quan-

tum field theory (QFT), which found a plethora of applications. Within this frame-

work mankind came to conceptually understand fundamental phenomena in various

fields, including solid state physics and particle physics. However, most calcula-

tions in QFT rely on perturbative methods; as a result, many calculations in the

strongly coupled regimes of theories, which are related to very important questions,

cannot be performed. Very interesting physical phenomena, such as Confinement,

High Temperature Superconductivity, Superfluidity and Quark – Gluon Plasma are

of non-perturbative nature; consequently, a very limited quantitative and qualitative

description of them is possible through straightforward application of the standard

QFT machinery.

An elegant and modern method to overcome this obstacle is through the iden-

tification of a duality. A duality relates two theories in a very non-trivial way, so

that the strongly coupled regime of one of them is mapped to the weakly coupled

regime of the other and vice versa. That said, whenever a duality exists, it is possible

to map non-perturbative calculations in a theory to perturbative calculations in the

dual theory. A prototype example is the sine-Gordon – Thirring duality [11]. Since

sine-Gordon theory [12, 13] contains only bosonic degrees of freedom, whereas the

Thirring model [83] contains only fermionic degrees of freedom, this example reveals

a very peculiar characteristic; a duality can relate two theories of completely different

nature. A far more important breakthrough in the field of dualities was achieved in

the early nineties, when the existence of dualities in supersymmetric gauge theories

was discovered [14, 15]. Remarkably, the Seiberg-Witten duality allows the calcula-

tion of the exact low energy effective action of N = 2 supersymmetric gauge theories,

which are theories similar to Quantum Chromodynamics. This description provides

quantitative, but also qualitative, insights in the phenomenon of confinement, which

in this framework is realized as a magnetic superconducting phase of the theory,

where the color charges are confined due to the analogue of the Meissner effect.

A formal proof of a duality is extremely difficult, yet its existence can be moti-

vated quite rigorously. One necessary condition for the existence of a duality is the

matching of symmetries and anomalies of the dual theories. In addition, whenever a

perturbative calculation can be extrapolated to the strongly coupled regime, it should

match the perturbative calculation of the dual theory. Such non-perturbative cal-

culations are sometimes possible in the presence of supersymmetry. Supersymmetry

either protects quantities from receiving quantum corrections or enables the local-

ization [16, 17] of path integrals, thus effectively capturing all quantum corrections

as one-loop super-determinants.
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An extremely interesting class of dualities is that of Gauge/Gravity Dualities.

These typically interrelate a (d+1)-dimensional gravitational theory in asymptoti-

cally Anti-de Sitter spacetime and a d-dimensional conformal field theory (CFT).

This class of dualities incorporates the holographic principle [18,19] since the bound-

ary of the AdS space acts as a holographic screen. The most well studied and robust

formulation of a Gauge/Gravity Duality is the AdS/CFT correspondence [20–22].

Since CFTs describe systems near their critical points, the Gauge/Gravity du-

ality is relevant to many interesting physical systems. One of its most successful

applications is the description of the Quark – Gluon Plasma (QGP) fluid dynamics.

Simple arguments in the gravitational theory indicate the existence of an upper uni-

versal bound for the ratio of viscosity over entropy density [23–26]. Fluids that are

described by this setup should obey the so-called KSS bound. Interestingly enough,

all known liquids obey this bound and the experiments in RHIC suggest that this

bound is saturated by the QGP. “Applied AdS/CFT” came to be a very active field

of research with emphasis on the description of quantum phases in Condensed Matter

Physics [27–29] and on Superfluidity [30,31].

The AdS/CFT correspondence is a dynamical equivalence between type IIB string

theory on AdS5 × S5, with N units of flux though S5, and the N = 4 Super Yang

Mills theory with SU(N) gauge group. The gauge theory is characterized by the

rank of the gauge group N and the ’t Hooft coupling λ, whereas are string theory is

characterized by its coupling and the string length. The limit N → ∞ and λ → ∞
corresponds to classical supergravity in the gravitational side, where all quantum and

stringy phenomena are suppressed. This regime has been explored extensively in the

literature, see [32] for a review. One can reach another very interesting regime by

allowing the ‘t Hooft coupling to be finite. This limit corresponds to classical string

theory on the gravitational side, i.e. stringy phenomena are present and important,

but quantum effects are still suppressed. In general, the classical strings propagate in

a very complicated way, since their presence alters the geometry of the target space.

In order to simplify the situation, the backreaction of the string to the background

geometry has to be suppressed. This is achieved by a finite, yet large enough ‘t

Hooft coupling. This choice renders the motion of the string integrable, a property

which is inherited by the non-linear sigma models (NLSMs), which describe string

propagation on symmetric spaces. Classical string solutions [33], which propagate

on target spaces, such as AdS5 × S5 and AdS4 ×CP3 have played an important role

in the deeper understanding of the Gauge/Gravity duality. In papers [2–5] we take

advantage of integrability in order to construct highly non-trivial string solutions that

can be studied analytically and are associated with many interesting phenomena.

In the thermodynamic limit, i.e. the limit where the composite operators include

infinitely many insertions, the integrable structure of the NLSM can be used in order
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to establish a mapping between the conserved charges of the classical strings and the

anomalous dimensions and charges of the dual CFT operators [34,35]. Even though

this mapping is known, it is a formal, abstract construction based on the identifica-

tion of spectral curves; it is highly non-trivial to identify the specific operators and

classical string solutions that are interrelated. Various techniques can be used to

explore the AdS/CFT correspondence at this particular limit, mainly on the side of

the boundary field theory [36]. In [10] we obtain the formal solution of the auxil-

iary system, which corresponds to strings propagating in R × S2. Generalization of

this construction to the supercoset PSU(2, 2|4)/SO(1, 5) × SO(6) could contribute

towards establishing a direct relation between specific string configurations and dual

operators.

As discussed, Gauge/Gravity duality suggests that at the large N and large ’t

Hooft coupling limit, the gravitational theory reduces to classical supegravity. At

this limit, a prescription for the calculation of the holographic entanglement entropy

was put forward by Ryu and Takayanagi [37–39] and subsequently derived in the

context of AdS/CFT in [40,41]. Entanglement entropy is given by the von Neumann

entropy associated with the reduced density matrix that describes the degrees of

freedom of a given subsystem. This subsystem is defined to contain the degrees of

freedom in a given spatial region of space, defined by a particular entangling surface.

The calculation of entanglement entropy in quantum field theory is a formidable

task, even for free field theories [42–46]. The prescription of Ryu and Takayanagi

states that the holographic entanglement entropy is proportional to the area of the

co-dimension two minimal surface, which is anchored on the entangling surface at

the boundary and extends towards the interior of the bulk. While this is a very well

posed and clear prescription, in practice, its implementation is far from trivial, since

one has to know the exact expression of the minimal surface in order to calculate its

area. Even in the case of pure AdS geometries, very few minimal surfaces are known

for an arbitrary number of dimensions, namely, minimal surfaces that correspond to

spherical entangling surfaces or strip regions.

We tackle this problem using two different approaches. First, we focus on AdS4.

Since in this case the co-dimension two minimal surfaces are two-dimensional Eu-

clidean world-sheets, there are extra tools that can be used compared to the general

case. Such minimal surfaces are solutions of the equations of motion of a Non-Linear

Sigma Model. In particular, the static co-dimension two minimal surfaces in AdS4,

are equivalent to co-dimension one minimal surfaces in the hyperbolic space H3. Such

two-dimensional Euclidean world-sheets, embedded in Hd, are of great interest, since

they are the holographic duals of Wilson loops at strong coupling [47, 48]. In [9] we

discuss the application of the dressing method on such static minimal surfaces. As

far as the general case is concerned, in [8] we present a flow equation, which governs
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the minimal surfaces and can be used in order to study some of their characteristics.

Holographic entanglement entropy is related to two very important open prob-

lems of theoretical physics; the black hole information paradox (for a review see [49]),

as well as, the very nature of gravitational force. AdS/CFT correspondence suggests

that we can study quantum gravity in terms of the dual CFT. As the Hawking ra-

diation emitted by evaporating black holes is thermal [50], information seems to be

lost [51]. This fact contradicts the unitary evolution of pure states, which is a funda-

mental property of quantum mechanics. Since CFT is manifestly unitarity, AdS/CFT

suggests that the gravitational description has to be unitary too. Moreover, there

are concrete proposal on the resolution of the blackhole information paradox in the

framework of complementarity (introduced in [52]) [53–55], see also [56] for an op-

posite point of view. The state of art on the subject is reviewed in [57,58].

Even in the framework of general relativity, there is a remarkable similarity be-

tween black hole physics and thermodynamics [59, 60]. Under some assumptions,

namely that entropy associated to horizons is proportional to their area, one can de-

rive Einstein equations as a consequence of classical thermodynamics [61]. This idea

was evolved in the context of AdS/CFT, in order to relate the gravitational force

to quantum entanglement [62–65]. By construction Ryu - Takayanagi conjecture

reproduces area law and enables us to quantify the relation between quantum entan-

glement and gravity [66,67]. Finally, holographic entanglement entropy is related to

both confinement [68] and renormalization group flow [69,70].

It is interesting to study these phenomena directly in the framework of field

theory. Quantum entanglement is a property of composite quantum system, which

has no classical analogue. It emerges when the constitutes of a system, which lies

in a pure state, cannot be associated to a specific states. Interestingly, quantum

entanglement played an important role in the early days of quantum mechanics; it

was used in order to question its validity. Measurements of entangled subsystems are

correlated, no matter how far apart these subsystems are. Einstein, thinking that this

behaviour is inconsistent with local causality, used this fact to attack on quantum

mechanics [71]. Nevertheless, it was experimentally verified that no matter how

counter-intuitive it is, quantum entanglement describes nature. Nowadays, quantum

engagement is key for many technological applications, such as quantum information

and quantum computing.

Quantum entanglement can be quantified in terms of entanglement entropy (when

the overall system lies in a pure state). Entanglement entropy is a related to many

physical applications, such as quantum information [72–75] and condensed matter

physics. In the latter case entanglement entropy can be used to study the critical

behaviour of systems, as well as the renormalization group flow [45,76–80]. Remark-

ably, entanglement entropy associated to the ground state of free scalar QFT obeys
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an area law [42–44, 81, 82], just like the entropy of black holes. In [1] we generalize

the approach of [42] in a method for the perturbative calculation of the spectrum of

the reduced density matrix and entanglement entropy as well. In [6,7] we study free

massive scalar QFT at finite temperature. We show that it is the mutual information

that obeys an area law and that there is a natural way to separate the contribution

of classical and quantum correlations to the mutual information.
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Outline

This dissertation is divided into five parts.

In Part 1 we review ideas and concepts, which constitute the framework for the

research presented in this dissertation. We discuss ideas about the behaviour of in-

formation in quantum gravity, which preceded AdS/CFT and led to the formulation

of the Holographic Principle. Then, we give brief introductions to AdS/CFT cor-

respondence, as well as to Quantum Entanglement and Entanglement in Quantum

Field Theory. Finally, we discuss Holographic Entanglement Entropy.

Part 2 is devoted to Entanglement in Quantum Field Theory. We generalize the

methods of Srednicki by introducing a mass term for the scalar field, as well as finite

temperature. We develop a perturbative approach which can be used to calculate the

spectrum of the reduced density matrix. We show that at finite temperature mutual

information obeys an area law and propose a method to distinguish the classical and

quantum contributions to it.

The goal of Part 3 is to probe the relation of Entanglement Entropy and Inte-

grability. In order to gain intuition about the application of the dressing method

on static minimal surfaces in AdS4, which are Euclidean world-sheets, we turn to

the O(3) NLSM with Minkowski world-sheet. Initially, we construct string solutions,

whose Pohlmeyer counterpart is expressed as an elliptic function, via the inversion of

the Pohlmeyer reduction and present a parallel study of their properties and those of

the Pohlmeyer counterpart. We apply the dressing method on the NLSM solution, as

well as a Bäcklundtransformation on the Pohlmeyer counterpart. We study in paral-

lel their properties, such as the existence of a special class of dressed elliptic strings,

which corresponds to the unstable modes of their elliptic precursors. Subsequently,

we show that this conclusion coincides with a conventional stability analysis. Then,

we apply the dressing method on static elliptic minimal surfaces in AdS4 and obtain

an addition formula for the surface element. Finally, we return to the O(3) NLSM

and show that one can solve the auxiliary system, which guaranties the integrability

of the theory, for an arbitrary seed solution.

In Part 4 we study Holographic Entanglement Entropy. Initially, we present a

flow equation which describes minimal surfaces as geometric flow with respect to the

holographic coordinate. Using this framework, we study the divergent terms of the

expansion of holographic entanglement entropy purely from a holographic point of

view. Finally, we discuss the equivalence of the first law of entanglement thermo-

dynamics to the linearized Einstein equations and construct the bulk to boundary

propagator in Fefferman - Graham gauge, which is the link between the two equiva-

lent statements.

Part 5 consists of appendices.
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1 Introduction

This Part serves as an introduction to various concept that are necessary for the rest

of the dissertation.

Initially, we present Black Holes Thermodynamics, Entropy Bounds and the Holo-

graphic Principle. Research in the first two fields essentially concerns how informa-

tion is stored in the framework of quantum gravity. Naturally, everything boils down

to the question about the minimal number of degrees of freedom required to describe

a region of space. The idea that bulk physics is in one to one correspondence with

boundary degrees of freedom constitutes the Holographic Principle.

Next, we give a brief introduction to AdS/CFT correspondence. We present

the arguments of Maldacena that motivate the correspondence. The dictionary of

AdS/CFT is discussed, as well as the holographic calculation of correlation functions.

Then, we switch to a completely different topic and review Entanglement in Quan-

tum Mechanics and Quantum Field Theory. We present various measures which are

used to quantify entanglement. We discuss the calculation of entanglement entropy

in QFT based on path integrals, as well as on lattice discretization. In the latter

case we present both methods based on wavefunctions and on correlation functions.

Finally, we discuss Holographic Entanglement Entropy, i.e. entanglement in the

framework of AdS/CFT correspondence.

2 Black Holes Thermodynamics, Entropy Bounds

and the Holographic Principle

The mysterious relation between gravity and information was identified decades be-

fore AdS/CFT. Actually, it is this kind of ideas that constitute the conceptual foun-

dations of Gauge/Gravity duality. In order to present these ideas, we review Black

Holes Thermodynamics [60], as well as the Entropy Bounds and the Holographic

Principle. We follow the review [84].

The concept of Black Holes Thermodynamics began with the area theorem of

Hawking [85], which states that the area of the horizon of a black hole never decreases

with time, i.e.

dA ≥ 0. (2.1)

In particular, as two black holes merge, the area of the horizon of the black hole at

the final state exceeds that sum of the area of the horizon of the two black holes.

Assuming that the area of the horizon is proportional to the entropy, this inequality

resembles the second law of thermodynamics.
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The no-hair theorem [86–88] states that stationary black holes are characterized

by just three quantities their mass, angular momentum and charge. This implies

that the energy balance of a black hole is related to variations of these quantities.

The laws of Black Holes Thermodynamics are the following

• Zeroth Law: The surface gravity κ of a stationary black hole is constant over

the event horizon.

• First Law: The entropy of a black hole is

SBH =
A

4Gd+1

, (2.2)

where A is the area of the horizon. Bekenstein was the one to recognize that

SBH ' A [59, 89, 90], while Hawking derived the proportionality constant by

showing that the black holes emit radiation at temperature TH = κ
2π

[91]. The

validity of Bekenstein-Hawking entropy formula is verified in the context of

string theory [92], where the counting of microstates of a class of BPS black

holes was achieved.

• Second Law: The entropy of Black Holes is non-decreasing, i.e.

dSBH ≥ 0. (2.3)

It was generalized by Bekenstein [59,89,90] to include matter’s contribution as

dSBH+Matter ≥ 0. (2.4)

• Third Law: It is impossible to reduce surface gravity κ to zero by any procedure

using a finite number of operations.

As indicated by the laws of Black Holes Thermodynamics one can associate en-

tropy to regions of space. Its natural to wonder how much information can be stored

in such regions. Since the concentration of matter in high density eventually leads

to the formation of a black hole, the existence of such a bound is expected.

This is also expected in view of the generalized second law. As matter is absorbed

in a black hole, SMatter decreases, nevertheless the total entropy SBH+Matter has to be

non-decreasing. Since the area of the horizon depends on the added mass and not on

the added entropy, postulating the generalized second law implies the existence of a

universal upper bound on the entropy density of matter. Bekenstein [93] showed that

any matter system, on a weak gravitational background, which is in an asymptotically

flat space, obeys the so called Bekenstein bound:

SMatter ≤ 2πER, (2.5)
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where E is the total mass and energy, which is enclosed in a sphere of radius R.

Notice that R is the radius of the smallest sphere that encloses the system. This is

the outcome of a purely classical analysis of the Geroch process, i.e. a system which

dropped in the black hole from the vicinity of the horizon.

One can obtain a different bound by considering the Susskind process [19], i.e.

the conversion of a system to black hole. The so called spherical entropy bound reads

SMatter ≤
A

4Gd+1

. (2.6)

In 4 dimensions gravitational stability implies 2M ≤ R, thus S ≤ 2πMR ≤ πR2 =

A/4, where G was set to unity, implying that the spherical entropy bound is weaker

than the Bekenstein bound when both bounds are applicable. In general number of

dimensions gravitational stability and the Bekenstein bound imply S ≤ d−2
8
A, thus

the situation is reversed. This may be due to unreliable specification of the numerical

prefactor in the Bekenstein bound.

This kind of considerations led to the Holographic Principle [18,19]. The entropy

bounds indicate that the information stored inside a region of space is roughly 1

bit per Planck area. So the quest is to find a theory, whose boundary degrees of

freedom suffice to describe the physics of the bulk. A concrete realization of this

idea is AdS/CFT correspondence.

3 An Introduction to AdS/CFT

In this section we will present a brief introduction to AdS/CFT correspondence.

There are dozen of reviews and lectures, such as [32,94,95], as well as books [96,97],

on the subject. We will mainly follow the TASI lectures by Polchinski.

Initially, let us sketch the original arguments, given by Maldacena, that motivate

AdS/CFT correspondence. The story begins with IIB superstring theory and a stack

of N D3-branes. String perturbation theory dictates that these branes come with

a factor of gsN , where gs = eΦ is the string coupling and N is due to the trace

of the Chan-Paton factors. Perturbation theory is valid for gsN � 1. The core of

AdS/CFT correspondence lies in the fact that the same Ramond-Ramond fluxes,

which are sourced by the D-branes, can be sourced by black branes [98]. The black

3-brane for N units of flux is

ds2 = H−1/2(r)ηµνdx
µdxν +H1/2(r)dxmdxm,

F5 = (1 + ∗) dt ∧ dx1 ∧ dx2 ∧ dx3 ∧
(
dH−1

)
, Q = gsN,

(3.1)

where µ, ν = 0, . . . , 3, m, n = 4, . . . , 9 and

H = 1 +
L4

r4
, L4 = 4πgsNα

′2, r2 = xmxm. (3.2)
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The near horizon limit of this geometry is

ds2 → r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ2

S5 , (3.3)

which is the AdS5 metric in Poincaré coordinates, with z = L2/r and and the metric

of S5. Both spaces have the same curvature radius. the 5-form F5 becomes

F5 = 4L2(1 + ∗)ε(5), ε(5) =

√
−g
L5

dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr, (3.4)

where ε(5) is the volume form, which integrates to 1 on AdS5. In this picture stringy

effects are suppressed for gN � 1 .

So, the same physical system admits two complementary descriptions. For gN �
1 we have perturbations around flat space, while for gN � 1 we have perturbations

around the black brane background. In the low energy limit of the D-brane descrip-

tion, the spectrum consists of the massless open strings, ending on the D3-branes

which are gauge fields in the adjoint representation of U(N), where the U(1) factor

corresponds to the collective motion of the stack of branes, their fermionic partners,

as well as massless closed strings, which form the supergravity multiplet. The fields

match precisely the multiplet of N = 4 Super Yang Mills (SYM) in 1+3 dimensions.

Notice that the gauge fields are interacting, since the gauge coupling is dimensionless

in 1+3 dimensions, while the closed strings are free. In black brane description, there

are again massless closed strings away of the brane, but in the near horizon limit the

massive strings remain in the spectrum since they have arbitrary small energy, due

to the fact that the wrap factor g00 vanishes. In both pictures there are massless

non-interacting closed strings away of the brane, i.e free IIB supergravity. In the

limit a′ → 0, after appropriate rescaling of various factors, the massive states that

live near the horizon decouple. Thus, assuming that the adiabatic continuation of g

and the low energy limit commute, we reach the conclusion that the gauge theory

on the brane is equivalent to free IIB supergravity on the AdS5 × S5.

Let us make the statement more precise. Gauge theory is characterized by the

coupling gYM and the rank of the gauge group N . The gauge theory coupling is

related the to string coupling as

4πgs = g2
YM, (3.5)

while the string length is related to α′ as

`2
s = α′. (3.6)

These relations imply that the ratio of the string length over the curvature radius of

AdS is
`s
L

= λ−1/4 (3.7)
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where λ is the ’t Hooft coupling defined as

λ = g2
YMN. (3.8)

Similarly, the ratio of the Planck length to the curvature radius of AdS is

ˆ̀
P,10

L
= 21/4π5/8N−1/4, (3.9)

where the Planck length ˆ̀
P,10 is defined as

ˆ̀8
P,10 =

1

2
(2π)7 g2

s`
8
s, (3.10)

so that the coefficient of the Ricci scalar in the action in D dimensions is 1/2ˆ̀D−2
P,D .

Equations (3.7) and (3.9) provide the identification of the parameters of the dual

theory. These imply that our arguments are valid in the regime N →∞ and λ→ 0.

Since we argued that string interactions should be suppressed, i.e. gs → 0, on the

gauge theory side gYM goes to zero, while N goes to infinity so that the ’t Hooft

coupling goes to infinity. Thus, we have motivated a duality between planar strongly

coupled N = 4 SYM with SU(N) gauge group and perturbative IIB supergravity

on AdS5 × S5. Depending on our good faith, there are three possible versions of the

duality:

• Weak Version: The duality is valid only between planar strongly coupledN = 4

SYM with SU(N) gauge group and perturbative IIB supergravity on AdS5×S5.

• Stronger Version: The duality is valid between planarN = 4 SYM with SU(N)

gauge group and classical IIB superstring theory on AdS5 × S5. This implies

that a′/L2 and 1/
√
λ corrections agree, but gs and λ/N2 corrections disagree.

• Strongest Version: The duality between N = 4 SYM with SU(N) gauge group

and quantum IIB superstring theory on AdS5× S5 is valid for any value of the

parameters.

3.1 Symmetries

In order for two theories to be dual, matching of symmetries is a necessary condition,

which can be verified with a back of the envelop calculation. In the case of AdS/CFT

correspondence, the isometry group of AdS5, i.e. SO(2, 4), coincides with conformal

group in 1 + 3 dimensions, whereas the isometry group of S5, i.e. SO(6) ' SU(4)

coincides with the R-symmetry group of N = 4 SYM. Supersymmetry extends the
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bosonic symmetry to the superconformal group PSU (2, 2|4) on both sides of the

correspondence.

In addition both dual theories have a SL (2;Z) self S-duality symmetry. In the

gauge theory side this is the famous Montonen - Olive duality of N = 4 SYM [99],

whereas in the gravitational side this is the S-duality of IIB supergravity / superstring

theory [100,101].

3.2 Anomalies

One can calculate the central charges α and c of 1 + 3 dimensional free theories, see

[102]. These values coincide with the central charges at the UV of any asymptotically

free gauge theory, since obviously the theory becomes free in the UV. For a free theory

with NS real scalars, NF Dirac fermions and NV gauge bosons one obtains

c =
1

120
(NS + 6NF + 12NV ) , (3.11)

α =
1

360
(NS + 11NF + 62NV ) . (3.12)

Since the N = 4 multiplet consists of 6 real scalars, 4 Weyl fermions and a gauge

boson, each multiplet corresponds to α = c = 1/4. Taking into account the dimen-

sionality of the adjoint representation, it follows that the central charges of N = 4

SYM with SU(N) gauge group are

αUV = cUV =
N2 − 1

4
. (3.13)

These values should match with the analogous computation in IIB supergravity on

AdS5 × S5. Indeed, the calculation of the Weyl anomaly [103–105] results in

α = c =
N2

4
. (3.14)

Besides matching at leading order with (3.13), this relation implies that gravitational

theories on pure AdS backgrounds can be dual to CFTs, whose central charges satisfy

α− c = O(1).

3.3 The State/Operator Map

States of the dual theories must be in 1-1 correspondence. A field, which scales as z∆

near the AdS boundary, maps to a gauge invariant operator of dimension ∆. Thus,

the CFT operators are related to the bulk field as

O(x) = CO lim
z→0

z−∆φ (x, z) , (3.15)
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where CO is a normalization factor. In order to verify that the operator has dimension

∆, let us study a scalar bulk field. Since the field is scalar rescaling the coordinates

by ζ, implies that φ (x, z)→ φ (ζx, ζz), thus,

O(x)→ CO lim
z→0

z−∆φ (ζx, ζz) = ζ∆CO lim
z→0

z−∆φ (ζx, z) = ζ∆O(ζx), (3.16)

which is precisely the scale transformation of an operator of dimension ∆.

Let us make the above statements more precise. In AdSd+1 the mass of the field

is related to its dimension as

m2L2 = ∆ (∆− d) , (3.17)

so there are two possible dimensions for each given mass. These are related to the

boundary conditions of the bulk field at z → 0 as

φ (x, z) = z∆+
[
φ̄∆+ (x) +O

(
z2
)]

+ z∆−
[
φ̄∆− (x) +O

(
z2
)]
, (3.18)

where

∆± =
1

2

[
d±
√
d2 + 4m2L2

]
. (3.19)

The field φ∆− is a non-normalizable term and represent the coupling of external

sources to the gravitational theory, whereas φ∆+ is a normalizable term and is related

to the expectation value of the operator O. Notice that in AdS m2 may be negative

and still correspond to real dimensions ∆ for a scalar, as long as

m2L2 ≥ −d
2

4
. (3.20)

This is the famous Breitenlohner-Freedman bound [106,107].

3.4 Spectra

For the duality to be valid the spectra of the dual theories must coincide. Even though

N = 4 SYM is conformal, in general the conformal dimensions ∆ of operators receive

quantum corrections. Thus, in general it is not possible to calculate the conformal

dimensions ∆ of an arbitrary operator in the strongly coupling regime.

The states of the CFT consist of the primary operators O and their descendants,

which are constructed acting with the generators of the superconformal group. Since

N = 4 SYM has 16 supercharges, there are 216 primary operators. Some of them are

annihilated by a combinations of supercharges. These operators live in so called short

multiplets and are protected by supersymmetry2. Such operators are called chiral

2Actually this is true as long as representation theory prohibits short multiplets from recombining

into long ones.
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primary operators and preserve some amount of supersymmetry by themselves. The

conformal dimension ∆ of chiral primary operators is uniquely determined by the

R-charges. Since the R-charges do not receive quantum corrections, the conformal

dimensions of chiral primary operators is protected by supersymmetry, implying that

it is possible to compare with the AdS/CFT prediction.

For this purpose one has to perform a Kaluza - Klein reduction of the 10−dimensional

fields. For example, a scalar field is decomposed as

φ(x, y) =
∑
n

∑
In

φIn(n)(x)Y In
(n)(y), (3.21)

where x are coordinates in AdS5 and y are coordinates in S5, while Y In
(n)(y) are spher-

ical harmonics of S5 and In an index denoting the representation of the symmetry

group. We remind the reader that SO(6) has three Dynkin labels.

In the N = 4 SYM there are six families of chiral scalar representations3, which

read

• On = Tr
[
φ(I1 . . . φIn)

]
of dimension ∆ = n, corresponding to m2L2 = n(n− 4),

where n ≥ 2.

• Q2On+2 = εαβ {Qα, [Qβ, On]} = εαβ Tr
[
λαAλβBφ

I1 . . . φIn
]

of dimension ∆ =

n+ 3, corresponding to m2L2 = (n+ 3)(n− 1), where n ≥ 0.

• Q4On+2 = Tr
[
FµνF

µν . . . φIn
]

of dimension ∆ = n + 4, corresponding to

m2L2 = n(n+ 4), where n ≥ 0.

• Q2Q̄2On+4 = εαβεα̇β̇ Tr
[
λαA1λβA2λ

B1
α̇ λB2

β̇
φI1 . . . φIn

]
of dimension ∆ = n + 6,

corresponding to m2L2 = (n+ 2)(n+ 6), where n ≥ 0.

• Q4Q̄2On+4 = εαβ Tr
[
λαAλβBFµνF

µνφI1 . . . φIn
]

of dimension ∆ = n+ 7, corre-

sponding to m2L2 = (n+ 3)(n+ 7), where n ≥ 0.

• Q4Q̄4On+4 = εαβ Tr
[
FµνF

µνFµ′ν′F
µ′ν′φI1 . . . φIn

]
of dimension ∆ = n+ 8, cor-

responding to m2L2 = (n+ 4)(n+ 8), where n ≥ 0.

Indeed, Kaluza - Klein reduction results in fields with appropriate m2 [108].

3.5 Scalar 2-point functions

Let us switch to Euclidean AdSd+1, i.e. the hyperbolic space Hd+1. We define the

object ξ as

ξ =
2zz′

z2 + z′2 + |~x− ~x′|2
, (3.22)

3We denote the fields as {φI , λaA, λ̄Aȧ , Aµ}.
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which will be helpful in the rest of the section. The geodesic distance between the

points x = (~x, z) and x′ = (~x′, z′) is

d(x, x′) = ln

(
1 +

√
1− ξ2

ξ

)
= arccosh

(
ξ−1
)
. (3.23)

Let us define the bulk to boundary propagator for the scalar field:

KB,∆ (~x, z; ~x′) = C∆

[
z

z2 + |~x− ~x′|2

]∆

, C∆ =
Γ (∆)

πd/2Γ
(
∆− d

2

) . (3.24)

Then, the bulk field that corresponds to the source φ̄∆− reads

φ∆ (~x, z) =

∫
d~x′KB,∆+ (~x, z; ~x′) φ̄∆− (~x′) (3.25)

Notice that for z → 0 the bulk to boundary propagator tends to a delta function, as

KB,∆ → zd−∆δ(d) (~x− ~x′) . (3.26)

Thus, (3.25) is compatible with (3.18). The next to leading term of the expansion

around z = 0 implies

φ̄∆+ = C∆+

∫
d~x′

φ̄∆− (~x′)

|~x− ~x′|2∆+
. (3.27)

Let us calculate the on-shell action

I =
1

2

∫
dd+1x

√
g
[
∂µφ∂

µφ+m2φ2
]

=
1

2

∫
dd+1xz1−d

[
(∂zφ)2 +∇φ · ∇φ+

m2

z2
φ2

]
.

(3.28)

It would be convenient define the field χ

φ(~x, z) = z∆−χ(~x, z). (3.29)

It terms of the latter the action reads

I =
1

2

∫
dd+1xzd+1−2∆+

[
(∂zχ)2 +∇χ · ∇χ

]
, (3.30)

which converges for 1 + d/2 > ∆+. If ∆+ ≥ 1 + d/2 one needs to subtract the

boundary divergences in a more complicated way. Integrating by parts we obtain

I = −1

2
lim
z→0

zd+1−2∆+

∫
dd~xχ∂zχ. (3.31)

The expansion of φ near the boundary z = 0 implies that χ can be replaced by φ̄∆−

and ∂zχ by (2∆+ − d) z2∆+−d−1φ̄∆+ so that

I = −
(

∆+ −
d

2

)
Γ (∆+)

πd/2Γ
(
∆+ − d

2

) ∫ d~x

∫
d~x′

φ̄∆− (~x) φ̄∆− (~x′)

|~x− ~x′|2∆+
. (3.32)

45



We postulate that the on-shell gravitational action coincides with the action of

field theory and that φ̄∆− is the source that corresponds to the dual operator O.

Then, the generating functional of the correlators of single trace operators O∆+ on

the gauge theory side reads

exp
[
−Γ
[
φ̄∆−

]]
= exp

[
−
∫
d~x φ̄∆−O∆+

]
(3.33)

This implies that the expectation value of the operator O∆+ is

〈
O∆+(x)

〉
= − δ

δφ̄∆−(x)
exp

[∫
dx φ̄∆−O∆+

]
= (2∆+ − d) φ̄∆+(x), (3.34)

while the 2-point function reads〈
O∆+(x)O∆+(x′)

〉
= −

(2∆+ − d)C∆+

|~x− ~x′|2∆+
. (3.35)

As promised equation (3.34) relates φ̄∆+ to the expectation value of the dual oper-

ator O∆+ . Similarly equation (3.35) has the structure of a CFT 2-point function of

operators of dimension ∆+.

Actually, one can do a little better and prove that (3.34) is true in not only at

linear order at source, but at full non-linear order [109]. For this purpose we need

the bulk to bulk propagator [110], which reads

G∆(x, x′) = G∆(ξ) =
C∆

2∆− d

(
ξ

2

)∆

F

(
∆

2
,
∆ + 1

2
; ∆− d

2
+ 1; ξ2

)
, (3.36)

implying that as the source, which is located at x′, reaches the boundary of AdS the

propagator behaves as

G∆(x, x′)→ z′∆

2∆− d
KB,∆. (3.37)

Assuming a correlation function of the bulk field with n external sources, then as the

bulk field approaches the boundary we will obtain

z∆+φ̄∆+(x) =
z∆+

2∆+ − d
〈
O∆+(x)

〉
. (3.38)

What about the operator O∆−? Well, it is evident that the role of φ̄∆+ and φ̄∆−

is interchanged. At the level of the generating function this amounts to a Legendre

transform, which interchanges the role of the source and the corresponding operator.

The construction can be generalized to other fields and of course the result can

be compared to field theory calculations, when a strong coupling extrapolation is

possible, see [32]. A more systematic method of calculation involves holographic

46



renormalization [103, 111, 112]. That is, defining rigorously the graviational varia-

tional problem at z = ε by introducing a Gibbons - Hawking - York term [113, 114]

and subsequently introducing appropriate counterterms that cancel all the divergent

terms in the ε→ 0 limit.

3.6 Finite Temperature

The discussion regarded gravity on a pure AdS geometry. This geometry corresponds

to the vacuum state of the dual CFT. The insertion of CFT operators back-reacts to

the AdS geometry. In a remarkable paper [115] derived the prescription that should

be followed in order to introduce finite temperate in AdS/CFT.

Field theory on finite temperature is periodic in Euclidean time, i.e. τ ∼ τ + β,

where β = 1/T . This is the famous KMS periodicity [116, 117]. In the gravitational

side the periodicity of Euclidean time is introduced in order to smooth out conical

singularities of the near horizon geometry of black holes. Let us consider the AdS-

Schwarzschild black hole

ds2 = −
(
r2

L2
+ 1− wdM

rd−2

)
dt2 +

1
r2

L2 + 1− wdM
rd−2

dr2 + r2dΩ2
d−1, (3.39)

where

wd =
16πGd+1

(d− 1)Ωd−1

, (3.40)

where Ωd−1 is the volume of the unit sphere in d− 1 dimensions. The outer horizon

r+ of the black hole is the largest root of the equation

r2

L2
+ 1− wdM

rd−2
= 0. (3.41)

It is trivial to show that dr+/dM > 0. Defining r = r+ + δr the near horizon

geometry of the Euclidean black hole is

ds2 =

(
d− 2 + d

r2
+

L2

)
δr

r+

dτ 2 +
1(

d− 2 + d
r2
+

L2

)
δr
r+

(dδr)2 + r2
+dΩ2

d−1. (3.42)

defining r̃ = 2
√
r+δr and τ̃ = 1

2

(
d−2
r+

+ d r+
L2

)
imposing that τ̃ is 2π-periodic implies

that the temperature of the black hole is

T =
1

4π

(
d− 2

r+

+ d
r+

L2

)
. (3.43)

Its minimal value equals

Tmin =
d

2π

r+

L
, r+ = L

√
d− 2

d
. (3.44)
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The topology of the boundary of the metric (3.39) is S×Sd−1. In order to obtain

a boundary with topology is S × Rd−1 we perform the rescaling

r =

(
wdM

Ld−2

)1/d

ρ, τ =

(
wdL

Rd−2

)−1/d

tE, dxi =

(
wdM

Ld−2

)−1/d

dΩi. (3.45)

In the limit M →∞ the metric becomes

ds2 =
ρ2

L2

(
1− Ld

ρd

)
dt2E +

1

ρ2

L2

(
1− Ld

ρd

)dρ2 + ρ2

d−1∑
i=1

dx2
i , (3.46)

which has the desired boundary topology. The temperature corresponding to this

metric is

T =
d

4πL
. (3.47)

In order to derive the temperature of the boundary we use

ds2
ρ→∞ = ρ2

(
dt2E
L2

+
d−1∑
i=1

dx2
i

)
, (3.48)

which implies that N = 4 SYM is at temperature T = d
4π

. With the change of

variables

ρ =
z0

z
L, tE =

L

z0

t̃E, xi =
1

z0

yi, (3.49)

we obtain the planar AdS black hole metric

ds2 =
L2

z2

[
f(z)dt̃2E + |d~y|2 +

dz2

f(z)

]
, f(z) = 1− zd

zd0
. (3.50)

3.6.1 The Hawking-Page Phase Transition

In order to gain intuition about the strongly coupled CFT at finite temperature, le

us study the thermodynamics of AdS-Schwarzschild black hole. As we have shown

M(r+) is an increasing function. As there is a minimum temperature, implying

that T (r+) is decreasing, reaching its minimum value and increasing, C = ∂M/∂T

can be either positive or negative. Thus, contrary to flat space in AdS there are

thermodynamically stable black holes. Solving (3.43) for r+ we obtain

r+

L
=

2π

d

[
TL±

√
(TL)2 − d(d− 2)

4π2

]
. (3.51)

Solution with the + sign are called large black holes, whereas solutions with the

− sign are called small black holes. It turns out that small black holes are always
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unstable, since the corresponding on-shell action is larger for the small black holes.

Nevertheless, there is a remaining question. Is there any stable geometry, whenever

the large black holes unstable? Such a geometry is the so called thermal AdS, namelly

Euclidean AdS in global coordinates with periodic time, i.e.

ds2 = f(r)dτ 2 +
1

f(r)
dr2 + r2dΩd−1, f(r) = 1 +

r2

L2
, τ ∼ τ + β. (3.52)

Since AdS is maximally symmetric space, the Ricci scalar is given by R = −d(d+1)
2L2

and the on-shell action reads

I =
d

8πGd+1

∫
dxd+1√g (3.53)

The volume of the both the AdS-Schwarzschild and the thermal AdS, whose metrics

are given by (3.39) and (3.53) respectively, are divergent. Thus, introducing a radial

cutoff R, the volumes read

V1 =

∫ β′

0

dt

∫ R

0

dr

∫
Sd−1

dΩ rd−1 (3.54)

V2 =

∫ β0

0

dt

∫ R

r+

dr

∫
Sd−1

dΩ rd−1, (3.55)

where V1 is the volume of thermal AdS, thus radial integration reaches the center of

AdS, and V2 is the volume of AdS-Schwarzschild, thus the radial integration stops

at the horizon of the black hole. In order to make both spaces to have the same

geometry on the hyperspace r = R we should pick

β′ = β0

√
1−

(
r2

+ + L2

R2 + L2

)
rd−2

+

Rd−2
(3.56)

where according to (3.43) β0 is given by

β0 =
4πL2r+

dr2
+ + (d− 2)L2

. (3.57)

Thus, the action difference reads

I =
d

8πGd+1

lim
R→∞

[V2 − V1] =
1

4Gd+1

L2rd−1
+

dr2
+ + (d− 2)L2

(
L2 − r2

+

)
(3.58)

This formula provides the generalization of the Hawking-Page phase transition [118]

for any number of dimensions. If r+ > L AdS-Schwarzschild is the dominant saddle of

the path integral, whereas is r+ < L the dominant saddle is thermal AdS. The seminal

result of Witten is that on the field theory side this the confinement - deconfinement

phase transition [115]. It is straightforward to show that the Hawking-Page phase

transition occurs at temperature

THP =
d− 1

2πL
. (3.59)
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4 Entanglement in Quantum Mechanics

This section serves as a very short introduction to Quantum Information. The pre-

sentation is far from being exhaustive. There are numerous resources on the subject.

These include books [119–121], reviews [122] and lectures notes, as the ones by

Preskill [123] and Witten [124]. We will discuss general properties of quantum sys-

tems and various measures relevant to this dissertation, which are used to quantify

the behaviour of such systems .

Let A be a subsystem of the overall system and Ac its complement, i.e. all

other degrees of freedom that do not belong to subsystem A. Assume that the

corresponding overall Hilbert space H factorizes as H = HA ⊗ HAc . Suppose that

both subsystems are described by some states |ΨA〉 and |ΨAc〉. Then, the overall

system is described by the state

|Ψ〉 = |ΨA〉 ⊗ |ΨAc〉. (4.1)

Such states are called separable. Whenever the overall system lies in a separable state,

the outcomes of measurements on its subsystems are independent / uncorrelated. In

the general case, the state of the overall system is a sum of separable states

|Ψ〉 =
∑
i

∑
j

cij|ni〉 ⊗ |mj〉, (4.2)

where |ni〉 and |mj〉 are bases in HA and HAc , respectively. States which can not

be factorized as (4.1) are called entangled. Of course, the overall system may lie in

a mixed state, being described by a density matrix ρ [125]. If the overall density

matrix is a sum of the form

ρ =
∑
k

pkρA,k ⊗ ρAc,k,
∑
k

pk = 1, (4.3)

where ρA,k and ρAc,k are density matrices of the subsystems A and Ac, respectively,

then the system lies in a separable mixed state [126]. Otherwise, it lies in an entangled

mixed stated.

Specifying whether a system is separable or not, is a very important problem in

quantum information theory. The identification of efficient separability criteria is an

active area of research. When the overall system lies in a pure state, implementing

Schmidt decomposition, the state can be expressed as

|Ψ〉 =
n∑
i=1

ci|ni〉 ⊗ |mi〉,
n∑
i=1

|ci|2 = 1, n = min(dimHA, dimHAc), (4.4)

where |ni〉 and |mi〉 are suitable bases. Clearly, a state is separable if and only if

only one of the Schmidt coefficients ci is non-vanishing. For multipartite systems at

pure state the corresponding separability criterion is presented in [127].
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In the case of systems at mixed state, the problem is much more difficult4. Gen-

erally, there exist necessary and sufficient criteria, which are difficult to implement

in practice, or criteria which are easy to implement, yet they are only necesary. For

low-dimensional cases (2× 2 or 2× 3) one can employ the Peres-Horodecki or PPT

criterion [130–132], which is necessary and sufficient. Unfortunately, this criterion

ceases being sufficient in higher-dimensional cases. In general, one has to employ a

so-called entanglement witness. Entanglement witnesses are functionals of the den-

sity matrix which distinguish entangled from separable ones. It is interesting that

when this functional is linear, it can we interpreted as an observable [133]. For a

review on the subject see [134].

In a more formal basis, a measure of entanglement should satisfy the following

postulates [135–137] :

• A bipartite entanglement measure E(ρ) maps the density matrix to a positive

real number.

• The entanglement measure E(ρ) vanishes if the density matrix is separable.

• The entanglement measure E(ρ) does not increase under LOCC (Local Oper-

ations - Classical Communication).

• The entanglement measure E(ρ) reduces to entanglement entropy for pure

states.

Let us consider a system, which is described by a density matrix ρ. The reduced

density matrix, which corresponds to a subsystem A is defined by tracing over the

degrees of freedom that do not belong to A, i.e.

ρA = Tr
Ac

[ρ] . (4.5)

Physically, the reduced density matrix describes the degrees of freedom of the sub-

system A when we ignore all the degrees of freedom that do not belong to this

subsystem. That said, the outcome of measurements concerning the subsystem A

are determined exclusively by ρA. Nevertheless, there is a catch in the last statement,

since the time evolution of ρA depends on the overall system in a complicated way.

Entanglement entropy is the Von Neumann entropy of the reduced density matrix,

i.e.

SA = −Tr [ρA ln ρA] . (4.6)

Notice that entanglement entropy is a measure of quantum entanglement only when

the overall system lies in a pure state. In this case it also follows that

SA = SAc . (4.7)

4In the bipartite case the problem is NP hard [128,129].
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Conditional entropy is defined as

SA|B = SA∪B − SB. (4.8)

Unlike classical conditional entropy, quantum conditional entropy can be negative

[138,139].

The mutual information is defined as

I(A : B) = SA + SB − SA∪B. (4.9)

It is a measure of both classical and quantum correlations. An important property

of entanglement entropy is that it obeys the following inequality

I(A : B) ≥ 0. (4.10)

This property is called subadditivity. Interestingly, enough the entanglement entropy

of A ∪B obeys the so called, Araki-Lieb inequality [140]

|SA − SB| ≤ SA∪B ≤ SA + SB. (4.11)

Additionally, entanglement entropy obeys strong subadditivity [141], which is the

following inequality

SA∪B∪C + SB ≤ SA∪B + SB∪C , (4.12)

or, in terms of mutual information

I(A : B) ≤ I(A : B ∪ C). (4.13)

Negativity is defined as the opposite of the sum of the negative eigenvalues of the

partially transposed density matrix ρTA [142]. Denoting the eigenvalues of ρTA as λi,

then the negativity N is equal to

N =
∑
i

1

2
(|λi| − λi). (4.14)

Although a non-vanishing negativity implies the presence of quantum entanglement,

the opposite does not hold, when the subsystems have sufficiently high-dimensional

Hilbert spaces.

Another interesting measure is relative entropy [143], which is a measure of dis-

tinguishability of two quantum states. The relative entropy of the density matrix ρ

with respect to σ is defined as

Sρ||σ = Tr [ρ ln ρ]− Tr [ρ lnσ] . (4.15)
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It is customary to use Rényi entropies in order to calculate entanglement entropy,

which are defined as

Sn =
1

1− n
ln Tr [ρn] . (4.16)

Assuming that Sn is analytic function of n, one can analytically continuate n to real

numbers and obtain entanglement entropy as

S = lim
n→1

Sn = −Tr [ρA ln ρA] . (4.17)

As we will see, this approach is efficient in the case of field theory, since it is difficult

to calculate directly the eigenvalues of the reduced density matrix.

In the following we will also refer, to the modular Hamiltonian H [144] which is

defined as

ρ = e−H . (4.18)

As we will explain modular Hamiltonian is very important ingredient for the equiv-

alence of the first law of entanglement thermodynamics to the linearized Einstein

equations.

Up to this point sometimes we assumed that the we have access to the overall

system and we were studying its subsystem. There is a very interesting questions,

which is related to the converse process. Given a reduced density matrix ρA, which

is state of the overall system that could correspond to ρA. This process goes by

the name purification. One has to keep in mind that there is infinite number of

purifications. A typical example is a system in a thermal state

ρA =
1

Z

∑
i

e−βEi |Ei〉〈Ei|. (4.19)

This reduced density matrix can be obtain by the Thermofield Double state :

|Ψ〉 =
1

Z

∑
i

e−βEi |Ei〉 ⊗ |Ei〉, (4.20)

which is constructed by simple considering two copies of the same system.

5 Entanglement in Field Theory

Regarding Entanglement, the transition from Quantum Mechanics to Quantum Field

Theory is also highly non-trivial. In QFT the subsystems correspond to a particular

spatial region. The boundary of each region is called the entangling surface (or curve

in the case of 2 spatial dimensions). So far the discussion about entanglementwas

built around the fact that the overall Hilbert space can factorize as H = HA ⊗HAc .
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That is, one can assign a Hilbert space to each of the subsystems, but these Hilbert

spaces have to be orthogonal to each other. In interacting field theory this is not

necessarily the case. Consider for example a gauge theory. Since the Gauss law

holds for arbitrary regions, there is no way separate the Hilbert space of the overall

system to Hilbert spaces of the subsystems, since there are no independent states of

the subsystems. In such cases, one has to work with the algebra of observables, see

for example [145,146].

We restrict ourselves to free Field Theories, where things are much more under

control. One pretty obvious question is whether there is anything interesting in

free QFT. Well, QFT is free in momentum space, meaning that modes of the fields,

which correspond to different momenta, do not interact. This statement under no

circumstances means that position space 2-point functions vanish identically. As

the reduced density matrix corresponding to system A is defined by tracing out the

region, which corresponds to system Ac, this process is non-trivial due to the non-

vanishing 2-point functions. In fact, even the entanglement of the vacuum state of

free QFT is a very interesting quantity, while its calculation is a formidable task.

It is unclear how the distinction between free and interacting QFT is visible in

terms of entanglement. Thus, the study of free QFTs, which is much simpler than

the study of interacting QFTs, may shed light on features which are common to all

QFTs. In d+1 dimensions the entanglement entropy of any local QFT should have

an expansion of the form

S(V ) = gd−1[∂V ] ε−(d−1) + ...+ g1[∂V ] ε−1 + g0[∂V ] log(ε) + S0(V ) , (5.1)

where S0(V ) is a finite part, ε is a cutoff, and the gi are local functions of the

boundary ∂V , which are homogeneous of degree i. The coefficient of the leading

divergence, i.e. gd−1[∂V ] is proportional to the area of the entangling surface. The

area law is a consequence of locality and the fact that entanglement is dominated by

adjacent degrees of freedom, which are separated by the entangling surface.

In a nutshell, there are two approaches in dealing with entanglement in QFT. In

the first one, one works directly with the continuous theory [46, 79, 147], using the

so called replica trick [43,44], whereas in the second approach, which is used in Part

2, one approximates the continous theory with a lattice system [82,148,149]. In the

rest of the section, we will discuss scalar field theory, mainly following [46].

5.1 Continuous Methods

In this approach the fundamental object is the wave-functional. Let us consider

a scalar field φ̂(t, ~x), and work in the basis formed by the eigenstates of this field

operator at time t = 0, i.e. φ̂(0, ~x) |α〉 = α(~x) |α〉, where α is any well-behaved real

54



function on the space. The vacuum wave-functional reads

Φ(α) = 〈0|α〉 = N−1/2

∫ φ(0,~x)=α(~x)

φ(−∞,~x)=0

Dφ e−SE(φ), (5.2)

where SE(φ) is the Euclidean action and N−1/2 is a normalization factor. In this basis

the vacuum density matrix is by definition ρ(α, α′) = Φ(α)∗Φ(α′) = 〈α|0〉 〈0|α′〉. The

path integral is performed in the Euclidean theory on the lower half-space. In order

to trace out the degrees of freedom in V c, which is the complement of V , one considers

functions α = β ⊕ αV and α′ = β ⊕ α′V that coincide on V c, and integrate over all

possible functions β. Thus, the wave-functional (5.2) suggests that the construction

of the reduced density matrix amounts to taking two copies of the half space, glue

them on V c, and integrate over all possible field configurations subject to these

boundary conditions [43,44],

ρV (αV , α
′
V ) =

∫
Dβ Φ(β ⊕ αV )∗Φ(β ⊕ α′V ) = N−1

∫ φ(0+,~x)=αV (~x), x∈V

φ(0−,~x)=α′V (~x), x∈V
Dφ e−SE(φ).

(5.3)

It is evident that the reduced density matrix is a function of the boundary conditions

of the path integral on both sides of the cut.

The calculation of the traces Tr [ρnV ], which is needed in order to specify the Rényi

entropies, is performed using the so called replica trick. One takes n copies of the

Euclidean plane cut along V , and sews them together the upper side of the cut in

the k-th copy with the lower one of the (k + 1)-th copy, for k = 1, ..., n, where the

(n+1)-th copy coincides with the first one [43–45]. At the end of the day, one has to

perform the functional integration on a n-sheeted d+ 1 dimensional Euclidean space

where conical singularities of angle 2πn have been introduced at the boundary ∂V .

Thus, Tr [ρnV ] and consequently the Rényi entropies read

trρnV =
Z(n)

Z(1)n
, (5.4)

Sn(V ) =
logZ(n)− n logZ(1)

1− n
, (5.5)

where Z(n) is the functional integral on the n-sheeted manifold and Z(1) is the

normalization factor, introduced so that Tr [ρV ] = 1. As already mentioned, the

entanglement entropy is obtained by the analytic continuation of n and the limit

n→ 1, see (4.17).

Calculating Z(n) explicitly is a very difficult task since the manifold resulting

from the replica trick is highly non-trivial. In the case of free fields, the situation

is simpler, since one can map the n-sheeted calculation to a calculation involving n
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multivalued decoupled free fields [150]. Let us introduce a vector field ~Φ, which is

defined on a single-sheeted d+ 1 dimensional space, whose components are the fields

in the different copies, i.e.

~Φ =

 φ1(x)
...

φn(x)

 , (5.6)

where φk is the field on the k-th copy. This trick maps the singularities at ∂V to

the fact that ~Φ is multivalued. Nevertheless, this is not a problem, since crossing V

from above or from below, implies that field is multiplied by a permutation matrix

T or T−1 respectively, where

T =


0 1

0 1
. . . . . .

0 1

1 0

 . (5.7)

The eigenvalues of this matrix are the n-th roots of unity, namely ei
k
n

2π, where

k = 0 , ..., (n − 1). Using a unitary transformation, we switch to the basis where

T is diagonal. This way the problem is reduced to n fields φ̃k living on a single

d + 1 dimensional space. Since the theory is free, the theory in this basis is also

free, implying that the complexity of the computation is reduced. One should keep

in mind that the fields φ̃k are complex, which is not a problem. Since a complex

field is equivalent to two real fields, one needs to simply divide the final result by a

factor of two. The fields φ̃k, which diagonalize T , are defined on the Euclidean d+ 1

dimensional space and since they are multivalued one needs to impose the boundary

conditions

φ̃k(0
+, ~x) = ei

2πk
n φ̃k(0

−, ~x) ~x ∈ V . (5.8)

Thus, one obtains

Sn(V ) =
1

1− n

n−1∑
k=0

logZ[ei2πk/n], (5.9)

where Z[ei2πa] is the partition function of a scalar field, which gets a phase ei2πa

when x crosses V , divided by Z(1). Notice that the partition function is further

constraint, by the fact that the fields have a specific asymptotic behaviour in near

the singularity, so that the action is finite.

So far we have seen that the calculation of entanglement entropy at the ground

state of free scalar field theory boils down to the calculation of a partition function. In
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the case of quadratic actions, such calculations can be performed using the heat kernel

method. The free energy of a scalar field is expressed as a functional determinant as

W = − log(Z) =
1

2
log det(m2 −∇2) =

1

2
tr log(m2 −∇2) . (5.10)

The heat kernel is defined as K(x, y, t) = 〈x| et∇2 |y〉, and its trace reads

ζ(t) = tr et∇
2

=

∫
dxK(x, x, t) . (5.11)

Thus, the free energy W can be expressed in terms of the function ζ as

W = −1

2

∫ ∞
ε

dt e−m
2t1

t
ζ(t) , (5.12)

where ε is a cutoff. This way the free energy is related to a function of the trace of

an operator, which satisfies the heat equation

∂K

∂t
= ∇2K , K(x, y, 0) = δ(x− y). (5.13)

In order to obtain calculate the divergent terms of entanglement entropy the small t

expansion is needed. The advantage of the heat kernel approach, is that it is possible

to obtain a systematic expansion of the form (see [151] for a review )

ζ(t) =
∑
k≥0

t(k−D)/2ak, (5.14)

where D = d + 1 is the manifold dimension. In general, the coefficients ak are

integrals of local quantities depending on the different tensors.

Nevertheless, the application of the heat kernel method in practice is difficult

for two reasons. Firstly, the small t expansion is divergent, and the finite part of

entanglement entropy is an infinite sum. This finite part is related to the coefficients

ak with k ≥ d+ 1. The term k = d+ 1 gives a logarithmically divergent contribution

to the entanglement entropy. This term is universal, i.e. scheme independent, and is

proportional to the central charge of the theory.

Secondly, the manifold has conical singularities along its boundary ∂V , thus the

standard expansions are inapplicable. One can tackle this problem in the limit of

small deficit angle, provided smooth part of the boundary ∂V has vanishing extrin-

sic curvature [152–156]. This kind of calculations can be used in order to obtain

logarithmic corrections to the entropy of black holes. In the case of 4 dimensions,

the contribution of extrinsic curvature was obtained in [157] and was used to calcu-

late the universal logarithmic terms of entanglement entropy of CFT on flat space
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that correspond to smooth ∂V . Nevertheless, the contributions from a non smooth

entangling surface become intractable with the heat kernel method.

An alternative approach to calculate the partition function, involves obtaining

the associated Green function G = (−∇2 +m2)−1 on the manifold. Given the Green

function G, Z can be calculated via the identity

d

dm2
logZ = −1

2
trG. (5.15)

Notice that there is no general method for the calculation of the Green function G

for manifolds with a co-dimension one cut on a finite region, which implies that one

has to deal with this problem on a case by case basis, see [158].

The case of 1+1 dimensions is special, since more techniques are available [79,

159]. For example, the bosonization can be used to evaluate Z(n) of the Dirac

field. The fermionic current can be expressed in terms of a dual scalar field φ as

jµk → 1√
π
εµν∂νφ. One ends up with a dual scalar theory, which is described by

the Sine-Gordon equation, and Z(n) is expressed as a sum of correlators of local

operators [150]. Actually, this is a particular case of generela fact, which is that

Z(n) is related to correlator of twist operators [160]. The twist fields are non local

functions of the ordinary fields, which effectively impose the boundary conditions.

5.2 Discreet Methods

In this approach one works with a lattice model, which corresponds to a QFT at the

continuum limit. Keeping the time coordinate real, one constructs the reduced den-

sity matrix of the theory, which corresponds to the state of the theory. Historically,

the first calculations of entanglement entropy have been performed this way [42,81].

This approach is well suited for numerical calculations and even though it is not

exploited as extensively as the continuum methods, it advantageous in certain ways.

The greatest advantage is that one obtains the spectrum of the reduced density ma-

trix, thus has direct access to much more information. In the continuum approach,

one obtains all Rényi entropies, which in principle is equivalent to the spectrum of the

reduced density matrix, nevertheless in practise its is extremely difficult to actually

calculate it. Moreover, one can work with multipartite systems, which is extremely

difficult, if not impossible, to be done in the continuum approach. Its easier to study

interactions, at least in perturbation theory [161, 162], see also [163]. One can also

study more general states than the vacuum, see [164–166]. In Part 2 we generalize

the approach of [42], to the case of massive field and develop a perturbative expan-

sion, which can be used for analytic calculations5. Then, we study go on to include

5Even though this work is not included in the thesis, in 1+1 dimensions it can be shown that in

the continuum limit of the massless case one recovers the results of [43].
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finite temperature.

Here we will first present the straightforward approach of [42, 81] and then we

will discuss the approach of Peschel [167], which is based on correlation functions.

5.2.1 Entanglement Entropy of Coupled Oscillators in Terms of Wave-

functions

Assume a system ofN coupled harmonic oscillators described by the quadratic Hamil-

tonian

H =
1

2

N∑
i=1

p2
i +

1

2

N∑
i,j=1

xiKijxj, (5.16)

where the matrix K is symmetric and has positive eigenvalues, as required for the

vacuum stability. Since K has been positively defined, its square root Ω :=
√
K can

be appropriately defined, so that it also has positive eigenvalues.

In the following, without loss of generality, the subsystem A is considered to

comprise of N − n oscillators, those described by coordinates xi with i > n. It

follows that its complementary subsystem AC comprises of the n oscillators described

by coordinates xi with i ≤ n. We may write the matrix Ω in block form as

Ω =

(
A B

BT C

)
, (5.17)

where A is an n× n, C is an (N − n)× (N − n) and B is an n× (N − n) matrix.

We define the (N − n)× (N − n) matrices β and γ as,

β :=
1

2
BTA−1B, (5.18)

γ := C − 1

2
BTA−1B = C − β. (5.19)

Let λi, where i = n + 1, . . . , N , be the eigenvalues of the matrix γ−1β. Then, the

spectrum of the reduced density matrix ρA is given by

pnn+1,...,nN =
N∏

i=n+1

(1− ξi) ξnii , ni ∈ Z, (5.20)

where

ξi =
λi

1 +
√

1− λ2
i

. (5.21)

It follows that the entanglement entropy is given by

SEE (N, n) =
N∑

j=n+1

(
− ln (1− ξj)−

ξj
1− ξj

ln ξj

)
. (5.22)
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5.2.2 Entanglement Entropy of Coupled Oscillators in Terms of Corre-

lation Functions

In this section, we present an alternative method based on correlation functions,

which gives equivalent results. By definition, the reduced density matrix ρV corre-

sponding to the region V , is the operator acting on the local algebra of operators in

V , which have the same expectation values as the vacuum state of the overall system,

〈OV 〉 = tr(ρVOV ) , (5.23)

for any operator OV , which is localized inside a V . According to the Wightman

theorem [168, 169], which states that a QFT can be defined in terms of correlation

functions, this equation implies that knowing all the correlation function V suffices

for the calculation of reduced density matrix ρV . In the case of free QFT this implies

that this boils down to 2-point functions, a result of the Wick’s theorem. This

approaches was introduced by Peschel [167].

Let us introduce local Hermitian variables xi and pj, which obey the canonical

commutation relations

[xi, pj] = iδij, [xi, xj] = [pi, pj] = 0 . (5.24)

The 2-point function in V are defined as

〈xixj〉 = Xij , 〈pipj〉 = Pij , (5.25)

〈xipj〉 = 〈pjxi〉∗ =
i

2
δij . (5.26)

One can generalize the last equation so that 〈xipj〉+〈pjxi〉 6= 0, but since we are deal-

ing with the vacuum state his is not be necessary. The equations in (5.25) imply the

matrices X and P are symmetric and positive. Since 〈(φl + iλlkpk)(φm − iλ∗msps)〉 ≥
0 for arbitrary constants λlk, one obtains

XP ≥ 1

4
, (5.27)

in the sense that the eigenvalues of XP are greater than 1/4.

Let us introduce creation and annihilation operators al, a
†
l , such that [ai, a

†
j] = δij,

which are linear combinations of the xi and pj as

xi = α∗ija
†
j + αijaj , (5.28)

pi = −iβ∗ija
†
j + iβijaj . (5.29)

Imposing the canonical commutation relations implies that

α∗βT + αβ† = −1, αα† =
(
αα†

)T
, ββ† =

(
ββ†
)T
. (5.30)
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We solve the last two equations by α = αRU and β = βRV , where αR and βR are

real matrices and U and V are unitary matrices. Substituting in the first equation

results in U = V and αRβ
T
R +αRβ

T
R = −1, which implies that αR = −1

2

(
βTR
)−1

. The

unitary matrix U can be absorbed by a redefinition of the operators ai. Thus, we

may select U = I and α, β real.

We use the following ansatz for the reduced density matrix [167]

ρV = Ke−H = K e−Σεla
†
l al , (5.31)

where K = Πl(1 − e−εl) is the normalization factor, so that Tr [ρV ] = 1. Using this

ansatz for ρV we postulate Tr [ρV xixj] = Xij and Tr [ρV πiπj] = Pij. This implies

α (2n+ I)αT = X, (5.32)

β (2n+ I) βT = P, (5.33)

where n is the diagonal matrix, whose elements are the expectation values of the

occupation number

nij =
〈
a†iaj

〉
= (eεi − 1)−1δij. (5.34)

Therefore, it is straightforward to obtain

α

(
n+

1

2
I

)2

α−1 = XP. (5.35)

This equation enables us to obtain the spectrum of the reduced density matrix ρV
in terms of the spectrum of XP as

1

2
coth

(εk
2

)
= νk, (5.36)

where νk are the eigenvalues of C =
√
XP .

One may invert equations relations (5.28) and (5.29) and replace in (5.31) in

order to express the reduced density matrix as

ρV = K e−
∑
V (Mijxixj+Nijpipj) , (5.37)

where

M =
1

4
α−1T εα−1 = P

1

2C
log

(C + 1
2

C − 1
2

)
, (5.38)

N = αεαT =
1

2C
log

(C + 1
2

C − 1
2

)
X , (5.39)
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where ε is the diagonal matrix with elements εk. The entanglement entropy is given

by

S =
∑
l

(
− log(1− e−εl) +

εl e
−εl

1− e−εl

)
= Tr [(C + 1/2) log(C + 1/2)− (C − 1/2) log(C − 1/2)] ,

(5.40)

which is positive thanks to C > 1/2, see equation (5.27).

For a Hamiltonian of the form (5.16), the vacuum correlation functions are given

by

Xij = 〈xixj〉 =
1

2
(Ω−1)ij , (5.41)

Pij = 〈pipj〉 =
1

2
(Ω)ij , (5.42)

where K = Ω2. Notice that the matrix P is a block of inverse of the matrix Ω, which

is defined in the overall system, and not inverse of the block X.

5.2.3 The Equivalence of the 2 Approaches

The formalisms of sections 5.2.1 and 5.2.2 are equivalent for Gaussian states, i.e.

states which give rise to correlation functions that are expressed in terms of 2-point

functions. Naively, the first approach, involves matrix elements of both the system

and its complement, whereas in the second approach it is manifest that the calcula-

tion is restricted in the system under study. Whenever the correlation functions are

known, is more efficient to follow this approach. Nevertheless the obtaining analytic

expressions for Ω and Ω−1 is a formidable task. The perturbative approach of Part

2 deals with this problem.

Similarly to (5.17) we define the blocks of the inverse matrix

Ω−1 =

(
A′ B′

D′ C ′

)
. (5.43)

As ΩΩ−1 = I the blocks of these matrices obey the following relations

AA′ +BD′ = 1 (5.44)

AB′ +BC ′ = 0 (5.45)

BTA′ + CD′ = 0 (5.46)

BTB′ + CC ′ = 1 (5.47)

The first equation implies that

A−1 = A′(I −BD′)−1, (5.48)
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while the third one

D′ = −C−1BTA′. (5.49)

Similarly, one obtains

C−1 = C ′(I −BTB′)−1, (5.50)

B′ = −A−1BC ′. (5.51)

Implementing the Neumann series, the inverse of the blocks A and C is

A−1 = A′
∞∑
k=0

(−1)k
(
BC−1BTA′

)k
, (5.52)

C−1 = C ′
∞∑
k=0

(−1)k
(
BTA−1BC ′

)k
, (5.53)

thus, the matrix β, defined in (5.18), is given by

β =
1

2
BTA′B

(
I + C−1BTA′B

)−1
= −1

2
CD′B (I −D′B)

−1
, (5.54)

where we used (5.49) in the second step. Since γ−1β = (I − C−1β)
−1−I we conclude

γ−1β = − D′B

2I −D′B
. (5.55)

Using C ′C +D′B = I, which follows from Ω−1Ω = I, one obtains a more symmetric

form of this equation, namely

γ−1β =
C ′C − I
C ′C + I

. (5.56)

Thus, the eigenvalues λi of γ−1β satisfy the relation

λi =
4ν2

i − 1

4ν2
i + 1

, (5.57)

where νi are the eigenvalues of C. This implies that ξi, which is defined in (5.21), is

given by

ξi =
2νi − 1

2νi + 1
. (5.58)

Finally it is straightforward to show that equation (5.22) assumes the form

SEE (N, n) =
N∑

j=n+1

[(
νi +

1

2

)
ln

(
νi +

1

2

)
−
(
νi −

1

2

)
ln

(
νi −

1

2

)]
, (5.59)

which is equation (5.40).
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5.3 Vacuum density matrix for a half space

Using the path integral formalism of section 5.1 we will derive the density matrix

of half-space in the ground state of any Lorentz invariant QFT. Starting from the

expression (5.3), and denoting the region x1 > 0 by V , we have

ρV (αV , α
′
V ) =

1

Z

∫ φ(0+)=αV (~x)

φ(0−)=α′V (~x)

Dφ e−SE(φ). (5.60)

Next, consider the change of variables to polar coordinates in the τ, x1 plane, τ =

r sin(θ) and x1 = r cos(θ). This gives

ρV (αV , α
′
V ) =

1

Z

∫ φ(θ=0)=αV (~x)

φ(θ=2π)=α′V (~x)

Dφ e−SE(φ). (5.61)

Upon identifying θ with the Euclidean time, this path integral describes a thermal

state at β = 2π. Thus, the path integral (5.60) defines the density matrix

ρ =
1

Z
e−2πHη , (5.62)

where Hη is the Hamiltonian, which corresponds to the “Rindler time” η = iθ. The

associated metric is

ds2 = dr2 − r2dη2, (5.63)

which describes the Rindler wedge of the original Minkowski space. Since x > 0 the

change of variables is t = r sinh(η) and x = r cosh(η). The hamiltonian Hη is the

related to the boost generator as

Hη =

∫
x1>0

dd−1x
{
x1T00

}
(5.64)

This result is the famous Bisognano-Wichmann theorem [170, 171]. As η can be

identified as the time coordinate for a family of accelerated observers, this result is

in line with the Unruh effect [172], i.e. the fact that accelerated observers, who can

perform measurements only inside the Rindler wedge, observe thermal radiation.

Notice that one can put (5.64) in a covariant form

Hη =

∫
Σ

ηµTµνε
ν , (5.65)

where Σ is any space-like surface in the Rindler wedge with boundary {t = 0, x1 = 0},
and εµ is the volume element defined as

εµ = εµµ2···µddx
µ2 ∧ · · · ∧ dxµd . (5.66)
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Of course there is the complementary Rindler wedge, i.e. the region x1 < 0. Obvi-

ously the density matrix of this region is also thermal with respect to the Hamiltonian

Hη′ , which generates boosts in the complementary wedge. Thus, the overall ground

state |Ω〉 is precisely the thermofield double state

|Ω〉 =
∑
i

e−βEi/2|Ei〉 ⊗ |E ′i〉, (5.67)

where |Ei〉 and |E ′i〉 are energy eigenstates of the Hamiltonians Hη and Hη′ .

In free field theory one can construct explicitly the modes corresponding to each

wedge. In the ground state (5.67) each mode is entangled with the corresponding

mode of the complementary Rindler wedge. Had we removed entanglement by con-

sidering a separable state, the energy momentum tensor would be singular. Thus,

entanglement is necessary to have a well behaved state.

5.4 The Modular Flow

There is another method to obtain the reduced density matrix of the half-space. This

method is based on the modular flow. The reader interested a more abstract/formal

point of view is refered to [55] for a review of Tomita-Takesaki modular theory, as

well as its application in the construction of bulk operators inside the horizons of

black holes.

As mentioned in the previous section, the modular Hamiltonian defines a sym-

metry of the system. One can construct the unitary operators U (s) = e−iHs, which

act as

Tr (ρU (s)OU (−s)) = Tr (ρO) . (5.68)

One can define the operator O (s) = U (s)OU (−s). It is extremely important that

even if the operator O is local, the operator O (s) is non-local, unless the modular

Hamiltonian is a local operator. So, the locality of modular flow and corresponding

locality of the modular Hamiltonian is a very special characteristic.

Interestingly enough it is straightforward to show that all the correlation function

obey the KMS periodicity [116,117] in imaginary time

Tr (ρO1 (i)O2) = Tr (ρU (i)O1U (−i)O2) = Tr
(
ρρ−1O1ρO2

)
= Tr (ρO2O1) , (5.69)

where we used U(±i) = ρ∓1. It follows that the density matrix describes a ther-

mal state with respect to the evolution generated by U(s) and the corresponding

temperature is T = 1.

In the case of Minkowski space, the modular flow has a particularly simple action

in the Rindler wedge, which is

X± (s) = X±e±2πs, X i (s) = X i, (5.70)
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where X± = X1 ±X0 and the i = 2, . . . d− 1. Introducing the Rindler coordinates

X± = ze±τ/R, the metric reads

ds2 = − z
2

R2
dτ 2 + dz2 + dX idX i, (5.71)

which corresponds to a thermal state with temperature T = 1/2πR. Thus, the

density matrix is

ρR =
e−2πRHτ

Tr e−2πRHτ
(5.72)

and the corresponding modular Hamiltonian reads

HR = 2πRHτ + log Tr e−2πRHτ . (5.73)

Notice that the modular flow (5.70) generates time translations

τ → τ + 2πRs. (5.74)

5.5 Density matrix for a ball-shaped region in a CFT

Interestingly enough, the Rindler wedge can be mapped to the domain of dependence

of a ball-shaped region of the Minkowski space. The vacuum of the CFT is invariant

under a conformal transformation, thus the density matrix of a ball-shaped region is

the transformed density matrix of the Rindler wedge (5.62), i.e.

ρB = UρRindlerU
† =

1

Z
e−2πUHηU† ≡ 1

Z
e−Hζ , (5.75)

where the factor of 2π is absorbed in the definition of Hζ .

In the case of a ball B of radius R, which is centered at the origin of the space,

the transformation is generated by

ζ =
π

R

{
(R2 − t2 − |~x|2)∂t − 2txi∂i

}
, (5.76)

which is a conformal Killing vector. Let us go through the calculation

We consider the conformal transformation

xµ =
Xµ −XνX

νCµ

1− 2XκCκ +XρXρCσCσ
+

Cµ

2CλCλ
, (5.77)

with

Cµ =

(
0 ,

1

2R
, 0 , . . . , 0

)
. (5.78)

Notice that the inverse transformation is

Xµ =
xµ + 2xνx

νCµ

1
4

+ xκCκ + xρxρCσCσ
− Cµ

CλCλ
, (5.79)
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while the conformal factor reads

Ω = 1− 2XκC
κ +XρX

ρCσC
σ (5.80)

=

(
1

4
+ xκC

κ + xρx
ρCσC

σ

)−1

. (5.81)

Defining r =
√

(x1)2 + . . .+ (xd−1)2 and t = x0, one can see that the conformal

transformation maps the half-space X1 ≤ 0 to the disk D, r ≤ R, and the Rindler

wedge X± ≤ 0 to the causal development of the disk D, x± ≤ R, where x± = r ± t.
One can show that the modular flow of the new coordinates is

x± (s) = R
(R + x±)− (R− x±) e∓2πs

(R + x±) + (R− x±) e∓2πs
. (5.82)

It is straightforward to obtain

∂r (s)

∂s

∣∣∣∣
s=0

= −2π
rt

R
, (5.83)

∂t (s)

∂s

∣∣∣∣
s=0

= π
R2 − r2 − t2

R
. (5.84)

Considering the time slice t = 0, one obtains the modular Hamiltonian for a disk of

radius R [173], which reads

HD = 2π

∫
dd−1x

R2 − r2

2R
T00. (5.85)

6 Entanglement in AdS/CFT

In this section we present the basic aspects of Entanglement in the framework of

AdS/CFT correspondence. Reviews on the subject include [174–177]. We present

the Ryu-Takayanagi prescription for the calculation of Holographic Entanglement

Entropy, we discuss basic properties and implications. We also sketch the proof of

this prescription. Then, we present implication of holographic entanglement entropy

to our understanding of quantum gravity. We will mainly follow [175].

6.1 Motivation of Ruy-Takayanagi

As discussed in (3.6) the AdS Schwarzschild black hole corresponds to a high energy

thermal state of the CFT on a sphere. Naturally, the entropy of the CFT equals

the area of the black hole horizon. It would be interesting to identify the parts of

the black hole spacetime that can be studied using the CFT. Of course this is a
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very complicated question, which is subject of ongoing research. Maldacena [178]

suggested that the maximally extended spacetime, is associated with a thermofield

double state (4.20) of a two-CFT system and not with the thermal state of a single

CFT. An intuitive way to understand it, is that as the geometry has two asymptotic

regions and each region has its own boundary, as well as black hole horizon.

The interesting part is that while each term in the superposition (4.20) is a prod-

uct of states of non interacting CFTs, corresponding to separate geometries, the

superposition of all these states gives rise to a common geometry. Both asymp-

totic regions are connected a wormhole. Interestingly enough, this construction indi-

cates that entanglement among the degrees of freedom corresponding to two separate

spacetimes in a sense merges the corresponding geometries [62, 63].

Let us consider this construction in terms of entropy. In the thermofield double

state the black hole entropy is associated to a single CFT, which is the entanglement

entropy measuring the entanglement between the subsystems. In the dual picture,

the presence of the horizon divides the geometry into two parts. Each of these parts

contains a boundary sphere, which is the unique surface extremizing the action.

Considering the CFTs as complementary subsystems, the entanglement entropy of

subsystem A corresponds to the area of the extremal surface which divides the ge-

ometry into two parts with boundaries A and Ac. Generalizing the above statement

to arbitrary regions and arbitrary states gives the Ruy-Takayanagi formula for the

calculation of holographic entanglement entropy.

6.2 The Ryu-Takayanagi formula

In the previous section be argued that in the context of AdS/CFT, the Bekenstein-

Hawking formula associates the entropy of a CFT in a thermal state with the area

of the horizon of the black hole in the dual spacetime. The Ryu and Takayanagi

prescription [37, 38], as well as its covariant generalization [39], provides a way to

calculate entanglement entropy of any spatial subsystem, for any CFT state dual to

classical spacetime.

Let SA be the entropy associated to the subsystem A, which is the entanglement

entropy that measures the entanglement of fields in A with the the rest of the system.

This entropy equals the area of a certain co-dimension 2 surface Ã, i.e.

S(A) =
1

4GN

Area(Ã). (6.1)

The surface Ã is has the following properties:

• The surface Ã has the same boundary as A.

• The surface Ã is homologous to A.
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• The surface Ã minimizes the area functional. In the case of multiple such

surfaces, Ã is the one which corresponds to the minimal area.

Considering static geometries, the time direction is irrelevant and the entangle-

ment entropy for a region A equals the area of the minimal surface, which extends

in the bulk and has the same boundary as A. In more general cases, the covari-

ant generalization is equivalent to finding the minimal area on a spatial slice Σ and

maximizing this area over all possible slices Σ [179].

As discussed in section 5 entanglement in field theory is divergent. It is expected

for holographic entanglement entropy to be divergent too. The origin of the di-

vergences is the fact that AdS metric diverges near the boundary. So, one needs to

implement the usual prescription of AdS/CFT and regularize the area of the minimal

surfaces by introducing a cutoff and restricting z > ε. The divergent terms are in-

teresting in an effective field theory point of view, but one can also define quantities,

which are finite. Indicative examples include

1. Mutual Information: As the divergences are local SA+SB−SA∪B, see equation

(4.9), is free of divergences, as long as A and B are not adjacent. In Part 2 we

study mutual information for adjacent system.

2. Entropy Difference: Since the divergences are local, the modes near the en-

tangling surface are insensitive to the global state of the system. If two states

correspond to gravitational dual with the same asymptotic behaviour, for ex-

ample for spaces are asymptotically AdS, the divergences will cancel.

3. Specific terms of entanglement entropy. These may be isolated by differentiat-

ing with respect to parameters of the system, such as the length of the system

in 1+1 dimensions.

In all these cases, we obtain finite results that are regularization scheme independent.

6.2.1 Indicative Examples

Let us calculate the entanglement entropy for a ball shaped region for the vacuum

state of a CFT on R1,d−1. The dual geometry is AdS in Poincaré coordinates

ds2 =
L2

z2
(−dt2 + |d~x|2 + dz2). (6.2)

The ball shaped region is refined by t = 0 and |~x|2 ≤ R2, thus one needs to specify

the (d − 1)−dimensional minimal surface, whose boundary is |~x|2 = R2. The naive

approach is to parametrize the surface with embedding functionsXµ(σ) and minimize

the area functional

A =

∫
dd−1σ

√
det γab, (6.3)
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where γab is the induced metric, which is defined as

γab = Gµν(X(σ))
∂Xµ

∂σa
∂Xµ

∂σb
. (6.4)

In the special case of d = 3, i.e. for AdS4 one can use the Polyakov form of the

action, accompanied with the Virasoro constraints and take advantage to integra-

bility. Aspects of this approach are discussed in Part 3. For the case at hand one

can introduce an explicit parametrization by identifying x and σ so that the only

unknown function is Z(xi). Its trivial to calculate the induced metric and show that

the area functional equals

Area =

∫
dd−1x

(
L

Z

)d−1
√

1 +
∂Z

∂xi
∂Z

∂xi
(6.5)

It is straightforward verify that the minimal surface, whose boundary is |~x|2 = R2,

is the hemispheres6

|~x|2 + z2 = R2. (6.6)

Let us restrict ourselves in the d = 2 case. In this case we have to calculate the

regularized length of the minimal curve. The corresponding entanglement entropy

equals

S =
A

4GN

=
1

4GN

∫
z>ε

L

z

√
dx2 + dz2 =

L

2GN

ln

(
`

ε

)
(6.7)

where we have defined ` = 2R length of the system. The coefficient of the logarithm

is related to the central charge of the dual CFT as (see [105,180])

c =
3

2

L

GN

, (6.8)

which implies that (6.3) assumes the form

S =
c

3
ln

(
`

ε

)
. (6.9)

This formula matches precisely the CFT calculation [45]. It is interesting that this

formula gives the entanglement entropy, corresponding to an interval of length `,for

the ground state of any CFT. As the structure of this formula is the same for all

CFT, the holographic calculation “accidentally” reproduces the correct result for all

CFT and not for the holographic ones. Considering more general cases, such as the

6An alternative way to obtain this result is to consider two subsystems separated by the line

x1 = 0. Obviously corresponding the minimal surface is bulk surface x1 = 0. Then an bulk

conformal transformation maps this minimal surface to the hemisphere.
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A −R
2

R
2

B

Figure 1: Minimal curves for the calculation of mutual information between two

disjoint intervals in 2-dimensional holographic CFTs. For large R, the minimal

curve corresponding to A∪B is the union of the disconnected black curves, thus the

mutual information vanishes at leading order in N . For small R, the minimal curve

corresponding to A ∪ B is the union of the red curves, thus the mutual information

is non-vanishing.

union of disjoint intervals, one obtains result that are applicable only for certain

CFTs [181,182].

Let us turn on temperature. The dual geometry is the planar BTZ black hole

ds2 = −
r2 − r2

+

L2
dt2 +

dr2

r2 − r2
+

+
r2

L2
dx2, (6.10)

where according to the analysis of section 3.6 the temperature is T = r+
2πL2 . For a

interval of length ` the corresponding entanglement entropy is

S =
c

3
ln

(
β

πε
sinh

(
π`

β

))
, (6.11)

which again matches the CFT calculation [45]. As in the ground state case the result

depends only on the central charge of the CFT.

Let us calculate some finite quantities, using (6.9).

1. Suppose we have two systems A and B, both of length ` and define the distance

between them r. Trivially (6.9) implies that

SA = SB =
c

3
ln

(
`

ε

)
. (6.12)

On the other hand, there are two competitive minimal surfaces for the entan-

glement entropy of the overall system, thus

SA∪B =

{
c
3

ln
(
r+2`
ε

)
+ c

3
ln
(
r
ε

)
r < (

√
2− 1)`

2c
3

ln
(
`
ε

)
r > (

√
2− 1)`

. (6.13)

71



Depending on the ratio r/` minimum overall length corresponds either to the

curves whose boundary are the edges of same subsystem or curves whose bound-

ary are the edges of different subsystem subsystem, see figure 1. Finally, the

mutual information is

I(A : B) =

 c
3

ln
(
r(r+2`)
`2

)
r < (

√
2− 1)`

0 r > (
√

2− 1)`
, (6.14)

which is finite. Interestingly enough, it exhibits a first order phase transition

with order parameter the ratio of the separation over length.

2. Considering the difference of entanglement entropy of a thermal state versus

the ground state, we obtain

Sβ − Svacuum =
c

3
ln

(
β

π`
sinh

(
π`

β

))
, (6.15)

which, as expected, is finite.

3. Finally, we can isolate the central charge as

dS

d ln `
=
c

3
. (6.16)

In higher dimensions one can define analogous quantities [183–185].

There is a very interesting story in the case had we considered the global BTZ

black hole

ds2 = −
r2 − r2

+

L2
dt2 +

dr2

r2 − r2
+

+ r2dφ2, (6.17)

In this case, depending on the angular opening of the system, there is phase transition

from a connected minimal surface to a disconnected one, which includes the horizon

of the black hole [186], see figure 2. This is required in order for the Araki-Lieb

inequality (4.11) to hold. Assuming the system under consideration is defined by

−φA ≤ φ ≤ φA, the entanglement entropy is

S =


c
3

ln
(
β
πε

sinh
(

2πLφA
β

))
, φA < φ̃

c
3
π 2πL

β
+ c

3
ln
(
β
πε

sinh
(

2πL(π−φA)
β

))
, φA > φ̃,

(6.18)

where ε = L2/L∞ and L∞ is the cutoff of variable r. The critical angle φ̃ is defined

by the equation

φ̃ =
β

2πL
arccoth

[
2 coth

(
2π2L

β

)
− 1

]
. (6.19)
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Interesting, enough in this case, if A is smaller than Ac, it follows that

SAc = SA + Sthermal, (6.20)

which implies that the Araki-Lieb inequality is saturated. This property is known

as holographic entanglement plateaux.
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Figure 2: Minimal surfaces in the background of BTZ black hole. We use the tortoise

coordinate arctan(r) in the radial directions, in order to bring the boundary in a

finite distance. In this plot, the radius of the horizon, which is depicted with the

green curve, is r+ = 0.14, while the critical angle is φ̃ ' 1.91. In the left panel

φA = 3π/7, so the minimal curve corresponding to subsystem A is the blue one,

while the red curve corresponds to Ac. In the right panel φA = π/3, so the minimal

curve corresponding to Ac is the union of the blue curve and the green one.

Besides the discussed minimal surfaces, the knowledge of the explicit form of

minimal surfaces is very limited. The other known minimal surfaces correspond to

strip regions in pure AdS (see section 6.1 of [177]) or on AdS-Schwarzschild back-

grounds (see section 5.1 of [187]). The case of static minimal surfaces in AdS4 is an

exception. In this case the co-dimension two minimal surfaces are two dimensional

euclidean world-sheets, thus are described by a Non Linear Sigma Model. In this

case the general solution is known, but its not very handy for calculations since it in-

volved hyperelliptic functions [188,189]. A specific class of those, the elliptic minimal

surfaces is studied in [190].

6.3 Evidence for Ryu-Takayanagi

So far we have seen that the prescription of Ryu-Takayanagi for the calculation of

holographic entanglement entropy in certain cases for 2-dimensional CFTs. One can

a few more explicit examples, such as the case of multiple intervals in the ground
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state of 2-dimensional CFTs [181,182] 7, for ball-shaped regions in the ground state

of higher dimensional CFTs [173], as well as in some other cases [191,192].

Since it is difficult to calculate entanglement entropy in strongly coupled CFTs,

one can not argue on the validity of Ryu-Takayanagi prescription solely on the basis

of direct comparison of results. Nevertheless, AdS/CFT provides a dictionary be-

tween CFT and gravitational quantities. In particular, the partition functions are

equivalent. Let us consider the gravitational calculation of Rényi entropies, which

we presented in section 5 in the context of QFT. In the classical limit, the parti-

tion function is dominated by the classical gravitational solution, whose boundary

is the multi-sheeted space associated to the replica trick. Of course, a direct com-

putation of the Rényi entropies is out of question, but Lewkowycz and Maldacena

argued that for static spacetimes the outcome of this calculation is equivalent the

the calculation of minimal surfaces in the original background [40]. Earlier, such a

proof was attampted in [193], but as argued in [194] the gravitational solution used

in this work had a conical singulaity in the bulk. The arguments of Lewkowycz

and Maldacena argument have been extended in [41] for time-dependent geometries.

Intrestingly enough, the Ryu-Takayanagi prescription has been related to Quantum

Error Correction [195].

In the following we discuss how holographic entanglement entropy obeys basic

properties of entanglement entropy.

Complementary subsystems

Considering complementary subsystems in a pure state of the overall system, it is

expected that entanglement entropy is symmetric, i.e. SA = SAc . In the case of holo-

graphic entanglement entropy this property is realized by the fact that one needs to

take into account the surface which minimizes the area functional globally. So, given

any entangling surface the globally minimal surface is well defined, even though

its difficult to compute in practise. This statement has an underlying assumption,

which is the fact that the globally minimal surface is homologous to the correspond-

ing subsystem. As long as the bulk geometry is smooth and does not contain any

singularities / horizons, this constraint is indeed satisfied. On the other hand, as we

saw in the case of BTZ black hole in global coordinates the presence of the black

hole makes the complementary regions correspond to distinct minimal surfaces, so

that SA 6= SAc . For example, in 2, the blue and red curves are topologically inequiv-

alent, due to the presence of the black hole. Of course this behaviour is expected for

systems in a mixed state. As we argue in Part 2 the origin of the asymmetry is the

existence of classical correlations.

7Essentially, these works prove the Ruy-Takayanagi prescription for Ads3.
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Entanglement Inequalities

The mutual information of quantum system is non-negative, which is known as sub-

additivity, see equation (4.10). In the case of disjoint systems, the subadditivity of

holographic entanglement entropy follows trivially. Given the disjoint extremal sur-

faces corresponding to systems A and B, are of the minimal surface corresponding

to A∪B is by definition less or equal to the sum of the areas of the disjoint minimal

surfaces. Thus, holographic mutual information is trivially non-negative. See figure

1 for a depiction of the competitive minimal surfaces in the case of 2-dimensional

CFTs. In a similar manner, simple arguments suffice to show that strong subad-

ditivity, see equation (4.12), is obeyed automatically by holographic entanglement

entropy [196].

6.4 Generalizations

As discussed extensively in the introduction of this Part 1, conceptually, the Ryu-

Takayanagi prescription is valid when the gravitational theory is classical gravity.

The precise form of (6.1) assumes that the dynamics of gravity is governed by

Einstein-Hilbert action. As entanglement entropy in QFT is defined for any the-

ory, it is expected that the prescription of Ruy and Takayanagi generalizes in order

to deal with all holographic CFTs.

The entropy of black holes in classical gravitational theories with more general

Lagrangians is calculated using the Wald’s functional [197]. Given the Lagrangian,

there is a precise prescription to calculate the Wald’s functional. Nevertheless, it

turns out that this functional does not reproduce the correct holographic entangle-

ment entropy in the case of Lovelock gravity [198, 199]. In this case the correct

functional to be used, is the one introduced by Jacobson and Myers [200]. Based

on the derivation of Lewkowycz and Maldacena, formulas for more general theories

have been obtained in [201,202].

Another possible extension is the introduction of 1/N corrections, i.e. taking into

account quantum corrections in the bulk theory. In order to do so, one must calculate

the quantum fluctuations of the bulk fields. The order G0
N correction to holographic

entanglement entropy is given the entanglement entropy of the bulk fields separated

by the minimal surface [203], i.e.

SCFTA =
1

4GN

Area(Ã) + Sbulk
Ã

. (6.21)

In [204] an exact formula for entanglement entropy was proposed:

S = minX

{
extX

[
Area(X)

4GN

+ Ssemi-cl(ΣX)

]}
, (6.22)
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where X is a co-dimension two surface, ΣX is a region bounded by X and Ssemi-cl(ΣX)

is the von Neumann entropy of the quantum fields on ΣX . One needs to find the

minimal surface corresponding to a given Cauchy slice and then maximize among all

Cauchy slices. The minima of this functional, are called Quantum Extremal Surfaces.

There are fundamental differences between (6.21) and (6.22). First of all, the

particular form of (6.21) is valid for static minimal surfaces, but this is a serious

difference, as we already mentioned that there is a covariant generalization. The

fundamental difference is that in (6.21), the surface minimizes the area, and the

second contibution is calculated using this specific minimal surface, while in (6.22),

the surface minimizes both terms. It is expected that difference of these formulas is

of order GN , see section 3.1 of [204].

6.4.1 Bulk Reconstructing

The prescription of Ryu and Takayanagi implies that bulk geometry is encoded in

the entanglement of the dual CFT. Assume that one could calculate entanglement

entropy for any spatial region of the CFT, then in principle one could obtain the

dual geometry by postulating that the area of the minimal surfaces matches the

entanglement entropy. This problem is overconstrainted, since entanglement entropy

is a functional, defined on the set of all possible regions of the dual CFT, while

bulk geometry depends on a few functions. This indicates that not all states have a

gravitational dual, which captures the entanglement of the state.

Even for the special class of states with geometric duals, there are limitations. For

example, no minimal surface can extend behind the horizon of a black hole. Regions

who are inaccessible by minimal surfaces are known as entanglement shadow, see

[205]. Nevertheless, one could obtain information about such regions by considering

more general types of entanglement, see e.g. [206, 207]. For an extended review on

Bulk Reconstruction see [208].

Nevertheless, one should keep in mind that this discussion concerns the Ryu-

Takayanagi prescription, which captures the leading order effect. Exact prescrip-

tions [204] indicate that as black holes evaporate, part of the radiation’s entropy

receives contributions from so-called entanglement islands [209, 210]. The islands

correspond to wormhole solutions, which contribute to the gravitational path inte-

gral of the replica trick [211]. Thus, quantum effects allow us to peek behind black

holes horizons.

6.5 Gravitation from Entanglement

Building on the subject of bulk reconstruction, which was discussed in the previous

section, it is interesting to wonder how much information about the dynamics of the
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gravitational theory can be understood from the entanglement of the dual CFT.

The Ruy-Takayanagi provides the link between the gravitational and the field

theory prescription. As discussed, imposing consistency conditions enables us obtain

information about the states which admit geometry dual. In this section we will see

that this is also true about gravitational dynamics.

6.5.1 First Law of Entanglement Thermodynamics

The key concept in the quest to relate gravitational dynamics and entanglement is

the first law of entanglement thermodynamics. Consider a state depending on some

parameters. Then the first order variation of entanglement entropy reads

δSA = −Tr (log ρAδρA)− Tr (δρA) . (6.23)

As the density matrix is normalized, so that its trace is unity, the last term vanishes.

Moreover, in terms of the modular Hamiltonian we obtain [212]

δSA = Tr (HAδρA) = δ〈HA〉. (6.24)

It is extremely important that the modular Hamiltonian HA is defined in terms of the

unperturbed density matrix, thus, the variation acts only on ρA. As this equation re-

sembles dE = TdS, it is known as First Law of Entanglement Thermodynamics. One

should notice that the implementation of the First Law of Entanglement Thermody-

namics in practice is limited by the lack of knowledge of the modular Hamiltonian.

Unfortunately the cases where one knows both the modular Hamiltonian and a holo-

graphic description are limited. In the case of spherical entangling surfaces, taking

into account (5.85), equation (6.24) reads [212]

δSB =
π

R

∫
B

dd−1x(R2 − |~x|2)δ〈T00(x)〉 . (6.25)

Calculating the variation of entanglement entropy using the Ryu - Takayanagi pre-

scription will allow us to draw important conclusions. We have already calculated the

corresponding minimal surfaces; they are given by (6.6). Nevertheless, one should

keep in mind that these surfaces are the analogous of planes in AdS, since all their

extrinsic curvatures vanish. Thus, one is not able to test if extrinsic curvature con-

tributions affect the conclusions. It would be interesting to have some non-trivial

example at hand. As in the special case of AdS4 non-trivial minimal surfaces are

known, the bottleneck for such a calculation is solely the lack of knowledge of the

modular Hamiltonian for the corresponding regions. In the second half of Part 4 we

explore a strategy to make all possible progress under this limitation.

Lets see how to implement the First Law of Entanglement Thermodynamics in

practise. The change of the CFT state, corresponds to a change of the dual geometry.
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As the ground state corresponds to pure AdS, we assume that the dual geometry is

asymptotically AdS. This is expected as the variation should be small and conformal

invariance should remain unbroken. Thus, introducing a small perturbation on the

vacuum state, the geometry is described by a metric of the form

ds2 =
1

z2

(
dz2 + dxµdxµ + zdHµνdx

µdxν
)
, (6.26)

which is the usual Fefferman - Graham expansion of Asymptotically AdS manifolds

[213]. We also set L = 1. In order for the boundary geometry to remain intact Hµν

must be regular as z → 0. Since Hµν is related to the holographic energy momentum

tensor as [103,111,112]

Tµν =
d

16πGN

Hµν (z = 0, x) . (6.27)

it is the link between the CFT and the gravitational description. As a result, the First

Law of Entanglement Thermodynamics imposes constraints on Hµν . Remarkably, as

we will show, Hµν has to obey the linearized Einstein equations [66,67]. Notice that

the conservation and the tracelessness of the energy momentum tensor imply

Hµ
µ |z=0 = 0, ∂νH

ν
µ |z=0 = 0 (6.28)

6.6 First Law of Entanglement Thermodynamics for Spher-

ical Entangling Surfaces

Now let us apply the the First Law of Entanglement Thermodynamics in the case

of spherical entangling surfaces [66, 67]. Taking into account (6.27) and the Ryu-

Takayanagi prescription, we obtain

δArea =
d

4R

∫
B

dd−1x(R2 − |~x|2)H00(x, z = 0) (6.29)

The variation of the area can be calculated using the area functional (6.3). It is im-

portant that the original surface, i.e. the hemisphere, extremizes the area functional

for the unperturbed geometry. The area is a functional depending on both the metric

G and the embedding functions X, thus its first order variation reads

δArea =
δArea

δG
δG+

δArea

δX

δX

δG
δG . (6.30)

As the surface described by the embedding functions X extremizes the area, its first

order variation vanishes. Therefore, we simply have to calculate the variation of
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the area of the original surface induced by the variation of the metric. Taking into

account the relation

δ
√

det γab =
1

2

√
det γabγ

cdδγcd, (6.31)

where γab is the induced metric (6.4), and parametrizing the minimal serface as

Z(x) =
√
R2 − |~x|2 we obtain

δArea =
1

2

∫
B̃

√
det γabγ

cdδγcd =
1

2R

∫
B̃

dd−1x(R2Hii − xixjHij). (6.32)

In this equation B̃ denotes the integration on the minimal surface. Finally, the First

Law of Entanglement Thermodynamics reads∫
B̃

dd−1x(R2Hii − xixjHij) =
d

2

∫
B

dd−1x(R2 − |~x|2)Hii(x, z = 0). (6.33)

In the following, we will refer to the left-hand-side and right-hand-side of this equa-

tion as δSgravB and δEgrav
B respectively.

Equation (6.33) relates the metric perturbations on a surface embedded in the

interior of the bulk to their asymptotic values. This is a non-trivial equation, satisfied

be a specific class of metric perturbations. As isometries allow us to effectively impose

an infinite number of such constraints by varying the center and the radius of the

sphere. If all these constraints are to hold simultaneously they have to be equivalent

to a local equation.

6.6.1 Local Gravitational Dynamics from Entanglement

In order to obtain a local equation for H from (6.33), we will use Stokes theorem, in

the same manner that it is used to obtain the differential form of MAxwell’s equations

from the integral one. We need to find a differential form χB, which depends of the

entangling surface, postulating that:∫
B

χ = δEgrav
B , (6.34)∫

B̃

χ = δSgravB . (6.35)

It turns out that such a χ exists and it also obeys

dχ = 2ξ0
B(x)δE00(x)volΣ. (6.36)

In these equation ξ0
B, is the zeroth component of the ξB, which reads

ξB =
π

R

{
(R2 − t2 − |~x|2 − z2)∂t − 2t

(
xi∂i + z∂z

)}
(6.37)
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and is the bulk counterpart of the conformal Killing vector ζ, defined (5.76). It is

crucial that ξ0
B(x) is strictly positive in the region Σ between B and B̃. Moreover,

volΣ represents the volume form on this region, and

δE00(x) ∝ zd
(
∂2
zH

i
i +

d+ 1

z
∂zH

i
i + ∂j∂

jH i
i − ∂i∂jHij

)
(6.38)

is the time-time component of the linearized Einstein equations in AdS.

Using this formalism it is trivial to convert the First Law of Entanglement Ther-

modynamics into a local equation

δEgrav
B = δSgravB ⇔

∫
B

χ =

∫
B̃

χ⇔
∫
∂Σ

χ = 0⇔
∫

Σ

dχ = 0, (6.39)

where the explicit form of the last equation is∫
Σ

ζ0
B(x)δE00(x)volΣ = 0. (6.40)

As ζ0
B(x) is positive in Σ, the only way that this equation is true for any Σ, i.e. any

spherical entangling surface, is

δE00(x) = 0 . (6.41)

Thus, the First Law of Entanglement Thermodynamics for spherical entangling sur-

faces in slices of constant t is equivalent to the 00 component of the linearized Einstein

equations in the bulk. Since this must be true in all frame of references is follows

that all µν components of the Einstein equations must be satisfied. namely

δEµν = 0. (6.42)

Moreover equations (6.28) imply that the µz and zz components are also true, since

this equations are constrained. This is the unexpected outcome of [66, 67], building

on [212].

Of course one may wonder what is the explicit form of χ and how does one guess

its form. Well, for a spherical entangling surface of radius R, which is centered at

~x0, its follows that χ is given by

χ|Σ =
zd

16πGN

{
εtz

[(
2πz

R
+
d

z
ξt + ξt∂z

)
H i

i

]
+

+εti

[(
2π(xi − xi0)

R
+ ξt∂i

)
Hj

j −

(
2π(xj − xj0)

R
+ ξt∂j

)
H i

j

]} (6.43)

where ξt = π
R

(R2 − z2 − |~x − ~x0|2) and εab =
√
−gεabc1···cd−2

dxc1 ∧ · · · ∧ dxcd−2 . The

existence of this form is another manifestation of the very close relation between
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entanglement and black holes thermodynamics. According to the work of Iyer and

Wald [214] perturbations satisfying the linearized Einstein equations about a black

hole background with a bifurcate Killing horizon the change of area of the black hole

horizon equals the change of an energy, which is defined based on the asymptotic

metric. In the case at hand, this energy turns out to be exactly equal to δEgrav
B .

In a sense the First Law of entanglement thermodynamics is the converse of this

theorem. The applicability of the Iyer-Wald formalism in the this case relies on the

fact that the Rindler wedge of pure AdS is equivalent to a topological black hole

with a non-compact hyperbolic horizon [173].
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7 Introduction

Quantum entanglement is the physical phenomenon that appears when a composite

quantum system lies in a state such that no description of the state of its subsystems is

available. In the presence of quantum entanglement, measurements in the entangled

subsystems are correlated. The most well known example of an entangled system,

the so called EPR paradox [71], requires just two spinors; it was initially conceived

as contradictory to causality, and, thus, as an adequate theoretical experiment to

question the completeness of the quantum description of nature. However, later on,

the corresponding correlations were verified experimentally.

A quantum subsystem A entangled to its environment AC cannot be described by

a state; it is rather described by the reduced density matrix ρA, calculable by tracing

out the degrees of freedom of the subsystem AC from the overall density matrix ρ

ρA = TrAc ρ. (7.1)

In the absence of entanglement, there is a state description for the subsystem A, and,

thus, this reduced density matrix ρA corresponds to a pure state; on the contrary, in

the case entanglement is present, the reduced density matrix corresponds to a mixed

state. The above indicate that the entanglement is encoded in the spectrum of the

reduced density matrix ρA. It follows that a natural choice for a measure of entan-

glement is Shannon entropy applied to the spectrum of ρA, known as Entanglement

Entropy, SEE,

SEE := −Tr (ρA ln ρA) . (7.2)

Entanglement is a property that depends on the specific separation of the com-

posite system to the pair of complementary subsystems A and AC . Naturally, one

would postulate that a measure of entanglement obeys the property

SA = SAC , (7.3)

which can indeed be shown to hold, when the composite system lies in a pure state.

However, the entanglement entropy is a good measure for entanglement, or more

generally of correlations between the subsystems, only when the composite system

lies in a pure state. If this is not the case, the entanglement entropy will inherit

contributions that originate from the classical entropy of the composite system, and,

thus, they do not characterize the entanglement between the two subsystems. In

general, when the composite system lies in a mixed state,

SA 6= SAC . (7.4)

In field theory, the above argument implies that when the composite system lies in

a thermal state, the entanglement entropy will have contributions originating from
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the thermal entropy of the composite system, and, thus, will be proportional to the

volume of the subsystem.

Entanglement entropy has found a large variety of applications to many physics

sectors including quantum computing [215–222], condensed matter systems [45, 77,

78, 147, 223], as well as quantum gravity and the holographic duality [37, 38, 62, 63,

174,224–227].

In a seminal paper [42], Srednicki performed a numerical calculation of entangle-

ment entropy for a real free massless scalar field theory at its ground state, considering

as subsystem A the degrees of freedom inside a sphere of radius R. The surprising at

the time result shows that entanglement entropy is not proportional to the volume of

the sphere, but rather to its area. In retrospect, this property is somehow expected

from the physics of entanglement: As already mentioned, entanglement characterizes

the separation of the composite system to two subsystems and not the subsystems

themselves. Thus, the entanglement entropy cannot depend on the properties of any

of the two subsystems (such as the volume of subsystem A), but on those of their

only common feature, i.e. their boundary. This profound similarity to the black hole

entropy [50, 59, 60], discussed even before Srednicki’s calculation [81], became even

more intriguing after the development of the holographic dualities [20–22] and the

Ryu-Takayanagi conjecture [37, 38], which interrelates entanglement entropy in the

boundary conformal field theory to the geometry of the bulk. The latter may allow

the perspective of understanding the black hole entropy as entanglement entropy,

and the gravitational interactions as an entropic force associated with quantum en-

tanglement statistics [66, 67,228,229].

In this context, the further investigation of the similarities between gravitational

and quantum entanglement physics and the development of appropriate tools for their

study presents a certain interest. In this Part, we extend the original entanglement

entropy calculation presented in [42] to massive free scalar field theory and develop

a perturbative method for the calculation of entanglement entropy in such systems.

The majority of entanglement entropy calculations in field theory are based on

the replica trick [43–46, 183, 185, 230]. This technique is based on the calculation of

the entanglement Rényi entropies Sn for an arbitrary positive integer index n > 1,

see (4.16). Although the entanglement Rényi entropies Sn in principle contain the

whole information of the reduced density matrix spectrum, the process of deriving

the latter from the former is complicated. Relevant calculations are usually restricted

to the specification of the largest eigenvalue and its degeneracy. The same holds for

holographic calculations. The original prescription by Ryu and Takayanagi [37, 38]

provides only the entanglement entropy. In the case of spherical entangling surfaces,

the reduced density matrix can be considered thermal, allowing the holographic cal-

culation of the Rényi entropies as the black hole entropy of topological black holes
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with hyperbolic horizons [173, 231]. A more general framework for the holographic

calculation of Rényi entropies has been provided by Lewkowycz and Maldacena in [40]

towards a derivation of the Ryu-Takayanagi formula. An important feature of Sred-

nicki’s calculation is the fact that it is not limited to the calculation of entanglement

entropy; on the contrary the full spectrum of ρA is an intermediate result. As we

discussed above, quantum entanglement is encoded into the spectrum of ρA; the en-

tanglement entropy is just one piece of information. Therefore, although they are

old, the methods of [42] present a certain advantage.

Entanglement in field theory at finite temperature has been studied mainly in

the context of two-dimensional conformal field theory [45, 232–234] with the use

of the replica trick [43, 44]. Much fewer works focus on gapped systems [235] or to

higher dimensional theories [164–166]. In more recent years, entanglement at thermal

states has also been studied through the holographic duality. The issue has been

posted in the original works that established the Ryu-Takayanagi conjecture [37,38].

When thermal states are considered, the non-symmetry of the entanglement entropy

corresponds to the existence of more than one minimal surfaces, due to the presence

of the black hole, which are homologous to complementary boundary regions. This

study has been extended in several works (see e.g. [236]). Most of these focus on the

geometry of the BTZ black hole [186, 187, 237, 238], which is also relevant to two-

dimensional CFTs, as this is the only black hole geometry where minimal surfaces

can be expressed analytically. Entanglement in harmonic lattice systems at finite

temperature has been studied in [239]. However, there is not much attention to

the study of entanglement in field theory at finite temperature via the techniques

originally used in [42].

When the composite system lies in a mixed state, a better measure of the corre-

lation between the two subsystems is the mutual information,

I
(
A,AC

)
:= SA + SAC − SA∪AC , (7.5)

which has the symmetric property by construction. It follows that the mutual infor-

mation should characterize the separation of the composite system to two subsystems

and, thus, in field theory it should depend only on the properties of the entangling

surface, even at mixed, e.g. thermal, states. It has been shown that in lattice spin

systems the mutual information obeys an area law bound [240].

This Part of the dissertation is based on the publications [1,6,7]. Its structure is

as follows: in section 8, we review the derivation of entanglement entropy in systems

of coupled harmonic oscillators lying at their ground state and extend the calculation

in free scalar field theory including a mass term, closely following [42]. In section

9, we show that the inverse of the scalar field mass can be used as an expansion

parameter allowing a perturbative calculation of entanglement entropy and develop
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the basic formulae of this perturbation theory. In section 10, we perform the per-

turbative calculation for massive free scalar field theory in 1 + 1, 2 + 1 and 3 + 1

dimensions and show that the leading contribution to the entanglement entropy for

large entangling sphere radii obeys an area law; we specify the relevant coefficients

and the first subleading corrections and we compare with numerical calculations. In

section 11, we study the system of two harmonically coupled oscillators at finite tem-

perature. In section 12 we generalize to a coupled harmonic system with an arbitrary

number of degrees of freedom at a thermal state. In section 13 we develop the hop-

ping expansion for chains of coupled oscillators, i.e. systems where only neighbouring

oscillators are coupled. In section 14 we use the results of the previous sections, in

order to study the entanglement entropy and the mutual information in free scalar

field theory in 3+1 dimensions. In section 15 we discuss multipartite systems. In

section 16, we discuss our results. There are also appendices. A contains the details

of Srednicki’s regularization scheme. B contains the details of the perturbative calcu-

lation of entanglement entropy at second and third order. C contains the code used

for the numerical calculations of entanglement entropy. D contains the calculation

of the mutual information of classical harmonic oscillators. In E the entanglement

negativity of a system of oscillators is discussed. F and G present the high and

low temperature expansions for a system of coupled harmonic oscillators. In H the

hooping expansion in a chain of oscillators is analyzed. Finally, I contains the low

temperature expansion in a chain of oscillators.

8 Entanglement Entropy in Free Scalar QFT

8.1 Entanglement Entropy in Free Scalar Field Theory

In the approach of [42], the degrees of freedom of the scalar field theory are discretized

via the introduction of a lattice of spherical shells, and, thus, the introduction of a UV

cutoff. Furthermore, an IR cutoff is imposed, putting the system in a spherical box.

This inhomogeneous discretization may appear disadvantageous, as it breaks some

of the symmetries of the theory; although it preserves rotations, it breaks boosts

and translations. However, the consideration of the stationary entangling sphere,

which separates the degrees of freedom to two subsystems, has already broken these

symmetries. This approach reduces the problem of the calculation of entanglement

entropy in field theory to a similar quantum mechanics problem with finite degrees of

freedom. Since we are studying free scalar field theory, the latter quantum mechanical

system is simply a system of coupled oscillators with a quadratic Hamiltonian at its

ground state. More details on this discretization scheme are provided in A.
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3 + 1 Dimensions

Let us consider a free real scalar field theory in 3 + 1 dimensions. The Hamiltonian

equals

H =
1

2

∫
d3x

[
π2 (~x) +

∣∣∣~∇ϕ (~x)
∣∣∣2 + µ2ϕ2(~x)

]
. (8.1)

Decomposing the field to real spherical harmonics Y`m, we find that the corresponding

components ϕ`m (r) obey canonical commutation relations of the form

[ϕ`m (r) , π`′m′ (r
′)] = iδ (r − r′) δ``′δmm′ , (8.2)

where r = |~x| is the radial coordinate.

The only continuous variable left is the radial coordinate r. We regularize the

theory introducing a lattice of N spherical shells with radii ri = ia with i ∈ N and

1 ≤ i ≤ N . The radial distance between consequent spherical shells introduces a UV

cutoff 1/a, while the overall size of the lattice imposes an IR cutoff 1/(Na). The

introduction of the spherical lattice sets the number of degrees of freedom for each

pair (`,m) finite. The discretized Hamiltonian reads

H =
1

2a

∑
`,m

N∑
j=1

[
π2
`m,j +

(
j +

1

2

)2(
ϕ`m,j+1

j + 1
− ϕ`m,j

j

)2

+

(
` (`+ 1)

j2
+ µ2a2

)
ϕ2
`m,j

]
.

(8.3)

Different ` and m indices do not mix and furthermore the index m does not

appear explicitly in the Hamiltonian. It follows that the problem can be split to

infinite independent sectors, identified by the index `, each containing 2`+1 identical

subsectors. We consider an entangling sphere of radius R = (n+ 1/2) a. Then, the

entanglement entropy at the ground state is given by

SEE (N, n) =
∞∑
`=0

(2`+ 1)S` (N, n), (8.4)

where S` (N, n) is the entanglement entropy corresponding to the ground state of the

Hamiltonian

H` =
1

2a

N∑
j=1

[
π2
`,j +

(
j +

1

2

)2(
ϕ`,j+1

j + 1
− ϕ`,j

j

)2

+

(
` (`+ 1)

j2
+ µ2a2

)
ϕ2
`,j

]
. (8.5)

The quadratic Hamiltonian (8.5) describes N harmonically coupled oscillators, and,

thus, the problem of the calculation of S` (N, n) has been reduced to the class of

problems solved in section 5.2.1.

For large `, the Hamiltonian H` becomes almost diagonal. Therefore, for large

`, the degrees of freedom are almost decoupled, and, thus, the system (8.5) at its

ground state is almost disentangled. It can be shown that S` (N, n) decreases with `

fast enough so that the series (8.4) is converging [42,241].
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2 + 1 Dimensions

In a similar manner, we may study free scalar field theory in 2 + 1 dimensions. The

Hamiltonian reads

H =
1

2

∫
d2x

[
π2 (~x) +

∣∣∣~∇ϕ (~x)
∣∣∣2 + µ2ϕ2(~x)

]
. (8.6)

We expand the field to real circular harmonics and then we introduce a lattice of

circular shells to find the discretized Hamiltonian

H =
1

2a

∑
`

N∑
j=1

[
π2
`,j +

(
j +

1

2

)(
ϕ`,j+1√
j + 1

− ϕ`,j√
j

)2

+

(
`2

j2
+ µ2a2

)
ϕ2
`,j

]
. (8.7)

Different ` indices do not mix. Therefore, in a similar manner to the problem at

3 + 1 dimensions, the problem can be split to infinite independent sectors, identified

by the index `. The entanglement entropy at the ground state is given by

SEE (N, n) =
∞∑

`=−∞

S` (N, n), (8.8)

where S` (N, n) is the entanglement entropy corresponding to the ground state of the

Hamiltonian

H` =
1

2a

N∑
j=1

[
π2
`,j +

(
j +

1

2

)(
ϕ`,j+1√
j + 1

− ϕ`,j√
j

)2

+

(
`2

j2
+ µ2a2

)
ϕ2
`,j

]
. (8.9)

The calculation of the latter lies within the class of problems solved in section 5.2.1.

1 + 1 Dimensions

Finally, we consider a free real scalar field theory in 1 + 1 dimensions. The Hamilto-

nian reads

H =
1

2

∫
dx

[
π2 (x) +

∣∣∣∣ ∂∂xϕ (x)

∣∣∣∣2 + µ2ϕ2(x)

]
. (8.10)

We may directly apply the same discretization scheme to obtain

H =
1

2a

N∑
j=1

[
π2
`,j + (ϕ`,j+1 − ϕj)2 + µ2a2ϕ2

j

]
. (8.11)
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9 An Inverse Mass Expansion for Entanglement

Entropy

In section 5.2.1 we presented a method for the calculation of the entanglement entropy

of a system of coupled harmonic oscillators at the ground state. The ground state of a

system of coupled harmonic oscillators is a highly entangled state. The specification

of entanglement entropy at the ground state requires a non-trivial, non-perturbative

calculation. However, there is a small window allowing a perturbative approach. By

definition, the matrix B does not contain any of the diagonal elements of the matrix

Ω =
√
K. Therefore, the matrix β, and, thus, the eigenvalues of γ−1β, as well as

the entanglement entropy, can be perturbatively calculated, in the case the diagonal

elements of the matrix K are much larger than its non-diagonal elements. As the

non-diagonal elements of K describe the couplings between the harmonic oscillators,

in such an expansion, the zero-th order result is the entanglement entropy in a system

of decoupled oscillators at their ground state, i.e. vanishing entanglement entropy.

The entanglement entropy is a valuable measure of entanglement, however, it

does not contain the whole information. The latter is contained in the full spectrum

of the reduced density matrix ρA. An important advantage of the approach we follow

is that it allows the direct calculation of the latter through equation (5.20), as an

intermediate step towards the calculation of entanglement entropy.

The discretized Hamiltonians (8.5), (8.9) and (8.11) are describing a system of N

coupled harmonic oscillators that falls within the class of systems studied in section

5.2.1. We may thus proceed to calculate the entanglement entropy following the

scheme of this section.

9.1 An Inverse Mass Expansion

As an indicative example, in 3 + 1 dimensions, the K matrix describing the interac-

tions between the harmonic oscillators can be directly read from equation (8.5),

Kij =

((
i+ 1

2

i

)2

+

(
i− 1

2

i

)2

+
l (l + 1)

i2
+ µ2a2

)
δij

−
(
i+ 1

2

)2

i (i+ 1)
δi+1,j −

(
j + 1

2

)2

j (j + 1)
δi,j+1, (9.1)

where i, j = 1, 2, . . . , N . As we have commented in section 5.2.1, a perturbation

theory can be applied when the diagonal elements of the matrix K are much larger

than the non-diagonal ones. This criterion clearly is satisfied at the limit of a very

large mass µ. A similar approach is followed in [241] focusing in the behaviour of
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entanglemment entropy for large `. It has to be pointed out that the actual expansion

parameter is neither m nor `, but the diagonal elements of K themselves.

In all numbers of dimensions under study, the matrix K is of the form

Kij = Kiδij + (Liδi+1,j + Ljδi,j+1) . (9.2)

We define the quantities ki and li so that

Ki :=
k2
i

ε2
, (9.3)

Li := li (ki + ki+1) . (9.4)

The parameter ε is the expansion parameter of the perturbation theory that we are

about to develop, which is obviously of order 1/µ. The expansion in ε is also a

semiclassical expansion; recovering the fundamental constants in the dimensionless

expansion parameter ε, the latter assumes the form ~/ (µac). This is in line with

the fact that the zeroth order entanglement entropy in this perturbative approach

vanishes.

In order to calculate the desired entanglement entropy, we need to calculate the

square root Ω of the matrix K, then the matrices β, γ and finally the eigenvalues of

γ−1β, perturbatively in ε. There is one important detail that has to be taken into

account in these perturbative calculations. Since the lowest order elements of K are

the diagonal ones, this is also going to be the case for its square root Ω. However,

the matrix B, being an off-diagonal block of the matrix Ω, does not contain such

elements. The lowest order elements of B are the first subleading elements that

appear in Ω. As a result, preserving a certain order in perturbation theory requires

the calculation of the square root of K at one order higher than the desired order. In

the following, we will present the calculation at first non-vanishing order, therefore

we will keep two non-vanishing terms in the expansion of Ω.

The square root of the matrix K, with two non-vanishing terms equals

Ωij = kiδijε
−1 + li (δi+1,j + δi,j+1) ε+O

(
ε3
)
. (9.5)

The blocks A, B and C of the matrix Ω obviously equal

Aij = kiδijε
−1 + li (δi+1,j + δi,j+1) ε+O

(
ε3
)
, (9.6)

Bij = lnδi,nδj,1ε+O
(
ε3
)
, (9.7)

Cij = ki+nδijε
−1 + li+n (δi+1,j + δi,j+1) ε+O

(
ε3
)
. (9.8)

It is noteworthy that the above formulae contain only odd powers of ε. Furthermore,

the matrix B contains only order ε terms to this order, as it does not contain any
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diagonal elements of Ω. Had we desired to calculate the eigenvalues of the reduced

density matrix with two non-vanishing terms in the ε expansion, we should have

calculated Ω at ε5 order.

From now on, we need to keep only one non-vanishing term in our expressions.

The matrices A−1 and C−1 equal(
A−1

)
ij

=
1

ki
δijε+O

(
ε3
)
, (9.9)(

C−1
)
ij

=
1

ki+n
δijε+O

(
ε3
)
. (9.10)

The matrix γ−1 is identical to the matrix C−1 at this order. The matrix β has a

single non-vanishing element at this order, namely,

βij =
l2n

2kn
δi,1δj,1ε

3 +O
(
ε5
)
. (9.11)

Finally, (
γ−1β

)
ij

=
l2n

2knkn+1

δi,1δj,1ε
4 +O

(
ε6
)
. (9.12)

Obviously, the matrix γ−1β has only one non-vanishing eigenvalue at this order,

being equal to its sole non-vanishing element,

λ1 =
l2n

2knkn+1

ε4 +O
(
ε8
)
, (9.13)

λi = O
(
ε8
)
, i > 1. (9.14)

Thus, the entanglement entropy at first non-vanishing order equals

SEE` =
l2n

4knkn+1

(
1− ln

l2nε
4

4knkn+1

)
ε4 +O

(
ε8
)
. (9.15)

9.2 The Expansion at Higher Orders

Continuing the expansion at higher orders, several patterns appear in the form of

the expansions of the related matrices. More specifically, as long as the matrix Ω is

considered:

• Only odd powers of ε appear in the expansion of Ω.

• The leading term in any element in the k-diagonal is of order ε2k−1. Therefore,

the matrix Ω calculated with n non-vanishing terms in the perturbation theory

contains non-vanishing elements up to the (n− 1)-diagonal.
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• Any subleading term in the elements of the matrix Ω is four orders higher than

the previous one. Thus, an element in the k-diagonal is written as a series of

the form

Ωi,i+k = Ωi+k,i =
∞∑
n=0

ω
k(2k−1+4n)
i ε2k−1+4n, i = 1, . . . , N − k. (9.16)

We use the above notation with three indices for the coefficients of the expansion.

The subscript denotes the line number if the element lies on the top triangle of the

matrix or the column number if it lies in the bottom triangle, the superscript denotes

the number of the diagonal, whereas the superscript in parentheses is the order of

the term in the ε expansion. The matrices A−1 and C−1 follow the same pattern

with an overall increase by 2 to all orders. Namely,

(
A−1

)
i,i+k

=
(
A−1

)
i+k,i

=
∞∑
n=0

a
k(2k+1+4n)
i ε2k+1+4n, i = 1, . . . , n− k, (9.17)

(
C−1

)
i,i+k

=
(
C−1

)
i+k,i

=
∞∑
n=0

c
k(2k+1+4n)
i ε2k+1+4n, i = 1, . . . , N − n− k. (9.18)

The matrix γ is defined as γ = C − β. The expansion for γ−1β can be obtained

using the formula

γ−1β =
∞∑
n=1

(
C−1β

)n
. (9.19)

The form of the expansions of Ω, A−1 and C−1 imply that the expansion of the matrix

γ−1β, whose eigenvalues define the spectrum of the reduced density matrix, follows

a similar pattern. In this case, the leading order element is the (1, 1) element, which

is of order ε4. Every offset by a column or a row increases the order of the leading

term by 2. Again subleading terms in any element are four orders higher than the

previous one, (
γ−1β

)
ij

=
∞∑
n=0

β
(2i+2j+4n)
ij ε2i+2j+4n. (9.20)

A direct consequence of the above is the fact that the eigenvalues of γ−1β are naively

expected to have a given hierarchy. The largest eigenvalue is of order ε4, the second

largest is of order ε8 and so on.

The calculation at the next to the leading order is analytically presented in B.

It turns out that the second largest eigenvalue vanishes at this order, whereas the

largest eigenvalue receives corrections at order ε8. At third order the calculation

is straightforward but more messy. The result is presented in the appendix only

in the appropriate limit for the specification of the “area law” contribution to the

entanglement entropy that we will discuss in next section. At this order, the largest
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eigenvalue receives another correction at order ε12, while one more non-vanishing

eigenvalue emerges, with a leading contribution at the same order. As a general

rule, a new non-vanishing eigenvalue emerges every second order in the perturbation

theory. The corrections to the largest eigenvalue at a given order in the expansion

have a more important effect to the entanglement entropy than the emergence of

new eigenvalues at the same order.

10 Area and Entanglement in the Inverse Mass

Expansion

10.1 The Leading “Area Law” Term

In section 9 we managed to acquire an expansive formula for entanglement entropy. In

order to study the dependence of entanglement entropy on the size of the entangling

sphere, we need to expand our results for large entangling sphere radii. We assume

that the entangling sphere lies exactly in the middle between the n-th and (n+ 1)-th

site of the spherical lattice. We define

nR := n+
1

2
, (10.1)

so that R = nRa is the radius of the entangling sphere. In the following, we will

study the expansion of entanglement entropy for large nR.

3 + 1 Dimensions

In 3+1 dimensions, the entanglement entropy equals the sum of entanglement entropy

from all ` sectors, as shown in equation (8.4). The summation of this series cannot

be performed analytically. For this reason, we will use the Euler-Maclaurin formula

b∑
n=a

f (n) =

∫ b

a

dxf (x)+
f (a) + f (b)

2
+
∞∑
k=1

B2k

(2k)!

[
d2k−1f (x)

dx2k−1

∣∣∣∣
x=b

− d2k−1f (x)

dx2k−1

∣∣∣∣
x=a

]
,

(10.2)

to approximate the series by the integral

SEE =
∞∑
`=0

(2`+ 1)S` (N, n) '
∫ ∞

0

d` (2`+ 1)S` (N, n, ` (`+ 1)). (10.3)

The coefficients Bk are the Bernoulli numbers defined so that B1 = 1/2.

We would like to expand the above integral for large R. This cannot be done

directly, since nR appears in S` in the form of the fraction ` (`+ 1)/n2
R and ` be-

comes arbitrarily large within the integration range. This problem may be bypassed
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performing the change of variables ` (`+ 1)/n2
R = y to find

SEE ' n2
R

∫ ∞
0

dyS`
(
N, nR − 1/2, yn2

R

)
. (10.4)

Now we may expand the integrand for large nR. It is also simple to show that

the n2
R term of entanglement entropy receives contributions only from the integral

term of formula (10.2). Therefore, the large R behaviour of entanglement entropy is

completely determined by equation (10.4).

The matrix elements of K in 3 + 1 dimensions are given by

ki
ε

=

√
2 +

` (`+ 1) + 1/2

i2
+ µ2a2, (10.5)

li = −(i+ 1/2)2

i (i+ 1)

1

ki + ki+1

. (10.6)

The integral (10.4) can be performed explicitly. At third order in the inverse mass

expansion (B.28), we find

SEE =

(
3 + 2 ln [4 (µ2a2 + 2)]

16 (µ2a2 + 2)
+

167 + 492 ln [4 (µ2a2 + 2)]

4608(µ2a2 + 2)3

+
−11 + 2940 ln [4 (µ2a2 + 2)]

15360(µ2a2 + 2)5 +O
(
µ−14

))R2

a2
+O

(
R0
)
. (10.7)

The leading contribution to entanglement entropy for large entangling sphere radii is

proportional to the area of the entangling sphere. This is the celebrated “area law”

term calculated at third order in the inverse mass expansion. Using expansive tech-

niques, we managed to acquire an analytic expression for the coefficient connecting

the entangling sphere area to entanglement entropy. It is noteworthy to mention that

the expansions in the inverse mass and in the size of the entangling sphere are not

coinciding; the leading term in the latter expansion, i.e. the area law term, receives

corrections at all orders in the inverse mass expansion.

In order to verify the validity of our expansion, we compare the perturbative

results in the form of formula (10.7) to the numerical calculation of entanglement

entropy presented in [42], for various values of the mass parameter and N = 60. The

numerical calculation is performed with the use of Wolfram’s Mathematica; the code

is provided in C. It is shown in figure 3 that the formula (10.7) is more accurate

for large values of the mass parameter, as expected. Furthermore, the entanglement

entropy is a decreasing function of the scalar field mass [241].

The divergence of the numerical results from the expansive formula for entangling

sphere radii close to Na is an effect induced by the IR cutoff that has been imposed

since the theory has been defined in a finite size spherical box.
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Figure 3: Comparison of the numerical calculation of entanglement entropy for 3+1

field theory to the perturbative formulae for the area law at first, second and third

order in the inverse mass expansion. The vertical axes have the same scale for all

values of the mass parameter.

The numerical calculation requires the introduction of a cutoff in the values of

`. The convergence of the series (8.4) gets slower as the mass parameter increases.

Thus, the perturbative expansion has an additional virtue; it provides a result for

entanglement entropy in cases that the numerical calculation is more difficult.

The parameter of expansion in our approach is the ration between the off-diagonal

and diagonal elements of the couplings matrix K. This is not exactly the inverse of

the mass, but rather it is equal to

ε ≈ 1√
µ2a2 + 2

. (10.8)

It follows that the perturbative method can be applied even in the massless limit.

Of course in such a case, the perturbation series converges much more slowly, never-

theless, it turns out that it does converge to the numerical results, as shown in figure

3.

In 3 + 1 dimensions, the coefficient connecting R2/a2 to entanglement entropy

in massless scalar field theory has been calculated numerically in [42] and improved

in [242], found approximately equal to 0.295. Setting µ = 0 to the area law derived
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above, we find

SEE '
(

3 + 2 ln 8

32
+

167 + 492 ln 8

36864
− 11− 2940 ln 8

491520

)
R2

a2

' (0.224 + 0.032 + 0.012)
R2

a2
' 0.268

R2

a2
, (10.9)

which is a good approximation to the numerical result and can be further improved

continuing the perturbative expansion at higher orders.

2 + 1 Dimensions

In 2 + 1 dimensions, the entanglement entropy equals the sum of all ` sectors, as

shown by equation (8.8). With the use of Euler-Maclaurin formula (10.2), it may be

approximated by the integral

SEE =
∞∑

`=−∞

S`
(
N, n, `2

)
'
∫ ∞
−∞

d`S`
(
N, n, `2

)
. (10.10)

As in 3 + 1 dimensions, in order to find the asymptotic behaviour of this integral

for large entangling circles, we perform the change of variables ` = ynR,

SEE ' nR

∫ ∞
−∞

dyS`
(
N, nR − 1/2, n2

Ry
2
)
. (10.11)

Now we may expand the integrand for large nR. In 2 + 1 dimensions, the matrix

elements of K are given by

ki =

√
2 +

`2

i2
+ µ2a2, (10.12)

li = − i+ 1/2√
i (i+ 1)

1

ki + ki+1

. (10.13)

At third order in the inverse mass expansion, using formula (B.28) we obtain

SEE =

(
−1 + 2 ln [16 (µ2a2 + 2)]

32 (µ2a2 + 2)3/2
+
−3019 + 2460 ln [16 (µ2a2 + 2)]

24576 (µ2a2 + 2)7/2

+ 7
−6593 + 4410 ln [16 (µ2a2 + 2)]

131072 (µ2a2 + 2)11/2
+O

(
µ−15

))πR
a

+O
(
R−1

)
. (10.14)

Figure 4 compares the perturbative formula (10.14) to the numerical calculation of

entanglement entropy with N = 60 for various values of the mass parameter. As

expected, the perturbative results are more accurate for larger values of the mass
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parameter. In general the perturbative series converges more slowly than in 3 + 1

dimensions.

In the massless case, we yield

SEE '
(
−1 + 2 ln 32

64
√

2
+
−3019 + 2460 ln 32

196608
√

2
+ 7
−6593 + 4410 ln 32

4194304
√

2

)
πR

a

' (0.206 + 0.062 + 0.032)
R

a
' 0.300

R

a
.

(10.15)

As in 3 + 1 dimensions, the perturbation series converges to the numerical results

even in the massless case.

1 + 1 Dimensions

In 1 + 1 dimensions, the matrix elements of K are given by

ki =
√

2 + µ2a2, (10.16)

li = − 1

ki + ki+1

. (10.17)

At third order in the inverse mass expansion, we obtain

SEE =

(
1 + 2 ln [4(2 + µ2a2)]

16(2 + µ2a2)2 +
1 + 164 ln [4(2 + µ2a2)]

512(2 + µ2a2)4

+
−599 + 2940 ln [4(2 + µ2a2)]

3072(2 + µ2a2)6 +O
(
µ−16

))
n0
R +O

(
n−2
R

)
. (10.18)

In figure 5, the comparison of the perturbative formulae to the numerical calculation

of the entanglement entropy is depicted. The series converges more slowly than in

higher dimensions. Especially in the massless case, the perturbative formulae fail

completely to capture the logarithmic behaviour of entanglement entropy (figure 5

top-left). Technically, this happens due to the structure of the couplings matrix K.

In all cases this matrix is diagonally dominant, i.e. the sum of the absolute value of

all non-diagonal elements does not exceed the diagonal one, in all rows and columns.

As a result, the perturbative calculation of its square root and its inverse converges.

Only in 1 + 1 dimensions and only in the massless case, the matrix saturates the

diagonally dominant criterion. Not unexpectedly, the saturating case, lying between

convergence and divergence, leads to a logarithmic dependence on the cutoff scale.

However, this logarithmic dependence cannot be evident in a finite number of terms

of the perturbation series. We will return to this kind of behaviour in the section

10.2 on the subleading contributions to entanglement entropy.

The area law is the leading contribution to the entanglement entropy for large

entangling sphere radii in all number of dimensions. The reason for this fact can be
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Figure 4: Comparison of the numerical calculation of entanglement entropy for 2+1

field theoryto the perturbative area law formulae at first, second and third order in

the inverse mass expansion. The vertical axes have the same scale for all values of

the mass parameter.

attributed to the locality of the underlying field theory [82, 239, 243]. The locality

is depicted to the fact that the matrix K contains interaction elements only in the

subdiagonal and superdiagonal. As a result, no matter what is the size of the en-

tangling sphere (the value of n), there is only one element of K connecting a degree

of freedom of subsystem A to a degree of freedom of subsystem AC . This property

is inherited to the leading corrections in matrix B, and, thus, to the eigenvalues of

the reduced density matrix. Had the theory been non-local, the number of leading

contributions to entanglement entropy, would be a complicated function of the en-

tangling sphere radius in general, leading to large divergences from the area law. In

a more geometric phrasing, the area law emerges from locality, since the pairs of

strongly correlated degrees of freedom (i.e. neighbours) that have been separated by

the entangling surface, are proportional to its area.

10.2 Beyond the Area Law

The “area law” term of entanglement entropy is the leading contribution to the

entanglement entropy for large radii of the entangling sphere. Beyond that, there

are subleading terms, which can also be calculated in the inverse mass expansion
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Figure 5: Comparison of the numerical results for entanglement entropy for 1+1 field

theory to the first, second and third order inverse mass expansion. The vertical axes

do not have the same scale, entanglement entropy is a decreasing function of the

mass parameter, as in higher dimensions.

that we developed in section 9.

In 2 + 1 and 1 + 1 dimensions, the subleading terms vanish as a → 0. We will

not extend our analysis to these cases. In the case of 3 + 1 dimensions, the first

subleading term is a constant. There are two contributions to this term. The first

one originates from the integral term (10.4) and can be acquired by appropriate

expansion of the integrand. The second contribution comes from the discrete sum of

the Euler-Maclaurin formula (10.2). Taking into account that entanglement entropy

converges, and, thus, lim
`→∞

(2`+ 1)SEE` = 0, equation (10.2) reads

SEE =

∫ ∞
0

d` (2`+ 1)S` +
S0

2
−
∞∑
k=1

B2k

(2k)!

d2k−1 (2`+ 1)S`
d`2k−1

∣∣∣∣
`=0

. (10.19)

Since the parameter ` appears in S` only in the form of the fraction ` (`+ 1) /n2
R,

any action of the derivative operator on S` results in a term two orders smaller in

the nR expansion. This implies that apart from the S0/2 term, we have only one

more contribution at n0
R order, namely the k = 1 term, and specifically the part of

latter where the derivative acts on the factor 2`+ 1 and not on S`. Bearing in mind

that B2 = 1/6, the contribution to the constant term by the discrete part of the

Euler-Maclaurin formula is S0/3.
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Performing the expansion of the integrand of equation (10.4) using the S` acquired

at second order in the inverse mass expansion (B.28) and taking into account the

extra S0/3 contribution to the constant term, we find

SEE = S
(2)
EE

R2

a2
−

(
1

48 (2 + µ2a2)
+

1 + 2 ln (4 (2 + µ2a2))

96(2 + µ2a2)2

+
127− 90 ln (4 (2 + µ2a2))

9600(2 + µ2a2)3 +
1 + 164 ln (4 (2 + µ2a2))

3072(2 + µ2a2)4 +O
(
µ10
))

+O
(
R−2

)
.

(10.20)

In order to compare the constant subleading term found above to the numerical

calculation of entanglement entropy, we performed a linear fit to the outcome of the

numerical calculation of the form SEE = c2n
2
R+c0, for various values of the parameter

µ2a2. The perturbative formulae indeed approximate the numerical results well, as

shown in figure 6, apart from the massless limit.

µ2a2
S

(0)
EE

-0.04

-0.02

2 4 6 8

1st order
2nd order
numerical

Figure 6: The subleading constant term of entanglement entropy in scalar field theory

in 3 + 1 dimensions, as function of the mass parameter

At finite order in the inverse mass expansion, the first subleading term is a con-

stant, even in the massless case. The usual treatment of entanglement entropy in

3 + 1 dimensions in either conformal field theory or in theories with holographic du-

als through the Ryu-Takayanagi conjecture predicts an expansion for entanglement

entropy of the form

SEE = c2
R2

a2
+ c0 + c ln

a

R
+O

(
a−2
)
. (10.21)

So, how is the absence of the logarithmic term in our expansion explained? In the

case of massive scalar field theory, the answer is the existence of a fundamental scale

in the theory, that of the mass, which naturally cutoffs the logarithmic term. As far
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as the massless limit in 3+1 dimensions is concerned, the reason is more complicated

and related to the failure to capture the leading entanglement entropy contribution

in the same limit in 1+1 dimensions. In a similar manner our perturbation theory is

unable to capture the constant term in massless 2 + 1 field theory. From a technical

point of view, we understand this failure of our perturbation theory as follows:

The formulae used in our perturbation theory for the square root of matrix K, as

well as the formulae for the inverse of matrices A and C, present some “edge effects”

due to the fact that the matrices used in the inverse mass expansion are of finite size.

This can be seen in the form of the factors 1− δi1 and 1− δi,N−1 in formula (B.5) or

the factor 1− δin in formula (B.14). Such “edge effects” can be treated analytically

for arbitrary N and n in our expansion, as long as the order of the expansion is kept

lower than the dimension of the matrices. If this is not the case, these “edge effects”

will propagate through the matrix and eventually will get reflected at the opposite

ends of the matrices that generate them, resulting in spreading all over the matrix

elements. This qualitative behaviour implies the following:

• The reflections of these “edge effects” will lead to matrices Ω, A−1, etc, that

depend on all the elements of the matrix K. Therefore, at high orders in

the perturbation theory, such reflections introduce contributions to the en-

tanglement entropy that depend on the global characteristics of the entan-

gling surface. Such “universal” terms cannot be captured at any finite or-

der in our perturbation series. They are rather non-perturbative effects in

this expansion. The logarithmic term in even number of spacetime dimen-

sions [37,38,69,70,157,173,244], as well as the constant term in odd number of

dimensions [69, 70] are known to be exactly this kind of universal terms, and,

thus, our inability to capture them in the inverse mass expansion should not

be considered surprising. Of course such effects are visible in the numerical

calculations.

• The terms we capture in our perturbation series cannot sense the global prop-

erties of the region defined by the entangling surface. They have the property

to depend on the local characteristics of the entangling surface. In a more tech-

nical language, this is depicted to the fact that the perturbative expressions for

the elements of the matrices Ω, A−1 and C−1 depend on a finite number of the

elements of matrix K. This is the reason our method is appropriate to capture

the “area law”, as well as subleading terms that scale with smaller powers of

the entangling sphere radius. Therefore, our method is appropriate to study

the dependence of such terms on geometric characteristics of the entangling

surface, such as curvature [157], for more general entangling surfaces.
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• The introduction of the field mass exponentially dumps the propagation of the

“edge effects” through the matrix elements [245]. As a result, our expansive

calculations accurately converge to the numerical results in this case.

In a similar manner, when one considers massive field theories, either using the

replica trick [183,230,246,247] or holographically with the use of probe branes [184,

248–251], more universal terms arise. As an indicative example, in 3 + 1 dimensions

there are universal terms of the form R2µ2 ln (µa). Such terms are defined through

the dependence of the area law coefficient on the mass for small masses (see i.e. [246]).

Our approach is a large mass expansion, and consequently it cannot capture such

terms and any finite order. Additionally, even if we could sum the whole series in

order to capture such terms, their exact coefficient would also be disturbed by our

peculiar regularization, which does not deal with the radial and angular directions

on equal footing.

10.3 Dependence on the Regularization Scheme

Finally, we would like to comment on the dependence of the area law term, as well

as the subleading terms of entanglement entropy on the regularization scheme. In

our analysis, we have applied a peculiar, inhomogeneous regularization. Namely, we

have imposed a cutoff in the radial direction, but not in the angular directions. Thus,

the measurables that we have calculated, are those measured by a peculiar observer

who has access to radial excitations of the theory up to an energy scale 1/a and to

arbitrary high energy azimuthal excitations.

We could have applied a different more homogeneous regularization imposing an

azimuthal cutoff by constraining the summation series in ` to a maximum value equal

to `max. Such a prescription would make our approach more similar to a traditional

square lattice regularization. Notice however, that even in the square lattice case,

the imposed cutoff is a cutoff to each of the momentum components and not strictly

an energy cutoff that would allow direct comparison with formulae like (10.21).

As we discussed above, locality enforces the area law term to depend on the char-

acteristics of the underlying theory in the region of the entangling surface. Therefore,

a natural selection for an azimuthal cutoff `max, when considering a d-dimensional

entangling surface should have the following property: the total number of harmon-

ics with ` ≤ `max should equal the area of the entangling surface divided by ad. In

3 + 1 dimensions this argument implies that a natural selection for the azimuthal

cutoff is `max = 2
√
πR/a, whereas in 2 + 1 dimensions it implies `max = πR/a. In all

number of dimensions such a cutoff is of the form `max = cR/a, where c is a constant.

It is not difficult to repeat our analysis including this azimuthal cutoff. The only

extra necessary steps are the introduction of a finite upper bound in the definite
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integral (10.4) and similarly the inclusion of the terms calculated at x = `max in the

Euler-Maclaurin formula (10.2).

As an indicative example, in 3 + 1 dimensions, the area law term calculated at

second order in the inverse mass expansion assumes the form

SEE =

(
3 + 2 ln [4 (µ2a2 + 2)]

(µ2a2 + 2)
− 3 + 2 ln [4 (µ2a2 + 2 + c2)]

(µ2a2 + 2 + c2)

+
167 + 492 ln [4 (µ2a2 + 2)]

4608(µ2a2 + 2)3 − 167 + 492 ln [4 (µ2a2 + 2 + c2)]

4608(µ2a2 + 2 + c2)3 +O
(
µ−10

)) R2

a2
.

(10.22)

This equation implies that the coefficient of the area law term depends on the reg-

ularization scheme. The coefficients calculated in section 10.1, which correspond to

the selection c→∞, serve as an upper bound for the area law coefficient.

In order to investigate whether the inverse mass expansion is still a good ap-

proximation when an azimuthal cutoff of the form `max = cR/a is introduced, the

entanglement entropy in 3 + 1 dimensions for µa = 1 and various values of c is nu-

merically computed and compared to the perturbative formulae (10.22) in figure 7.

R2

SEE

Na/2 Na

1st order
2nd order
3rd order
numerical
c =
√
π

c = 2
√
π

c = 4
√
π

Figure 7: The entanglement entropy in scalar field theory in 3 + 1 dimensions with

an azimuthal cutoff of the form `max = cR/a for ma = 1 and various values of the

constant c

We may conclude the following:

• An azimuthal cutoff of the form `max = cR/a preserves the dominance of the

area law term in entanglement entropy. This is not the case when a more

general azimuthal cutoff is chosen (e.g. `max = c). The inverse mass expansion

is still a good approximation when such a regularization scheme is chosen.
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• The area law term, as well as the subleading terms, are strongly affected by the

selection of the dependence of the azimuthal cutoff `max on the radial cutoff

a. This is the expected behaviour comparing with calculations in CFT or

holographic calculations via the Ryu-Takayanagi conjecture. The only terms

that do not depend on the regularization scheme are the universal terms, which

cannot be captured by our perturbation theory.

• The introduction of an azimuthal cutoff would also set the perturbative cal-

culation of the entanglement entropy finite at higher number of dimensions,

where the respective integral term diverges as `max →∞.

• Srednicki’s calculation, which is equivalent to the specific choice c→∞, is an

upper bound for the area law coefficient. The fact that the integral terms in

more than 3 + 1 dimensions diverge, implies that such an upper bound exists

only in 2 + 1 and 3 + 1 dimensions.

11 A Pair of Coupled Harmonic Oscillators at Fi-

nite Temperature

In order to study entanglement entropy and mutual information in free scalar field

theory at finite temperature, we first study systems of coupled harmonic oscillators

with a finite number of degrees of freedom. The simplest such system, which is

the subject of this section, is a system of two coupled harmonic oscillators at finite

temperature. The analysis closely follows the original treatment presented in [42],

in the sense that it is performed in coordinate representation and presents several

technical similarities.

11.1 A Single Harmonic Oscillator at Finite Temperature

First, we would like to recall some formulae related to the problem of a single har-

monic oscillator at finite temperature in coordinate representation [252], which will

be useful in the following. Without loss of generality, we consider the mass of the

harmonic oscillator to be equal to one, i.e. the Hamiltonian of the system is

H =
1

2
p2 +

1

2
ω2x2. (11.1)

In coordinate representation, the energy eigenstates and the corresponding eigenval-

ues of the harmonic oscillator are

ψn (x) =
1√
2nn!

4

√
ω

π
e−

ωx2

2 Hn

(√
ωx
)
, En = ω

(
n+

1

2

)
, (11.2)
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where Hn is the Hermite polynomial of order n. The equation (11.2) trivially implies

that the density matrix describing a quantum harmonic oscillator at finite tempera-

ture T is given by

ρ (x, x′) =
∞∑
n=0

2 sinh
ω

2T
e−

ω
T (n+ 1

2) 1

2nn!

√
ω

π
e−

ω(x2+x′2)
2 Hn

(√
ωx
)
Hn

(√
ωx′
)
. (11.3)

As a consequence of Mehler’s formula,

∞∑
n=0

Hn (x)Hn (y)

n!

(w
2

)n
=

1√
1− w2

e
2xyw−(x2+y2)w2

1−w2 , (11.4)

the density matrix (11.3) can be written in a simpler form, namely

ρ (x, x′) =

√
a+ b

π
e−

a(x2+x′2)
2 e−bxx

′
, (11.5)

where we defined the quantities a and b as

a ≡ ω coth
ω

T
, b ≡ −ω csch

ω

T
. (11.6)

Finally, it is a matter of simple algebra to show that the thermal entropy of the

single quantum harmonic oscillator at temperature T equals

Sth = − ln
(
1− e−

ω
T

)
+
ω

T

1

e
ω
T − 1

. (11.7)

Expanding the above equation at high temperatures yields

Sth = ln
T

ω
+ 1 +

ω2

24

1

T 2
− ω4

960

1

T 4
+O

(
1

T 6

)
, (11.8)

whereas expanding it at low temperature yields

Sth '
(ω
T

+ 1
)
e−

ω
T + . . . (11.9)

11.2 Two Coupled Harmonic Oscillators

Now, let us consider a system of two coupled oscillators at finite temperature. The

oscillator described by coordinate x and canonical momentum p is constituting the

subsystem A, whereas the other oscillator, which obviously coincides with subsystem

AC , is described by coordinate xC and canonical momentum pC . All oscillator masses

are taken equal to one. The Hamiltonian of the system is

H =
1

2

[
p2 +

(
pC
)2

+ k0

(
x2 +

(
xC
)2
)

+ k1

(
xC − x

)2
]
. (11.10)
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When the Hamiltonian is written in terms of the canonical coordinates,

x± ≡
xC ± x√

2
, p± ≡

pC ± p√
2

, (11.11)

it assumes the form

H =
1

2

(
p2

+ + p2
− + ω+

2x2
+ + ω−

2x2
−
)
, (11.12)

where ω± are the eigenfrequencies of the normal modes, namely, ω+ =
√
k0 and

ω− =
√
k0 + 2k1.

The Hamiltonian (11.12) describes two decoupled oscillators, corresponding to the

two normal modes of the system. It follows that the density matrix that describes

the composite system at finite temperature can be trivially written as the tensor

product of two thermal density matrices of the form of (11.5), one for each of the

two normal modes,

ρ (x+, x+
′, x−, x−

′) = ρ (x+, x+
′)⊗ ρ (x−, x−

′)

=

√
(a+ + b+) (a− + b−)

π
e−

a+(x+
2+x+

′2)+a−(x−2+x−
′2)

2 e−b+x+x+
′
e−b−x−x−

′
, (11.13)

where

a± ≡ ω± coth
ω±
T
, b± ≡ −ω± csch

ω±
T
. (11.14)

In order to find the reduced density matrix of the subsystem A, this density matrix

has to be expressed in terms of the original coordinates x and xC prior to tracing

out the AC degrees of freedom,

ρ
(
x, x′, xC , xC

′
)

=

√
(a+ + b+) (a− + b−)

π

× e−
a+

(
(x+xC)

2
+(x′+xC ′)

2
)

+a−
(
(xC−x)

2
+(xC ′−x′)

2
)

4

× e−
b+(x+xC)(x′+xC ′)

2 e−
b−(xC−x)(xC ′−x′)

2 . (11.15)

We proceed to trace out the degree of freedom of the subsystem AC , integrating

out xC . After some simple algebra we find

ρ (x, x′) =

∫
dxCρ

(
x, x′, xC , xC

)
=

√
γ − β
π

e−
(x2+x′2)γ

2 exx
′β, (11.16)

where

γ − β = 2
(a+ + b+) (a− + b−)

a+ + a− + b+ + b−
, γ + β =

1

2
(a+ + a− − b+ − b−) . (11.17)
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Similarly to the ground state case analysis [42], one can show that the functions

fn (x) = Hn

(√
αx
)
e−

αx2

2 , (11.18)

where

α ≡
√
γ2 − β2 =

√
(a+ + b+) (a− + b−) (a+ + a− − b+ − b−)

a+ + a− + b+ + b−
, (11.19)

are the eigenfunctions of the reduced density matrix. The respective eigenvalues are

pn =

(
1− β

γ + α

)(
β

γ + α

)n
≡ (1− ξ) ξn, (11.20)

where

ξ ≡ β

γ + α
=

√
γ+β
γ−β − 1√
γ+β
γ−β + 1

. (11.21)

This can be expressed in terms of the physical quantities of the problem, i.e. the

eigenfrequancies of the normal modes and the temperature,

ξ =

1
2

(
1
ω+

coth ω+

2T
+ 1

ω−
coth ω−

2T

) 1
2 (
ω+ coth ω+

2T
+ ω− coth ω−

2T

) 1
2 − 1

1
2

(
1
ω+

coth ω+

2T
+ 1

ω−
coth ω−

2T

) 1
2 (
ω+ coth ω+

2T
+ ω− coth ω−

2T

) 1
2 + 1

. (11.22)

Then, it is straightforward to calculate the entanglement entropy, which equals

SA = − ln (1− ξ)− ξ

1− ξ
ln ξ. (11.23)

In the introduction, we argued that the entanglement entropy is not a very good

measure for the quantum entanglement when the overall system lies at a mixed state,

like the scenario under consideration. In general, it contains contributions originating

from the thermal entropy of the overall system. Indeed, the entanglement entropy

does not vanish at the limit k1 → 0 as one would expect from a good measure of

quantum entanglement. It rather tends to the thermal entropy of a single oscillator

with eigenfrequency
√
k0 at temperature T . In the case of the two coupled oscillators

that we study here, it holds that SAC = SA, due to the symmetry of the system.

Therefore, the mutual information is given by,

I
(
A : AC

)
= 2SA − Sth, (11.24)

where SA is given by (11.23) and Sth is obviously given by the sum of two versions

of equation (11.7), one for each normal mode.
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11.3 Similarity to a Single Harmonic Oscillator

One may observe that the reduced density matrix (11.16) is identical to the ther-

mal density matrix of a single harmonic oscillator (11.5), after some appropriate

identifications. There is no experiment that can be performed to the one of the

two coupled oscillators at finite temperature T that can distinguish it from a single

effective harmonic oscillator with eigenfrequency equal to

ωeff = α (11.25)

at an effective temperature equal to

Teff = − α

ln ξ
. (11.26)

The latter is always higher than the physical temperature T .

This identification obeys some obvious consistency checks. For example, at the

limit k1 → 0, the two oscillators become decoupled, each having eigenfrequency equal

to
√
k0. It follows that at this limit, the system is separable, i.e. ρ = ρ1 ⊗ ρ2, and,

thus, the reduced density matrix should be identical to ρ1, i.e. the thermal density

matrix of a single harmonic oscillator with eigenfrequency
√
k0 at temperature T .

Indeed, expanding ωeff and Teff around k1 = 0 yields

ωeff =
√
k0 +

1

2
√
k0

k1 −

(
3

8
√
k3

0

+
csch

√
k0

T

4k0T

)
k2

1 +O
(
k3

1

)
, (11.27)

Teff = T +
1

8
√
k5

0

(
−
√
k0T + T 2 sinh

√
k0

T
+ k0 tanh

√
k0

2T

)
k2

1 +O
(
k3

1

)
. (11.28)

Similarly, at the limit T → 0, one finds the following

ωeff = ω0
eff

[
1 +

ω− − ω+

ω− + ω+

(
e−

ω−
T − e−

ω+
T

)
+ . . .

]
, (11.29)

Teff = T 0
eff

[
1 +

ω− − ω+

ω− + ω+

(
e−

ω−
T − e−

ω+
T

)
+

4 (ω− + ω+)T 0
eff

(ω− − ω+)2

(
e−

ω−
T + e−

ω+
T

)
+ . . .

]
,

(11.30)

where

ω0
eff =

√
ω+ω−, T 0

eff = − ω0
eff

ln ξ0
, ξ0 =

(√
ω− −

√
ω+√

ω− +
√
ω+

)2

. (11.31)

Therefore, we recover correctly the ground state result [42]. At low temperatures

the corrections to the zero-temperature values of ωeff and Teff are exponentially sup-

pressed and tend to reduce the eigenfrequency of the effective oscillator, whereas
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they tend to increase its temperature. This expansion is an asymptotic expansion,

but it is not a usual Taylor series. This is due to the fact that the involved functions

are not analytic at T = 0. The results are expressed at first order in the exponentials

e−
ω±
T , but one has to be careful with this kind of expansion; for example, depending

on the values of ω±, the second order term in the exponential of ω+ may be a more

significant contribution that the first order term in the exponential of ω−.

In a similar manner at high temperatures we find

ωeff =

√
2ω2

+ω
2
−

ω2
+ + ω2

−

[
1 +

1

48

(
ω2

+ − ω2
−
)2

ω2
+ + ω2

−

1

T 2
+O

(
1

T 4

)]
, (11.32)

Teff = T

[
1 +

1

24

(
ω2

+ − ω2
−
)2

ω2
+ + ω2

−

1

T 2
+O

(
1

T 4

)]
. (11.33)

This implies that at high temperatures, the eigenfrequency of the effective oscillator

tends to a finite given value,

ω∞eff =

√
2ω2

+ω
2
−

ω2
+ + ω2

−
, (11.34)

whereas the effective temperature is dominated by the physical temperature of the

composite system.

A very interesting question that can be posted is whether the fact that the sub-

system A can be described by an effective thermal reduced density matrix can be

attributed to the eigenstate thermalization hypothesis [253]. Naturally, this should

not be expected, since the system under consideration is integrable.

When we consider either a thermal state or the ground state for the overall

system, its density matrix is time independent. This implies that the same holds for

the reduced density matrix of the considered subsystem. However, the subsystem is

an open system, and, thus, a time-independent state, has to be a state that describes

a system in equilibrium with its environment (not necessarily thermal).

This behaviour becomes clearer in the case of many harmonic oscillators that we

are about to study in next section. There, we will analyse a system of N coupled

oscillators, considering as subsystem A an arbitrary subset comprising of n oscillators.

Although we are not going to discuss on the similarity of the reduced density matrix

to the density matrix of a harmonic system of n oscillators at an appropriate state,

the entanglement entropy is identical to the sum of the thermal entropies of n effective

oscillators, each lying at a different temperature. This is consistent with the picture

of a harmonic system with n degrees of freedom, where each normal mode has been

heated to a different temperature. Since, the normal modes of a harmonic system

do not interact, this is an equilibrium, time-independent state, which nevertheless is
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not thermal. It follows that the reduced system is not thermalized; actually, it is as

far as possible from a thermalized state, as imposed by its integrability.

In the case of the two coupled oscillators, the considered subsystem contains

a single degree of freedom, and thus, such a state is a thermal one. Thus, the

fact that the reduced density matrix appears to be thermal is not a consequence of

thermalization, but rather a technical coincidence due to the specific selection of the

state of the overall system and the number of the degrees of freedom.

11.4 High and Low Temperature Expansions

At temperatures much higher than the system eigenfrequencies, the entanglement

entropy and mutual information have asymptotic expansions of the form

SA =
1

2
ln

(k0 + k1)T 2

k0 (k0 + 2k1)
+ 1 +

k0 + k1

24T 2

+
3k4

0 + 12k3
0k1 + 20k2

0k
2
1 + 16k0k

3
1 + 9k4

1

2880(k0 + k1)2T 4
+O

(
1

T 6

)
(11.35)

and

I
(
A : AC

)
=

1

2
ln

(k0 + k1)2

k0 (k0 + 2k1)
+
k2

1 (k0 − k1) (k0 + 3k1)

1440(k0 + k1)2T 4
+O

(
1

T 6

)
, (11.36)

respectively. Notice that the coefficients of the high temperature expansion of the

mutual information do vanish when the oscillators are decoupled, i.e. when k1 → 0,

as expected. Furthermore, the coefficient of the 1/T 2 term in the mutual information

vanishes, which is a more general feature, as we will show in next section.

Finally, it is evident that the mutual information does not vanish at infinite

temperature, but rather it tends to the value

I∞ =
1

2
ln

(k0 + k1)2

k0 (k0 + 2k1)
= 2 ln

ω0
eff

ω∞eff

. (11.37)

It is well known that in qubit systems, the mutual information vanishes at infinite

temperature. It is natural to wonder what is the underlying reason for this difference

between qubits and oscillators. The answer to this seeming inconsistency is related

to the dimensionality of the Hilbert space of our problem. In any qubit system, the

related Hilbert spaces are finite dimensional. Trivially, at the infinite temperature

limit, the density matrix of the composite system tends to

lim
T→∞

ρ =
1

dimHA∪AC
IdimH

A∪AC
. (11.38)
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This is a separable density matrix, implying trivially that

lim
T→∞

ρA =
1

dimHA

IdimHA , lim
T→∞

ρAC =
1

dimHAC
IdimH

AC
. (11.39)

It follows that the entanglement entropies tend to

lim
T→∞

SA = ln dimHA, lim
T→∞

SAC = ln dimHAC , (11.40)

whereas the thermal entropy tends to

lim
T→∞

SA∪AC = ln dimHA∪AC . (11.41)

The above imply that the mutual information at infinite temperature vanishes,

lim
T→∞

I
(
A : AC

)
= 0. (11.42)

However, in our case the corresponding Hilbert spaces are infinite dimensional and

the above arguments cannot be applied equally well. Both entanglement entropies SA
and SAC diverge at infinite temperature as lnT . This divergence is cancelled in the

mutual information, via the same mechanism that enforces the mutual information

to vanish in qubit systems; however, there is a finite remnant.

In general, the mutual information measures both classical and quantum correla-

tions. So, a natural question concerns the origin of this mutual information remnant

at infinite temperature. The mutual information I∞ coincides with the mutual infor-

mation that one calculates via a classical analysis, as shown in the Appendix D (see

also [239]). Therefore, this infinite temperature remnant should be attributed solely

to classical correlations. As intuitively expected, at infinite temperature the classical

fluctuations completely dominate and yield the quantum fluctuations irrelevant.

Discerning the classical and quantum contributions to the mutual information

requires the introduction of other entanglement measures. A widely used one is the

quantum discord Q [254–256]. In this approach, the mutual information is written

as

I
(
A : AC

)
= C +Q (11.43)

where C is the difference between the entropy of the subsystem A, SA to the condi-

tional entropy S
(
A|AC

)
, maximized over all possible measurement bases of AC . This

is a natural definition since C at the classical limit tends to the mutual information.

The calculation of the quantum discord is a highly complicated task (it is actu-

ally an NP-complete problem), due to the problem of the specification of the basis

that maximizes C. Typically, these measures are applied to qubit systems, which

do not have a classical equivalent system. Unlike these systems, in our case, the
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classical equivalent is well-defined and the equivalent classical thermal state is also

well-defined. As we commented above, the mutual information of the classical system

does not depend on the temperature. Therefore, a natural definition for the classical

and quantum parts of the mutual information for the coupled harmonic oscillators is

C = I∞, Q = I − I∞. (11.44)

The above are directly extendable to systems of an arbitrary number of coupled har-

monic oscillators and free field theory, which we are going to study in next sections.

Attributing the infinite temperature remnant of the mutual information to clas-

sical correlations solely is also in line to the fact that another measure of quantum

entanglement, the entanglement negativity, also vanishes at infinite temperature.

Actually, the negativity vanishes above a finite critical temperature, as shown in

Appendix E, a phenomenon widely known as sudden death of entanglement. How-

ever, this does not necessarily imply that there is really such a finite temperature

phase transition in the system of coupled oscillators. The absence of negativity is

not a proof of lack of entanglement in infinite dimensional Hilbert spaces, as in finite

dimensional ones [130,132]. This issue requires further investigation.

At low temperatures, the entanglement entropy tends to the zero temperature

result, plus exponentially suppressed corrections

SA = S0
A +

ω− + ω+

4T 0
eff

(
e−

ω−
T + e−

ω+
T

)
+ . . . . (11.45)

Similarly, the mutual information is equal to

I
(
A : AC

)
= 2S0

A +

(
ω− + ω+

2T 0
eff

− ω−
T
− 1

)
e−

ω−
T

+

(
ω− + ω+

2T 0
eff

− ω+

T
− 1

)
e−

ω+
T + . . . . (11.46)

As shown in figure 8, where the mutual information is plotted as a function

of the temperature, the mutual information may be a monotonous function of the

temperature or not. This depends on the relevant magnitude of the couplings k0

and k1, which determines the sign of the coefficient of the 1/T 4 term in the high

temperature expansion of the mutual information.

In view of the discussion above, this dependence of the mutual information on the

temperature is the equivalent to the quantum “freezing” of the degrees of freedom

in the context of entanglement.
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k1 < k0 k1 > k0
I
(
A : AC

)
I
(
A : AC

)

T T

2S0
A

2S0
A

I∞
I∞

√
k0

√
k0

Figure 8: The mutual information as function of the temperature. The continuous

blue line is the analytic result as given by the equation (11.24). The dashed lines

are the high and low temperature expansions of the mutual information, given by

equations (11.36) and (11.46), respectively. The dotted lines are the asymptotic

values for T → 0 and T →∞.

12 System of Harmonic Oscillators at Finite Tem-

perature

12.1 Entanglement Entropy and Mutual Information

Building on the results of section 11, we proceed to study a system of N coupled

harmonic oscillators. In this analysis, the subsystem AC coincides with any subset

of n oscillators. Without loss of generality, all oscillators are considered having unit

mass. The Hamiltonian is given by

H =
1

2

N∑
i=1

pi
2 +

1

2

N∑
i,j=1

xiKijxj. (12.1)

The matrix K is symmetric and all its eigenvalues are positive, since the above Hamil-

tonian should describe an oscillatory system around a stable equilibrium. Writing

down the Hamiltonian in terms of the normal coordinates yi, which are related to

the initial coordinates xi via an orthogonal transformation O, yields

H =
1

2

N∑
i=1

qi
2 +

1

2

N∑
i=1

ωi
2yi

2, (12.2)

where ωi are the frequencies of the normal modes. In other words, the orthogonal

transformation O diagonalizes the matrix K, or

K = OTKDO, (12.3)
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where (KD)ij = ω2
i δij.

We define the matrices

a =
√
K coth

√
K

T
, b = −

√
K csch

√
K

T
. (12.4)

These matrices are related to the eigenfrequencies of the system as

a = OTaDO, b = OT bDO, (12.5)

where

(aD)ij = ωi coth
ωi
T
δij ≡ aiδij, (bD)ij = −ωi csch

ωi
T
δij ≡ biδij. (12.6)

Since the normal modes are decoupled, the density matrix of the overall system

can be written as the tensor product of the thermal density matrices corresponding

to each of the normal modes,

ρ (y,y′) =
N⊗
i=1

ρ (yi, y1
′)

=
N∏
i=1

√
ai + bi
π

e−
ai
2 (y2

i+yi
′2)−biyiyi′

=

√
det (aD + bD)

πN
e−

yT aDy+y′T aDy′
2 e−y

T bDy′ .

(12.7)

We express the density matrix in terms of the original x coordinates, using the

orthogonal transformation O,

ρ (x,x′) =

√
det (a+ b)

πN
e−

xT ax+x′T ax′
2 e−x

T bx′ . (12.8)

In the following, we use the block form notation

x =

(
xC

x

)
, where xC =

 x1

...

xn

 , x =

 xn+1

...

xN

 . (12.9)

We will also write any symmetric matrix M in block form, using the notation

M =

(
MA MB

MT
B MC

)
, (12.10)
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where MA is an n×n matrix, MC is an (N − n)×(N − n) matrix and finally MB is an

n× (N − n) matrix. The indices A, B and C will always indicate the corresponding

blocks of such matrices. Then, the density matrix ρ (x,x′) can be expressed as,

ρ (x,x′) =

√
det (a+ b)

πN
e−

xC
T
aAx

C+2xC
T
aBx+xT aCx+xC ′T aAx

C ′+2xC ′T aBx
′+x′T aCx

′
2

× e−(xCT bAxC ′+xCT bBx′+xC ′T bBx+xT bCx
′). (12.11)

We proceed to trace out the first n degrees of freedom to find the reduced density

matrix for the remaining N − n ones. Simple algebra with Gaussian integrals yields

ρ (x, x′) =

∫
dxCρ

({
x, xC

}
,
{
x′, xC

})
=

√
det (a+ b)

πN

∫ ( n∏
i=1

dxi

)
e−x

CT (aA+bA)xC+xC
T

(aB+bB)(x+x′)e−
xT aCx+x′T aCx

′+2xT bCx
′

2

=

√
det (γ − β)

πN−n
e−

xT γx+x′T γx′
2 ex

T βx′ ,

(12.12)

where

γ = aC −
1

2

(
aTB + bTB

)
(aA + bA)−1 (aB + bB) , (12.13)

β = −bC +
1

2

(
aTB + bTB

)
(aA + bA)−1 (aB + bB) . (12.14)

Similarly to the ground state case [42], one may find the spectrum of the reduced

density matrix, via the explicit construction of its eigenfunctions. It reads

pnn+1,...,nN =
N∏

i=n+1

(1− ξi) ξnii , ni ∈ Z, (12.15)

where the quantities ξi are given by

ξi =
βDi

1 +
√

1− β2
Di

(12.16)

and βDi are the eigenvalues of the matrix γ−1β. It follows that the entanglement

entropy is given by

S =
N∑

j=n+1

(
− ln (1− ξj)−

ξj
1− ξj

ln ξj

)
. (12.17)
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Notice that this formula is identical to the formula that would provide the thermal

entropy of n independent oscillators, each with eigenfrequency
√

1− β2
Di and at

temperature −
√

1− β2
Di/ ln ξi.

As a consistency check, let us consider the special case where the two subsystems

are decoupled, i.e. KB = 0. It holds that

a =

( √
KA coth

√
KA
T

0

0
√
KC coth

√
KC
T

)
, (12.18)

b = −

( √
KA csch

√
KA
T

0

0
√
KC csch

√
KC
T

)
. (12.19)

In this case, it is straightforward that

γ = aC =
√
KC coth

√
KC

T
, (12.20)

β = −bC =
√
KCcsch

√
KC

T
, (12.21)

γ−1β = sech

√
KC

T
. (12.22)

Therefore the eigenvalues βDi of the matrix γ−1β can be expressed in terms of the

eigenvalues of the matrix KC , i.e. the eigenfrequencies ωi of the decoupled subsystem

A. Notice that the eigenfrequencies, as well as the thermal entropy of the subsys-

tem A are well defined in this limit, since the two subsystems are decoupled. The

eigenvalues βDi read

βDi = sech
ωi
T
. (12.23)

It follows that

ξi =
sechωi

T

1 +
√

1− sech2 ωi
T

= e−
ωi
T . (12.24)

Comparing equations (11.7) and (12.17), we conclude that when KB = 0, the entan-

glement entropy is simply equal to the thermal entropy of the subsystem A. This is

expected, since at this limit, the composite system density matrix is separable. This

also implies that the mutual information vanishes at this limit.

12.2 High and Low Temperature Expansions

A high temperature expansion of the above result can be performed. The details are

included in the Appendix F. The high temperature expansions of the entanglement
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entropy and the mutual information are

SA = −1

2
ln det

KC −KT
B(KA)−1KB

T 2
+N − n+

1

24T 2
TrKC

− 1

2880T 4

{
3Tr
(
K2
)
C

+ 4Tr
[(
KT
B(KA)−1KB

)2
]
− Tr

(
KT
BKB

)}
+O

(
1

T 6

)
(12.25)

and

I
(
A : AC

)
= −1

2
ln det

[
I − (KA)−1KB(KC)−1KT

B

]
+

0

T 2

− 1

720T 4

{
Tr
[(
KT
B(KA)−1KB

)2
]

+ Tr
[(
KB(KC)−1KT

B

)2
]
− 1

2
Tr
(
KT
BKB

)}
+O

(
1

T 6

)
, (12.26)

respectively. Interestingly, the coefficient of 1/T 2 in the high temperature expansion

of the mutual information vanishes for any system. It is trivial to show that in the

case of the two oscillators, where the matrices of the above formula are simply num-

bers, namely, KA = KC = k0 + k1 and KB = −k1, the above formulae reproduce the

expansions (11.35) and (11.36). Furthermore, in the case where the two subsystems

are decoupled, i.e. the matrix KB vanishes, the above formula implies that the first

terms in the expansion of the mutual information are vanishing, as expected.

At low temperatures, the situation is a little less transparent. As in the case of

the two oscillators, the involved functions are not analytical at T = 0. Nevertheless,

we may obtain an asymptotic expansion, approximating the hyperbolic functions

with exponentials. It turns out that the matrix γ−1β, whose eigenvalues determine

the entanglement entropy is given in this expansion by(
γ−1β

)
=
(
γ−1β

)(0)
+
(

1−
(
γ−1β

)(0)
)(

Ω̃C − Ω̃T
BΩ−1

A ΩB

)(
1 +

(
γ−1β

)(0)
)

+
(
γ−1
)(0)
(

ΩΩ̃
)
C

(
1−

(
γ−1β

)(0)
)

+ . . . , (12.27)

where (γ−1β)
(0)

is the matrix (γ−1β) at zero temperature and

Ω̃ = Exp (−Ω/T ) , Ω =
√
K. (12.28)

The details of this calculation are included in the Appendix G. It is not possible to

obtain a generic expression for the low temperature expansion of the entanglement

entropy or the mutual information in this limit. However, the equation (12.27)

implies that at low temperatures the corrections to the zero temperature result are

exponentially suppressed as exp (−ωi/T ), where ωi are the eigenfrequencies of the

overall system. In the case of the two oscillators, it can be shown that the above

formula correctly reproduces the results (11.45) and (11.46).
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13 Chains of Oscillators

In this section, we consider systems of coupled oscillators, with the specific property

that only adjacent degrees of freedom are coupled. In other words, we consider a

couplings matrix K of the form

Kij = kiδij + (liδi,j+1 + ljδi+1,j). (13.1)

In the following, we will refer to such systems as “chains of oscillators”. Apart from

their own interest, this class of harmonic systems will be essential in the study of the

free scalar quantum field theory in next section.

13.1 A Hopping Expansion

Assuming that the diagonal elements of the matrix K are much larger than the off-

diagonal ones, one may follow the approach of a hopping expansion, in the spirit of

9.1, in order to calculate the entanglement entropy and the mutual information for

this class of systems perturbatively. We define

Kij ≡
1

ε
K

(0)
ij +K

(1)
ij , (13.2)

where

K
(0)
ij = εkiδij, K

(1)
ij = liδi,j+1 + ljδi+1,j (13.3)

and then, we perform an expansion in ε (or equivalently in l/k).

In the following, we adopt a particular notation for the elements of all the in-

volved matrices. The subscript denotes the line of the element, when it lies on top

of the main diagonal, whereas it denotes its column, when it lies below the main

diagonal. The superscript denotes the diagonal (i.e. the superscript 0 implies that

the element lies in the main diagonal, the superscript 1 implies that it lies in the

first superdiagonal, the superscript −1 implies that it lies in the first subdiagonal

and so on). In other words Mi,j ≡M j−i
min(i,j). Obviously for symmetric matrices M it

holds that M j
i = M−j

i and we will not post the results for both. Finally, the second

superscript, which will appear into parentheses, denotes the order of the term in the

ε expansion.

Furthermore, for simplicity we define the functions

f1 (x) :=
√
x coth

√
x, (13.4)

f2 (x) := −
√
x csch

√
x, (13.5)

f3 (x) := f1 (x) + f2 (x) =
√
x tanh

(√
x/2
)
, (13.6)

f4 (x) := −f2 (x) /f1 (x) = sech
√
x, (13.7)
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which will appear throughout the calculations of this section.

Expanding the matrix γ−1β in ε,

γ−1β =
(
γ−1β

)(0)
+ ε
(
γ−1β

)(1)
+ ε2

(
γ−1β

)(2)
+O

(
ε3
)
, (13.8)

one can show that the zeroth and first order terms are given by(
γ−1β

)0(0)

i
= f4

(
kn+i

T 2

)
(13.9)

and (
γ−1β

)±1(1)

i
=

ln+i

kn+i − kn+i+1

(
f4

(
kn+i

T 2

)
− f4

(
kn+i+1

T 2

))
, (13.10)

whereas all other matrix elements are vanishing. The second order result is given by

a little more complicated expressions. We provide here only its diagonal part, which

is crucial for the following

(
γ−1β

)0(2)

i
=

l2n+i−1

kn+i−1 − kn+i

f4

(
kn+i−1

T 2

)
− f4

(
kn+i

T 2

)
kn+i−1 − kn+i

+
1

2T 2

f4

(
kn+i

T 2

)
f1

(
kn+i

T 2

)


− (1− δi,N−n)
l2n+i

kn+i − kn+i+1

f4

(
kn+i

T 2

)
− f4

(
kn+i+1

T 2

)
kn+i − kn+i+1

+
1

2T 2

f4

(
kn+i

T 2

)
f1

(
kn+i

T 2

)


+ δi1
l2n

(kn − kn+1)2

f1

(
kn+1

T 2

)
− f2

(
kn+1

T 2

)
2f 2

1

(
kn+1

T 2

)
(
f3

(
kn
T 2

)
− f3

(
kn+1

T 2

))2

f3

(
kn
T 2

)
+
f2

(
kn+1

T 2

)
f1

(
kn+1

T 2

)
(
f1

(
kn
T 2

)
− f1

(
kn+1

T 2

))2

f1

(
kn
T 2

)
f1

(
kn+1

T 2

) −

(
f1

(
kn
T 2

)
− f1

(
kn+1

T 2

))(
f2

(
kn
T 2

)
− f2

(
kn+1

T 2

))
f1

(
kn
T 2

)
f1

(
kn+1

T 2

)
 .

(13.11)

There is a special contribution in the very first element, which originates from the(
aTB + bTB

)
(aA + bA)−1 (aB + bB) term of the definitions of the γ and β matrices

(12.13) and (12.14). This is going to play an important role in what follows. More

details are provided in the Appendix H.1.

The eigenvalues of the matrix γ−1β have to be perturbatively calculated in the

ε expansion. The problem is more difficult than the zero temperature problem of

section 9.1; In that case, the elements of the matrix γ−1β obey an hierarchy in both

its directions, i.e. the leading contribution to the element (γ−1β)ij is of order i + j.

This hierarchy is inherited to the eigenvalues, setting their perturbative calculation

a simple task. However, in the case of finite temperature, the thermal contributions
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have changed this structure; The leading contribution to the element (γ−1β)ij is of

order |i− j|. It follows that a more systematic approach is required.

In order to obtain the expressions (13.9), (13.10) and (13.11), we only needed

to demand that the diagonal elements of the matrix K are larger than the non-

diagonal ones. However, this does not suffice for the perturbative specification of the

eigenvalues of the matrix γ−1β. In order to clarify this, we post a simple, indicative

example: Assume the Hamiltonian

H =

(
h1 g

g h2

)
, (13.12)

where the diagonal elements are much larger than the off-diagonal ones. In order

to calculate its eigenvalues perturbatively, naively one would consider the diagonal

part of this Hamiltonian as an exactly solvable unperturbed Hamiltonian and the

off-diagonal elements as a perturbation. However, this is not necessarily a good

approach. This is evident in this two by two example, since the problem is simple

enough to find its answer analytically,

λ =
h1 + h2

2
±

√(
h1 − h2

2

)2

+ g2. (13.13)

Following this perturbative approach is equivalent to Taylor expanding the above

eigenvalues with respect to the parameter g. However, this expansion does not con-

verge whenever g > h1−h2

2
. In this case, one should perform a Taylor expansion in

h1−h2, which implies that another setup for the perturbative calculation of the eigen-

values should have been considered. The unperturbed Hamiltonian should be con-

sidered proportional to the identity matrix. Then, there are two perturbations: one

that consists of the non-diagonal part of the Hamiltonian and a manifestly smaller

one, which is diagonal and proportional to the difference of the two diagonal ele-

ments. Now the unperturbed problem is degenerate and the basic eigenvectors are

determined by the large perturbation.

Thus, the appropriate structure of the perturbation theory depends on the ratio

of the diagonal elements to the difference of the diagonal ones. The assumption we

have made for the matrix K does not determine this ratio. It follows that there

are two distinct approaches in determining the eigenvalues of γ−1β, which we will

call “non-degenerate” and “degenerate” perturbation theory. They are presented in

appendices H.2 and H.3, respectively.

When the diagonal elements have differences of the same order of magnitude as
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themselves, the non-degenerate perturbation theory applies and it yields

βDi = β
(0)
Di + ε× 0 + ε2β

(2)
Di = f4

(
kn+i

T 2

)

+
1

2T 2

f4

(
kn+1

T 2

)
f1

(
kn+1

T 2

) ( l2n+i−1

kn+i−1 − kn+i

−
l2n+i

kn+i − kn+i−1

(1− δi,N−n)

)

+δi1
l2n

(kn − kn+1)2

1

f1

(
kn+1

T 2

)
f1

(
kn
T 2

)(
f4

(
kn
T 2

)
− f4

(
kn+1

T 2

))

+

(
1 + f4

(
kn+1

T 2

)) (f3

(
kn
T 2

)
− f3

(
kn+1

T 2

))2

2f3

(
kn
T 2

)
+O

(
l4
)
. (13.14)

The unique second order contribution to (γ−1β)11 has affected a single eigenvalue at

this order. This is similar to the zero temperature case; however, the other eigenval-

ues do not vanish. The formulae (12.16) and (12.17) imply that the contribution of

a single eigenvalue of the matrix γ−1β to the entanglement entropy, is equal to

Si = S
(
ξ
(
β

(0)
Di

))
+

log ξ
(
β

(0)
Di

)
2
(
β

(0)
Di − 1

)√
1−

(
β

(0)
Di

)2
β

(2)
Di ε

2 +O
(
ε3
)
, (13.15)

and, thus,

SA =
N−n∑
i=1

√
kn+i

T

e−
√
kn+i
T

1− e−
√
kn+i
T

− ln

(
1− e−

√
kn+i
T

)

+
1

4T 2

N−n−1∑
i=1

l2n+i

kn+i − kn+i+1

 f4

(
kn+i+1

T 2

)
1− f4

(
kn+i+1

T 2

) − f4

(
kn+i

T 2

)
1− f4

(
kn+i

T 2

)


+
1

2

l2n
kn − kn+1

1

1− f4

(
kn+1

T 2

){ 1

2T 2
f4

(
kn+1

T 2

)

+
1

kn − kn+1

[
1

2

(
1 + f4

(
kn+1

T 2

))(
f3

(
kn
T 2

)
− f3

(
kn+1

T 2

))2

/f3

(
kn
T 2

)

+f1

(
kn
T 2

)(
f4

(
kn
T 2

)
− f4

(
kn+1

T 2

))]}
+O

(
l3
)
. (13.16)
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The first two lines of the the above expression contain the contributions from the

generic eigenvalues. The rest originates from the special eigenvalue βD1. The entan-

glement entropy SAC has a similar structure.

The contributions to the entanglement entropy from all the generic eigenvalues

are identical to those of the thermal entropy, and, thus, at this order in l/k, the

mutual information receives contributions only from the two special eigenvalues, one

from each subsystem. It is equal to

I =
l2n

4T 2 (kn − kn+1)

 1

f3

(
kn+1

T 2

) − 1

f3

(
kn
T 2

)
+O

(
l3
)
. (13.17)

Expanding for high temperatures the above result yields

I =
l2n

2knkn+1

+
l2n

1440T 4
+O

(
1

T 6

)
, (13.18)

which coincides with the l/k expansion of the high temperature formula for the

generic oscillatory system (12.26).

In the case the differences of the diagonal elements are smaller than the non-

diagonal ones, one should apply degenerate perturbation theory. We will focus on

a subclass of this kind of problems that emerges from the discretization of 1 + 1

dimensional field theory, namely the case where the matrix K is of the form

ki = k, li = l. (13.19)

It is a matter of algebra (see Appendix H.3) to show that the matrix γ−1β can

be perturbatively calculated as(
γ−1β

)0(0)

i
= f4

(
k

T 2

)
, (13.20)

(
γ−1β

)1(1)

i
=

l

T 2
f4
′
(
k

T 2

)
, (13.21)

(
γ−1β

)2(2)

i
=

l2

2T 4
f4
′′
(
k

T 2

)
, (13.22)

(
γ−1β

)0(2)

i
=

l2

2T 4

(
f4
′′
(
k

T 2

)
(2− δi,1 − δi,N−n) + β1δi,1

)
, (13.23)

where

β1 =
1(

f1

(
k
T 2

))2

[(
f1

(
k

T 2

)
− f2

(
k

T 2

)) [
f3
′ ( k

T 2

)]2
f3

(
k
T 2

)
−
(
f1

(
k

T 2

)
f2
′′
(
k

T 2

)
− f1

′′
(
k

T 2

)
f2

(
k

T 2

))]
. (13.24)
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The above imply that the eigenvalues at zeroth order are

β
j(0)
D = f4

(
k

T 2

)
. (13.25)

As expected, they are all equal, and, thus, they do not determine the eigenvectors.

At first order the matrix γ−1β is proportional to the matrix δi+1,j + δi,j+1. The

determination of its eigenvectors is a simple problem. The normalized eigenvectors

vj are

vji =

√
2

N + 1
sin

ijπ

N + 1
(13.26)

and the eigenvalues of the matrix γ−1β at first order equal

β
j(1)
D =

2l

T 2
f4
′
(
k

T 2

)
cos

jπ

N − n+ 1
. (13.27)

Now we may apply degenerate perturbation theory to determine the eigenvalues at

second order. They equal

β
j(2)
D =

〈
vj
∣∣ (γ−1β

)(2) ∣∣vj〉 . (13.28)

It is a matter of algebra to show that

β
j(2)
D =

l2

T 4

(
2f4
′′
(
k

T 2

)
cos2 jπ

N − n+ 1
+

β1

N − n+ 1
sin2 jπ

N − n+ 1

)
. (13.29)

The above eigenvalues imply that the entanglement entropy equals

SA = (N − n)

[√
k

T

e−
√
k
T

1− e−
√
k
T

− ln
(

1− e−
√
k
T

)]

+
l2

32k
3
2T 3

[
√
kT csch2

√
k

2T
+ coth

√
k

2T

(
2T 2 + k (2 (N − n)− 1) csch2

√
k

2T

)]
+O

(
l3
)
. (13.30)

Interestingly enough, a similar cancellation between the contributions from all eigen-

values, but two, one from each subsystem, occurs in the calculation of mutual infor-

mation in this case too. One can show that at this order

I =
l2

16k
3
2T 2

csch2

√
k

2T

(
√
k + T sinh

√
k

T

)
+O

(
l3
)
. (13.31)

The above formula may look quite dissimilar to the formula (13.17) that we

found in the case of the non-degenerate perturbation theory. However, it is exactly

the smooth limit of the latter as ki → k and li → l, i.e.

I = − l2

4T 2

d

dk

(
1

f3

(
k
T 2

))+O
(
l3
)
. (13.32)
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The non-degenerate and degenerate perturbation theories resulted in different results

for the entanglement entropy, but in the same result for the mutual information. This

hints that the mutual information is determined by an underlying matrix object,

which has the same double hierarchy as the matrix γ−1β at zero temperature, and,

thus, at this order in the l/k expansion it has only two non-vanishing elements. This

is not unexpected, since the symmetry property of the mutual information enforces

the latter to depend only on the entangling surface (in this case the point that

separates the two subsystems) and not the subsystems. Whether the two approaches

provide different results at higher orders is an issue that requires further investigation.

At leading order, the difference of the two approaches, is restricted to the thermal

contributions to the entanglement entropy, thus, irrelevant to our interests.

The formula (13.32) also has a high temperature expansion of the form

I =
l2

2k2
+

l2

1440T 4
+O

(
1

T 6

)
, (13.33)

which coincides with the l/k-expansion of the high temperature formula (12.26).

13.2 Low Temperature Expansion

In the previous section, we managed to find an l/k expansion for the mutual infor-

mation in the case of a chain of oscillators. Although there is an ambiguity at the

process of the perturbative calculation of the eigenvalues of the matrix γ−1β, as long

as the mutual information is considered, this ambiguity disappears, at least at this

order in the perturbation theory.

We also showed that the expressions agree with the expected form for the high

temperature expansion of the mutual information. However, as we will see in the

next subsection with the study of two indicative example chains of oscillators, at low

temperatures, the expressions we obtained with the l/k expansion fail to approximate

successfully the actual mutual information. The underlying reason for this is the fact

that at low temperatures, most eigenvalues tend to zero (at least at this order in the

perturbation theory). As a result, the perturbative formulae for the calculation of

the contribution of an eigenvalue to the entanglement entropy are not correct, since

they reach a singular point. Namely, the contribution to the entanglement entropy

from an eigenvalue of the matrix γ−1β of the form β
(0)
Di + ε2β

(2)
Di in general is given

by equation (13.15). However, as β
(0)
Di → 0, the quantity ξ

(
β

(0)
Di

)
also tends to zero.

It follows that the series (13.15) fails being a good approximation and it has to

be substituted by S ' −1
2

(
log

β
(2)
Di ε

2

2
− 1

)
β

(2)
Di ε

2. Although there is no problem to

the perturbative calculation of the eigenvalues of the matrix γ−1β, this technicality
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enforces to deal with the case of low temperatures (or equivalently small eigenvalues)

separately, making the appropriate adaptations of the relevant formulae. This is

performed in the Appendix I. It turns out that the low temperature expansion of the

mutual information is given by

I =

[
1− log

(
β

(0)
Dn

2

)]
β

(0)
Dn

+

{[
− log

(
β

(0)
Dn

2

)(
1 + β

(0)
Dn

)
−

(
1 +

√
kn
T

(
1 +

k
(2)
n

2k
(0)
n

+O
(
l3
)))]

× exp

[
−
√
kn
T

(
1 +

k
(2)
n

2k
(0)
n

+O
(
l3
))]

+ (n→ n+ 1)

}
+ . . . , (13.34)

where β
(0)
Dn is the non-vanishing eigenvalue of the matrix γ−1β at zero temperature,

which at this order in the l/k expansion reads

β
(0)
Dn =

l2n

2
√
kn
√
kn+1

(√
kn +

√
kn+1

)2 (13.35)

and k
(2)
i is the second order correction of the eigenvalues of the matrix K in a non-

degenerate perturbation theory approach, namely

k
(2)
i = −

(
l2i−1

ki−1 − ki
− l2i
ki − ki+1

)
. (13.36)

The first line of the equation (13.34) is trivially twice the zero temperature entangle-

ment entropy. The second line is the thermal correction to the mutual information

at low temperatures, which clearly is exponentially suppressed.

13.3 Two Characteristic Examples

Let us now consider two characteristic example chains of oscillators. The one is a

chain, whose couplings matrix is of the form

K =


k l 0 0 · · ·
l 2k l 0 · · ·
0 l k l · · ·
0 0 l 2k
...

...
...

. . .

 . (13.37)

In an obvious way, this is a chain, where the non-degenerate perturbation theory

is appropriate for the determination of the eigenvalues of the matrix γ−1β. We
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compare the l/k expansion (13.17), its high temperature expansion (13.18) and its

low temperature expansion (13.34) to numerical results. The numerical calculation

of entanglement entropy and the mutual information is performed via the numerical

diagonalization of the matrix γ−1β and then the substitution of its eigenvalues to the

formulae (12.16) and (12.17). This task is performed using Wolfram’s Mathematica.

The comparison of the numerical and analytic results for various values of k is shown

in figure 9. In all cases l is considered equal to −1. Furthermore, in all cases we

assume N = 60 and n = 30. It is evident that the perturbative formulae approximate

the numerical results successfully, especially for large values of the parameter k.

The second chain of oscillators that we consider has a couplings matrix of the

form

K =


k l 0 0 · · ·
l k l 0 · · ·
0 l k l · · ·
0 0 l k
...

...
...

. . .

 . (13.38)

Obviously, this is the basic example where the degenerate perturbation theory ap-

plies. This case is also very interesting, as it can be obtained from the discritization

of the degrees of freedom of 1 + 1 dimensional free massive scalar field theory.

In this case one can obtain another analytic formula. Whenever, the couplings

matrix is of the form of a chain of oscillators, i.e. only neighbouring oscillators are

coupled, the high temperature expansion formula (12.26) assumes a simple form, as

the block KB contains only one non-vanishing element, which is equal to ln, namely

I = −1

2
ln
(
1−

(
K−1
A

)
nn

(
K−1
C

)
11
l2n
)

− l2n
720T 4

[(
ln
(
K−1
A

)
nn

)2
+
(
ln
(
K−1
C

)
11

)2 − 1

2

]
+O

(
1

T 6

)
. (13.39)

In the case of the chain (13.38), it is possible to calculate exactly the above expression,

since the eigenvectors of the block KA are known (see e.g. Appendix H.3),

(
K−1
A

)
nn

= −1

l

sinh
(
n arccosh

(
− k

2l

))
sinh

(
(n+ 1) arccosh

(
− k

2l

)) (13.40)

(
K−1
C

)
11

= −1

l

sinh
(
(N − n) arccosh

(
− k

2l

))
sinh

(
(N − n+ 1) arccosh

(
− k

2l

)) . (13.41)

Therefore, in this case we also have an expression for the high temperature expansion

of the mutual information, which is exact in l/k.

As in the previous example, the analytic formulae are compared with numerical

calculations for various values of k in figure 10. All examples have l = −1, N = 60
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Figure 9: The mutual information as function of the temperature for the chain of

oscillators (13.37) for various value of the parameter k
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Figure 10: The mutual information as function of the temperature for the chain of

oscillators (13.38) for viarious values of the parameter k
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and n = 30. The perturbation theory is in good agreement with the numerical

results, whenever the parameter k is large. Notice that there is an interesting change

in the behaviour of the mutual information as k gets lower. There is a critical value

of k, where the dependence of the mutual information on the temperature ceases

being monotonous. This is exactly the value where the coefficient of the 1/T 4 term

in the exact high temperature expansion (13.39) vanishes. This critical k, for large

values of n and N tends exponentially fast to the value k = −5/2l. As k further

reduces, another more dramatic change occurs. The mutual information at infinite

temperature becomes larger than that at zero temperature.

14 Free Scalar QFT

Following section 8.1, one can calculate the mutual information as a sum of different

sectors as

I (N, n) =
∑
l

(2l + 1) Il (N, n), (14.1)

where Il (N, n) is calculated using the couplings derived from the Hamiltonian (8.5)

and the formulae of section 12.

Figure 11 shows the dependence of the mutual information on the size of the

entangling sphere, both in the cases of a massless scalar field (left) and a massive

one with µa = 1 (right). The numerical calculation of the eigenvalues of the relevant

matrices has been performed with the help of Wolfram’s Mathematica for N = 60. It

is evident that the mutual information is proportional to the area of the entangling

sphere. In the case of the massless scalar field, at vanishing temperature we find

that I ' 0.59R2/a2, which agrees with the result of [42]. The coefficient of the area

law term is a decreasing function of the temperature. However, it does not vanish

as the temperature goes to infinity. It rather reaches an asymptotic finite value. In

the case of the massless field, this value is approximately I ' 0.38R2/a2.

14.1 The Large R Expansion

We intend to study the dependence of the entanglement entropy and the mutual

information, as a function of the size of the entangling sphere. For this purpose, we

assume that the entangling sphere lies in the middle between the n-th and (n+ 1)-th

site of the spherical lattice. It follows that the radius of the entangling sphere is

R = nRa, where nR := n+
1

2
. (14.2)

In the following we study the expansion of the entanglement entropy and the mutual

information for large radii R of the entangling sphere, i.e. for large nR.
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Figure 11: The mutual information as function of the size of the entangling sphere

The series (8.4) and (14.1) cannot be summed directly. Instead we will approxi-

mate them using the Euler-MacLaurin formula, as in section 10.1. This reads

b∑
n=a

f (n) =

∫ b

a

dxf (x) +
f (a) + f (b)

2

+
∞∑
k−1

B2k

(2k)!

[
d2k−1f (x)

dx2k−1

∣∣∣∣
x=b

− d2k−1f (x)

dx2k−1

∣∣∣∣
x=a

]
, (14.3)

where the coefficients Bk are the Bernoulli numbers defined so that B1 = 1/2. Using

this formula, we may approximate the series (14.1) with the integral

I (N, n) '
∫ ∞

0

d` (2`+ 1) I (N, n, ` (`+ 1)), (14.4)

where we defined

I (N, n, ` (`+ 1)) = I` (N, n) , (14.5)

taking advantage of the fact that ` appears in I` (N, n) only in the form of the

product ` (`+ 1). We are interested in the behaviour of this integral for large R. This

behaviour cannot be isolated trivially, since nR appears in the integrand in the form

of the fraction `(`+ 1)/n2
R and ` takes arbitrarily large values within the integration

range. This can be bypassed performing the change of variables `(` + 1)/n2
R = y.

Then the integral formula (14.4) assumes the form

I (N, n) ' n2
R

∫ ∞
0

dyI
(
N, nR −

1

2
, yn2

R

)
, (14.6)

which can be expanded for large nR.
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The term that is proportional to the highest power of nR that appears in this

expansion is the one which is proportional to n2
R, i.e. the “area law” term. When the

size of the entangling sphere is sufficiently large, the mutual information is dominated

by this term. The “area law” term receives contributions only from the integral term

of the Euler-MacLaurin formula (14.3). Therefore, the large R behaviour of the

mutual information is determined by equation (14.6).

14.2 The Hopping Expansion for the Area Law Term

The Hamiltonian (8.5) describes a system of coupled oscillators with couplings ma-

trix, which can be approximated as

Kij =
1

a2

[(
2 +

l (l + 1)

i2
+ µ2a2

)
δij − δi+1,j − δi,j+1

]
, (14.7)

for the purpose of the determination of the leading “area law” term in the large R

expansion. Trivially, the Hamiltonian (8.5) describes a chain of oscillators, thus we

can use the results of section 13. Substituting the mutual information for a chain

of oscillators (13.17) with the couplings (14.7) to the integral formula (14.6) and

expanding for large nR yields

I = n2
R

∞∫
0

√
2 + a2µ2 + y + aT sinh

[
1
aT

√
2 + a2µ2 + y

]
8a2T 2(2 + a2µ2 + y)

3
2

(
cosh

[
1
aT

√
2 + a2µ2 + y

]
− 1
) +O (nR)

= n2
R

coth
[

1
2aT

√
2 + a2µ2

]
4aT

√
2 + a2µ2

+O (nR) .

(14.8)

This formula has the high temperature expansion

I = n2
R

(
1

2 (2 + a2µ2)
+

1

24a2T 2
− 2 + a2µ2

1440a4T 4
+O

(
1

T 6

))
+O (nR) , (14.9)

which unlike the general formula for coupled oscillators contains a 1/T 2 term. This

seeming contradiction is due to the fact that we have integrated contributions from

arbitrary high angular momenta `. The high temperature expansion (12.26) holds

for temperatures higher than the eigenvalues of the matrix K. However, when one

considers arbitrarily high angular momenta, these eigenvalues become arbitrarily

large. This would be resolved had one introduced a physical cutoff to the angular

momenta. We will return to this at the next subsection.

As we have seen in section 13, the 1/µ expansion fails at low temperatures. In

the same section, we obtained the appropriate low temperature expansion for the

133



mutual information (13.34). Substituting this low temperature expansion into the

Euler MacLaurin formula yields

I = IT=0 + n2
R

∫ ∞
0

dy

[
2 log

(
4
(
2 + µ2a2 + y

))(
1 +

1

8(2 + µ2a2 + y)2

)

−

(
1 +

√
2 + µ2a2 + y

aT

(
1 +

3

4y (2 + µ2a2 + y)

))]

× exp

[
−
√

2 + µ2a2 + y

aT

(
1 +

3

4y (2 + µ2a2 + y)

)]
. (14.10)

The first term, IT=0, is the zero temperature mutual information, which is simply

twice the zero temperature entanglement entropy. Perturbative expressions for this

term in the l/k expansion are in section 10.1. Unlike the general case, the integral

in the above formula cannot be performed analytically. However, its behaviour is

dominated by the exponential factor of the integrand. The exponent, i.e. the function

f (y) =

√
2 + µ2a2 + y

aT

(
1 +

3

4y (2 + µ2a2 + y)

)
(14.11)

has only one minimum in (0,∞), which lies at ymin =
√

3/2, at this order in l/k.

Therefore, a saddle point approximation may be performed. The value of the function

f and its second derivative at the minimum equal f (ymin) =
√

2 + µ2a2/(aT ) and

f ′′ (ymin) =
√

2/
(
aT
√

3 (2 + µ2a2)
)

, respectively. It is then a matter of algebra to

show that

I ' IT=0 + 2n2
R

√
2πaT

4

√
3 (2 + µ2a2)

2

×

[
2 log

(
4
(
2 + µ2a2

))
− 1−

√
2 + µ2a2

aT

]
exp

[
−
√

2 + µ2a2

aT

]
. (14.12)

Figure 12 shows the dependence of the coefficient of the “area law” term of the

mutual information on the temperature, for various values of the mass parameter.

For each mass, the first order result in the l/k (14.8), as well as the high temperature

(14.9) and low temperature (14.12) expansions are displayed. The analytic formulae

are compared with a numerical calculation, performed as in section 13.3. For these

numerical calculations N is taken to be equal to 60, similarly to past calculations

(e.g. [42]). The linear part of the curve is stable for much smaller values of N , as

shown in figure 13. Further increasing the value of N does not alter the accuracy

of the results significantly for the purpose of our analysis. The mutual information

is always dominated by an area law term. The coefficient of this area law term is
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Figure 12: The area law term coefficient of the mutual information as function of the

temperature. The dashed lines are the low and high temperature expansions of the

mutual information, whereas the dotted lines are the asymptotic values for T →∞.
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Figure 13: The mutual information as function of n for µ = 1/a, T = 1/2a and
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determined by scanning n from the value 10 to the value 50. We used the third

order result for the entanglement entropy at zero temperature, derived in section

10.1, in order to approximate the IT=0 term in the low temperature formula (14.12).

It is evident that the analytic formulae that we obtained in this section are in good

agreement to the numerical results, especially for large values of the scalar field mass.

14.3 Dependence on the Regularization

As explained in section 10.3, the regularization scheme that we use in this section is

quite peculiar. The radial and angular excitations of the field are treated differently;

while there is a UV cutoff equal to 1/a for the radial ones, the angular ones are

integrated up to infinite scale. One can enforce a more uniform regularization intro-

ducing a cutoff at the angular momenta of the form lmax = cR/a. The appropriate

selection for c in 3 + 1 dimensions, so that the density of the degrees of freedom at

the region of the entangling surface is homogeneous, is c = 2
√
π. Then, the results

of the previous subsection serve as an upper bound for the area law term. It has to

be noted that had one desired to generalize these results to an arbitrary number of

dimensions, they would have found that the integral without the angular momentum

cutoff diverges at 4 + 1 and higher dimensions; this upper bound exists only in 2 + 1

and 3 + 1 dimensions. Obviously, the introduction of the angular momentum cutoff

yields the coefficient of the area law term of the mutual information finite at all

dimensions. Returning to 3 + 1 dimensions, such a regularization yields

I = n2
R

coth
[

1
2aT

√
2 + a2µ2

]
4aT

√
2 + a2µ2

−
coth

[
1

2aT

√
2 + a2µ2 + c2

]
4aT

√
2 + a2µ2 + c2

+O (nR) . (14.13)
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This formula has the high temperature expansion

I = n2
R

(
1

2 (2 + a2µ2)
− 1

2 (2 + a2µ2 + c2)
+

c2

1440a4T 4
+O

(
1

T 6

))
+O (nR) .

(14.14)

This is exactly what should be expected from the general high temperature formula

(12.26). The 1/T 2 term is vanishing, whereas the 1/T 4 contains only the leading

term in the 1/µ expansion (the last term of equation (12.26)), which is equal to

1/(1440a4T 4) from each angular momentum sector. As we have cutoff the angular

momenta at lmax = cR/a ' c(nR + 1/2), at leading order in nR there are c2n2
R such

sectors, which is consistent with our result.

The low temperature behaviour is determined by the low angular momenta. Nat-

urally, the introduction of the angular momenta cutoff does not alter the procedure

of deriving the low temperature expansion of the mutual information, as long as

c >
√

3/2. For these values of c the formula (14.12) provides a good approximation

of the mutual information at low temperatures.

Figure 14 shows the dependence of the coefficient of the dominant “area law”

term of the mutual information on the temperature, with an angular momentum

cutoff lmax = 2
√
πR/a, for various values of the mass parameter. The first order

expansion, as well as the low and high temperature expansions are compared to

numerical calculations performed with the use of Wolfram’s Mathematica with the

same parameters as in the previous subsection. As in the previous subsection, we used

the third order result for the entanglement entropy at zero temperature of section

10.1, in order to approximate the IT=0 term in the low temperature formula (14.12).

For large values of the scalar field mass, the analytic formulae that we obtained in

this section are in good agreement to the numerical results.

15 Multipartite Systems

So far we have restricted the discussion into bipartite systems. Obviously, this is

due to the fact that these systems can be treated easier. Nevertheless, the developed

techniques can trivially be applied to multipartite systems. As an indicative example,

let us present the case of a tripartite system. The corresponding couplings matrix is

naturally divided into blocks as

K =

KAA KAB KAC

KBA KBB KBC

KCA KCB KCC

 , KBA = KT
AB, KCA = KT

AC , KCB = KT
BC .

(15.1)

The diagonal blocks KAA, KBB and KCC are symmetric, while their dimensions are

n × n, p × p and q × q, respectively. In order to trace out the system B, which
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Figure 14: The area law term coefficient of the mutual information as function of the

temperature with an angular momentum cutoff lmax = 2
√
πR/a. The dashed lines

are the low and high temperature expansions of the mutual information, whereas the

dotted lines are the asymptotic values for T →∞.
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corresponds to the degrees of freedom n + 1, . . . , n + p, one can use a simple trick

and relabel the degrees of freedom. In particular, using a similarity transformation

with an appropriate permutation matrix we can re-express the couplings matrix K

as

K =

In 0 0

0 0 Iq
0 Ip 0

T KAA KAC KAB

KCA KCC KCB

KBA KBC KBB

In 0 0

0 0 Iq
0 Ip 0

 . (15.2)

The matrix in the middle, which we denote as K ′ in what follows, describes an

effective overall system, in which the subsystems A and C are adjacent. Thus, one

can use all formulas for bipartite systems upon the identification

KA =

(
KAA KAC

KCA KCC

)
, KB =

(
KAB

KCB

)
, KC = KBB. (15.3)

An important subtlety is that the original theory, corresponding to K, and the

effective one, corresponding to K ′, have the same spectrum, since the transformation

that relates them is orthogonal.

For local couplings, such as the ones arising in the case of discretized local free field

theories, K is tridiagonal. Tracing out the subsystem B results in non-local theory.

The systems A and C are not adjacent and there will be correlations between them,

which originally propagate through B. In the effective theory this non-locality is

explicitly expressed in the couplings matrix K ′. In the bipartite formalism (15.3),

the block KA is block diagonal since all elements of KAC vanish, while KB has only

two non-vanishing elements. It is of the form

(KB)ij = (KAB)n,1 δn,iδ1,j + (KBC)p,1 δn+1,iδp,j. (15.4)

The high temperature expansion of the entanglement entropies SA, SC and SA∪C is

SA = −1

2
ln det

[
1

T

(
KAA −

(
KAB KAC

)(KBB KBC

KCB KCC

)−1(
KBA

KCA

))]
+n+

1

24T 2
Tr [KAA] ,

(15.5)

SC = −1

2
ln det

[
1

T

(
KCC −

(
KCA KCB

)(KAA KAB

KBA KBB

)−1(
KAC

KBC

))]
+q +

1

24T 2
Tr [KCC ] ,

(15.6)

SA∪C = −1

2
ln det

[
1

T

((
KAA KAC

KCA KCC

)
−
(
KAB

KCB

)
K−1
BB

(
KBA KBC

))]
+n+ q +

1

24T 2
Tr

[(
KAA KAC

KCA KCC

)]
.

(15.7)
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Thus, the mutual information I = SA+SC−SA∪C has a high temperature expansion

of the form

I = I∞ +
0

T 2
+O

(
1

T 4

)
. (15.8)

In order to calculate I∞, we will relay on the following formulas

det (K) = det (K ′) = det (KBB) det

((
KAA KAC

KCA KCC

)
−
(
KAB

KCB

)
K−1
BB

(
KBA KBC

))
,

(15.9)

det (K) = det

(
KBB KBC

KCB KCC

)
det

(
KAA −

(
KAB KAC

)(KBB KBC

KCB KCC

)−1(
KBA

KCA

))
,

(15.10)

det (K) = det

(
KAA KAB

KBA KBB

)
det

(
KCC −

(
KCA KCB

)(KAA KAB

KBA KBB

)−1(
KAC

KBC

))
.

(15.11)

These imply that I∞ is given by

I∞ =
1

2
ln det

[
Iq −K−1

CCKCBK
−1
BBKBC

]
− 1

2
ln det

[
Iq −K−1

CC

(
KCA KCB

)(KAA KAB

KBA KBB

)−1(
KAC

KBC

)]
, (15.12)

or equivalently by

I∞ =
1

2
ln det

[
In −K−1

AAKABK
−1
BBKBA

]
− 1

2
ln det

[
In −K−1

AA

(
KAB KAC

)(KBB KBC

KCB KCC

)−1(
KBA

KCA

)]
. (15.13)

Finally, I∞ can be expressed in a manifest symmetric form as

I∞ =
1

2
ln det

(
KAA KAB

KBA KBB

)
+

1

2
ln det

(
KBB KBC

KCB KCC

)
− 1

2
ln det

(
KAA KAC

KCA KCC

)
− 1

2
ln det

[
KBB −

(
KBA KBC

)(KAA KAC

KCA KCC

)−1(
KAB

KCB

)]
− 1

2
ln det (KBB) .

(15.14)

In the special case of local couplings, which implies KAC = 0, we obtain

I∞ =
1

2
ln det

[
Ip −K−1

BBKBAK
−1
AAKAB

]
+

1

2
ln det

[
Ip −K−1

BBKBCK
−1
CCKCB

]
− 1

2
ln det

[
Ip −K−1

BBKBAK
−1
AAKAB −K−1

BBKBCK
−1
CCKCB

]
. (15.15)
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The blocks KAB and KBC have a single non-vanishing element

(KAB)i,j = (KAB)n,1 δn,iδ1,j, (KBC)i,j = (KBC)p,1 δp,iδ1,j, (15.16)

thus, the matrices that appear in (15.15) read(
K−1
BBKBAK

−1
AAKAB

)
i,j

=
[
(KAB)n,1

]2 (
K−1
AA

)
n,n

(
K−1
BB

)
i,1
δ1,j, (15.17)(

K−1
BBKBCK

−1
CCKCB

)
i,j

=
[
(KBC)p,1

]2 (
K−1
CC

)
1,1

(
K−1
BB

)
i,p
δp,j. (15.18)

Putting everything together, I∞ is given by

I∞ =

−1

2
ln

1−

[
(KBC)p,1

]2 (
K−1
CC

)
1,1

(
K−1
BB

)
1,p

1−
[
(KBC)p,1

]2 (
K−1
CC

)
1,1

(
K−1
BB

)
p,p

[
(KAB)n,1

]2 (
K−1
AA

)
n,n

(
K−1
BB

)
n,1

1−
[
(KAB)n,1

]2 (
K−1
AA

)
n,n

(
K−1
BB

)
1,1

 .
(15.19)

Let us consider the case of homogeneous coupling, i.e. the couplings matrix K in

(15.1) to be given by

(K)i,j = kδi,j + ` (δi+1,j + δi,j+1) . (15.20)

Notice that all three diagonal blocks KAA, KBB and KCC are of the same form. The

inverse of a N ×N matrix of this form is the matrix(
K−1

)
i,j

= −1

`

cosh [(N + 1 + |i− j|)λ]− cosh [(N + 1− i− j)λ]

2 sinh [λ] sinh [(N + 1)λ]
, (15.21)

where λ = arccosh
[
− k

2`

]
for (k/`) ≤ −2, see [257]. This implies that I∞ assumes

the form

I∞ = −1

2
ln [1− CqCn] , (15.22)

where

Cx =
cosh [(x+ 1)λ]− cosh [(x− 1)λ]

cosh [(p+ x+ 2)λ]− cosh [(p+ x)λ]
. (15.23)

In the case of 1 + 1 free massive scalar field theory

λ = arccosh

[
1 +

m2a2

2

]
, (15.24)

where m is the mass of the field and a the lattice spacing. Substituting

q = N − p− n, N → L

a
, p→ R2

a
− 1

2
− n, n→ R1

a
− 1

2
(15.25)
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and taking the limit a→ 0 we obtain

I∞ = − 1

2
ln

[
1− sinh [R1m] sinh [R3m]

sinh [(L−R1)m] sinh [(L−R3)m]

]
, R3 = L−R2. (15.26)

In this notation subsystem A corresponds to the line segment (0, R1), subsystem B

to (R1, R2) and subsystem C to (R2, L). Notice that this result corresponds to a

double scaling limit of the harmonic lattice, where the temperature goes to infinity,

the lattice spacing to zero, while their product goes to infinity, i.e.

I∞ = lim
a→0
aT→∞

I. (15.27)

16 Conclusions

The calculation of entanglement entropy in the ground state of oscillatory systems,

which include free scalar field theories, at their ground state is in general a difficult,

non-perturbative calculation, since the ground state is highly entangled. We managed

to find a perturbative method to calculate it, using as expansive parameter the ratio

of the non-diagonal to diagonal elements of the couplings matrix of the system. This

parameter in the case of free scalar field theory is being played by the inverse mass

of the field.

The calculation of entanglement entropy in the inverse mass expansion indicates

that the major contribution to entanglement entropy is a term proportional to the

area of the entangling surface, i.e. the “area law” term, a well-known fact since

[42, 81]. The perturbative calculation of the coefficient of this term agrees with the

numerical calculation of entanglement entropy, based on the techniques of [42], and

provides an analytic method for the specification of such coefficients. Subleading

terms in the expansion of entanglement entropy for large entangling sphere radii can

also be perturbatively calculated. The inverse mass expansion and the entangling

sphere radius expansions can be performed simultaneously, but they are not parallel

in any sense. The leading term in the entangling sphere radius expansion, i.e. the

area law term, as well as the subleading terms, receive contributions at all orders in

the inverse mass expansion.

When the mass of the field is very large, the area law can be understood as a

result of the locality. In such cases only correlations between nearest neighbours are

important, therefore the entanglement entropy should be expected to be proportional

to the number of neighbouring degrees of freedom that have been separated by the

entangling surface. These are obviously proportional to the area of the entangling

surface. However, the area law holds in the massless case, too. The underlying cause

of this behaviour is the symmetric property of the entanglement entropy. Whenever
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the composite system lies in a pure state it holds that SA = SAC . Therefore, a vol-

ume term cannot appear as it should be proportional to the volume of the interior

and simultaneously to the volume of the exterior of the sphere. Naturally, the entan-

glement entropy has to depend on the geometric characteristics of the only common

feature that the interior and exterior of the sphere share, i.e. the entangling sphere

itself.

The area law term, as well as the subleading ones are dependent on the regu-

larization scheme, in line with analogous replica trick calculations. Universal terms

that appear in the massless limit and depend on the global characteristics of the

entangling surface (logarithmic terms in even dimensions and constant terms in odd

dimensions) are non-perturbative contributions in this expansive approach. Fur-

thermore, in this approach, the coefficient of the area law term in 2 + 1 and 3 + 1

dimensions has an upper bound, for any regularization scheme. The latter does not

exist in higher dimensions.

An interesting feature of the inverse mass expansion is the following: the pertur-

bation parameter is not exactly the inverse mass, but rather the quantity 1/
√
µ2a2 + 2,

where a is the UV cutoff length scale imposed in the radial direction. This fact al-

lows the application of the perturbation series even in the massless field case. Not

surprisingly, the perturbation series converges more slowly than in the massive case;

however, the values of the first terms strongly suggest that it still converges to the

numerical results. In the case of free massless scalar field in 3 + 1 dimensions the

inverse mass series for the coefficient of the area law term approaches the value 0.295

found in [42,242].

An important advantage of the presented perturbative method is that it is not

limited to the calculation of entanglement entropy, but it provides the full spectrum

of the reduced density matrix. The latter, unlike entanglement entropy, contains

the full information of the entanglement between the considered subsystems. This is

clearly an advantage in comparison to holographic (the latter of course can be applied

to strongly coupled systems, where it is impossible to apply our perturbative method)

or replica trick calculations, which naturally allow the specification of Rényi entropies

Sq for all q. Although in principle it is possible to reconstruct the spectrum of the

reduced density matrix from the latter, in practise this process is very complicated

and usually only the specification of the largest eigenvalue and its degeneracy may

be easily achieved.

This perturbative method is an appropriate tool to expose the connection between

the “area law” and the locality of the underlying field theory. Locality is encoded

into the couplings matrix K as the absence of non-diagonal elements apart from the

elements of the superdiagonal and subdiagonal. This in turn results in an hierarchy

for the eigenvalues of the reduced density matrix system, leading to the area law.
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This hierarchy in the spectrum of the reduced density matrix depicts the fact that

locality enforces entanglement between the interior and the exterior of the sphere to

be dominated by the entanglement between pairs of neighbouring degrees of freedom

that are separated by the entangling surface. The latter are clearly proportional to

the area and not the volume of the entangling sphere.

When temperature is turned on, the entanglement entropy contains volume terms,

which are inherited from the thermal entropy of the overall system. The presence of

such terms should not be considered surprising, since the symmetry property of the

entanglement entropy does not hold, whenever the composite system lies in a mixed

state. The entanglement entropy is not a good measure of quantum entanglement in

such cases; a better measure of the correlations between a subsystem and its comple-

ment is the mutual information. This, by definition obeys the symmetry property,

and, thus, it should be expected that in field theory, even at finite temperature,

it behaves similarly to the entanglement entropy at zero temperature. Indeed, our

perturbative calculations, as well as the numerical calculations that we performed,

verify this intuitive prediction; the mutual information is dominated by an “area

law” term.

The coefficient of the area law term of the mutual information exposes an inter-

esting behaviour as a function of the temperature. This coefficient reduces as the

temperature increases; this is expected as the thermal effects tend to wash out the

quantum correlations between the considered subsystems. However, as the temper-

ature tends to infinity, the coefficient does not vanish, but it rather tends to a given

finite value. This is a property of any harmonic oscillatory system. It turns out that

the asymptotic value of the mutual information at infinite temperature is identical

to the mutual information of the equivalent classical system of coupled oscillators at

finite temperature.

Following the approach of the zero temperature case, we found a perturbative

expression for the area law coefficient, expanding in the inverse mass of the scalar

field. The calculation is performed in the lowest order. It is in good agreement

with the numerical calculations, especially for large values for the field mass. The

calculation, although significantly more complicated than the zero temperature one,

can be directly performed at higher orders, improving the accuracy of the analytic

results.

Similarly to the zero temperature case, due to the particular discretization of the

field degrees of freedom in radial shells, the expansion continues to work even at the

massless field limit in 3 + 1 dimensions. This is due to the fact that the angular

momentum effectively acts as a mass term for the corresponding moments of the

field. However, it fails in 1 + 1 dimensions at the massless limit.

The original calculation by Srednicki implements a peculiar regularization. Al-
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though a lattice of spherical shells is used, introducing a UV cutoff at the radial field

excitations, the angular momenta are integrated up to infinity. This scheme provides

a finite result only at 2 + 1 and 3 + 1 dimensions. One may apply a more uniform

scheme, introducing an angular momentum cutoff so that a similar UV cutoff applies

at the angular degrees of freedom on the entangling surface. Such a regularization

scheme exposes the fact that the area law term is regularization scheme dependent.

Furthermore, similarly to the zero temperature case, the Srednicki regularization in

2 + 1 and 3 + 1 provides an upper bound for the coefficient of the area law term.

In higher dimensions there is no such bound, however, the introduction of this more

uniform regularization leads to a finite result for the area law coefficient.

Finally, another interesting property concerns the high temperature expansion of

the mutual information in any harmonic oscillatory system. This expansion naturally

contains even powers of 1/T . However, it turns out that the first term, namely the

1/T 2 term, always vanishes.

It would be interesting to extend the applications of this perturbative expansion

to other geometries, e.g. dS or AdS spacetimes, to cases where the overall system

does not lie at its ground state (e.g. systems at energy eigenstates, coherent states

etc) or to other field theories containing fermionic fields or gauge fields. Furthermore,

application of the above techniques for non-spherical entangling surfaces may shed

light to the dependence of entanglement entropy on the geometric features of the

latter, such as the curvature.
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Integrability Techniques for Non

Linear Sigma Models





17 Introduction

Static minimal surfaces in AdS4 are two-dimensional Euclidean world-sheets. Such

world-sheets can be described by NLSMs, which are integrable. In particular, the

static co-dimension two minimal surfaces in AdS4 are equivalent to co-dimension one

minimal surfaces in the hyperbolic space H3. Such two-dimensional Euclidean world-

sheets, embedded in Hd, are of great interest, since they are the holographic duals

of Wilson loops at strong coupling [47,48]. In this Part, we we study the relation of

entanglement and integrability in this framework.

In a first study one would be interested in taking advantage of integrability in

order to construct solutions of the NLSM. A method for the construction of classical

solutions in NLSMs with a symmetric target space that is more systematic than

the use of an arbitrary ansatz, but yet leads to solutions expressed in terms of

Weierstrass elliptic function and related functions, was initiated in [190, 258]. In

this approach, NLSM solutions are derived through the inversion of the Pohlmeyer

reduction [259, 260]. The symmetric space non-linear sigma models (NLSMs) that

describe strings propagating in the corresponding symmetric space, are well known

to be reducible to integrable systems of the same family as the sine-Gordon equation

and multi-component generalizations of the latter [261–264]. This procedure is non-

trivial, since the transformation connecting the original NLSM fields to the field

variables of the reduced theory is non-local. The oldest and most well-known example

is the reduction of the O(3) NSLM, which leads to the sine-Gordon equation [259,260].

The reduced system can always be derived from a local Lagrangian, which is a gauged

Wess-Zumino-Witten model with an integrable potential [265–268]. The Pohlmeyer

reduction is equivalent to the Gauss-Codazzi equations for the embedding of the

string worldsheet into the target space, which is in turn embedded into a flat enhanced

space [269]. In this context, the fact that the target space is a symmetric space is

directly connected to the integrability of the reduced model [270,271].

Even though it is straightforward to calculate the solution of the reduced the-

ory that corresponds to a given solution of the original NLSM, the inversion of the

Pohlmeyer reduction is a highly non-trivial process. This can be attributed to the

non-local nature of the Pohlmeyer reduction, as well as to the fact that the map-

ping is many-to-one. Construction of NLSM solutions based on the inversion of the

Pohlmeyer reduction has been performed in [258] for strings propagating on AdS3

and dS3, and in [190] for minimal surfaces in H3. These techniques can be applied for

a particular class of solutions of the reduced system, which depend on a sole world-

sheet coordinate. Given such a solution of the reduced system, the NLSM equations

of motion become linear and solvable via separation of variables. Then, the geomet-

ric and Virasoro constraints are imposed and NLSM solutions are obtained. This
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procedure enables a systematic investigation of this class of NLSM solutions.

Classical string solutions have played an important role in the understanding

of the AdS/CFT correspondence. According to the dictionary of the holographic

duality, the dispersion relations of classical string solutions are related to the anoma-

lous dimensions of gauge theory operators in the strong coupling limit. Matching

the spectra on both sides of the holographic duality was a non-trivial quantitative

test [272–276] of the AdS/CFT correspondence and classical string solutions were

necessary in order to perform such calculations. The standard methodology in the

literature for this purpose, has been the use of an appropriate ansatz in order to

reduce the classical string equations of motion and the Virasoro constraints to a sys-

tem of equations for a set of unknown functions or parameters [277,278] (See [33] for

a review of the subject).

The matching of the spectra of the classical string in AdS5×S5 and the N = 4

SYM has also been studied with the help of methods from algebraic geometry. The

sigma model [279] of the Green-Schwarz superstring possesses a spectral curve, which

is a manifestation of integrability [280]. On the field theory side, the anomalous

dimensions of operators at strong coupling can be calculated using the Bethe ansatz

[281]. It has been shown that at specific limits, the spectra of the dual theories indeed

match upon the identification of some parameters [34, 35] (for a review see [282]).

In this language, the classical string solutions are provided in terms of abstract

hyperelliptic functions, that can be expressed in terms of conventional functions

(algebraic or elliptic) only in the genus one case. Thus, although the problem of

spectrum matching is formally understood, it is difficult to study and comprehend

the generic structure.

The general solution of the NLSM on H3 has been obtained in [188] in terms of

hyper-elliptic functions, while further aspects of it have been studied in [189, 283].

Key element of this solution, is the reducibility of the NLSMs defined on symmetric

spaces to integrable equations of the family of the sine-Gordon equation, through

the so called Pohlmeyer reduction [259, 284]. Given a solution of the Pohlmeyer

reduced theory, the equations of motion of the NLSM become linear. The general

solution was constructed by a clever incorporation of basic properties of hyper-elliptic

functions. Yet, the practical use and qualitative understanding of this formal solution

is very limited due to the high complexity of the hyper-elliptic functions. On a

complementary approach in [190], the whole class of solutions, whose Pohlmeyer

field is expressed in terms of elliptic functions of only one of the two world-sheet

coordinates, was derived through the “inversion” of the Pohlmeyer reduction and

subsequently it was studied in detail.

As integrability has been extensively used in the context of AdS/CFT corre-

spondence, it is interesting to investigate whether integrability can be used in a
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fashion similar to that of the spectral problem, in order to establish a direct rela-

tion between quantities relevant to entanglement entropy on the field theory side

and its gravitational dual. Expressing this kind of questions in field theory more

concretely is beyond our understanding. The spectral curve, that corresponds to

the solution [188], was constructed in [285]. Yet, we lack any clue on how to relate

entanglement entropy with a spectral curve. To sidestep this obstacle, we study an

operation, which alters the entangling surface and the corresponding minimal sur-

face. This is the construction of new minimal surfaces using the so-called dressing

method [260,286,287].

In order to gain intuition, we make several steps back, and study a similar prob-

lem, namely classical strings in R×S2. The reason for doing so is that the Pohlmeyer

reduced theory, i.e. the Sine-Gordon equation, is much more studied and it is easier to

conceptually understand the relation between the NLSM solution and the Pohlmeyer

counterpart. In addition, even though the vacuum solutions have been used as the

seed, the dressing method has already been applied in this NLSM. As a byproduct

we draw interesting conclusions for classical strings.

String solutions belonging in R × S2 probe several interesting regimes of the

spectrum of the AdS/CFT duality at specific limits. Berenstein, Maldacena and

Nastase [288] studied a particle moving at the equator of S5 at the speed of light.

Gubser, Klebanov and Polyakov [289] studied a closed folded string that rotates

around the north pole of the S2 and its counter part, a string that is a rotating

great circle. A few years later, Hofman and Maldacena [290] introduced the giant

magnons. These are open strings, whose ends lie at the equator of the S2 and move at

the speed of light. They are the strong coupling, string theory counterpart of infinite

size single-trace operators that contain one impurity. In [291–296] more general

spiky string solutions are constructed. All these known solutions emerge naturally in

our construction. We give a unified description and classification of all these string

solutions in terms of their Pohlmeyer counterpart.

The integrable systems of the family of the sine-Gordon equation possess Bäck-

lundtransformations, which connect solutions in pairs. Given a seed solution, these

transformations generate a new non-trivial one. Iterative application of the Bäck-

lundtransformations leads to infinite towers of solutions. The archetypical exam-

ple is the sine-Gordon equation, where using the vacuum as seed solution, one can

construct the one-kink solutions and then a whole class of multi-kink/breather solu-

tions [297]. The analogue of this procedure in the NLSM is the so called “dressing

method” [260, 286, 287, 298]. This method has been applied in the literature to

produce string solutions on dS space [299], on the sphere [300, 301] and on AdS

space [302, 303] that correspond to one- or multi-kink solutions of the Pohlmeyer

reduced system.
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We use classical elliptic string solutions as seed for the construction of higher

genus string solutions on R×S2, via the dressing method. This is made possible due

to the simple and universal description of the elliptic solutions achieved via the inver-

sion of Pohlmeyer reduction and the parametrization in terms of Weierstrass elliptic

function. We carry out this study in both the NLSM and the Pohlmeyer reduced

theory, namely the sine-Gordon equation, in order to understand the correspondence

between the dressing method and the Bäcklundtransformations of the latter more

deeply.

Although more general higher genus solutions of both the NLSM and the sine-

Gordon equation can be expressed in terms of Riemann’s hyperelliptic theta function

[304–306], it is difficult to study their properties in this form. Unlike this approach,

the solutions presented here are degenerate genus two solutions, which are expressed

in terms of simple trigonometric and elliptic functions, and, thus, their properties can

be studied analytically. This study is the first application of the dressing method on

a non-trivial background, whose Pohlmeyer counterpart is neither the vacuum nor a

kink solution, i.e. a solution connected to the vacuum via Bäcklundtransformations

[300, 301]. The development of this kind of solutions can also be very useful in

systems whose Pohlmeyer reduced theory does not possess a vacuum solution; the

cosh-Gordon equation is such an example [190]. We focus on salient aspects of the

above solutions, such as spike interactions, implications to the stability of the seed

solutions and their dispersion relations.

An interesting feature of the elliptic string solutions is the fact that they have

several singular points, which are spikes. These can be kinematically understood,

as points of the string that propagate at the speed of light [289] due to the initial

conditions. As they cannot change velocity, no matter what forces are exerted on

them, they continue to exist indefinitely, as long as they do not interact with each

other. In the already studied spiky string solutions [292,293,295,296,307], the spikes

rotate around the sphere with the same angular velocity, and thus, they never inter-

act. Interacting spikes emerge in higher genus solutions. The simplest possible such

solutions are those which are constructed via the dressing of elliptic strings.

The stability of the elliptic strings is closely related to the stability of their

Pohlmeyer counterparts, which are either trains of kinks or trains of kinks-antikink

pairs. Although the latter is known [308], it is not easy to construct an explicit

non-perturbative solution exposing the instability of the elliptic strings. Naively,

such a solution has to be a degenerate genus two solution. In this case, one of the

two periods must coincide to the periodicity of the original elliptic solution under

study. On the other hand, the degenerate one will describe the infinite evolution

which either asymptotically leads to or away from the elliptic solution. Therefore,

the dressed elliptic strings are conducive to the determination and study of the in-
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stabilities of the elliptic ones. The periodicity conditions that are obeyed by the

closed strings, combined with the physics of the dressed strings, specify a particular

region of parameters in the moduli space of the elliptic string solutions that allow

the existence of these instabilities. We focus on the relation of this class of dressed

solutions to linearized perturbations around the elliptic ones. We establish a one-to-

one correspondence between the instabilities of the linearized perturbations around

the Pohlmeyer field of the seed solution and the dressed solutions that realize the

instabilities of the elliptic strings. As a consequence, the dressing method can be a

useful tool for the study of string instabilities.

Having exhausted the analysis of elliptic strings in R×S2, it is time to return to the

original problem. We study some aspects of the dressing method on hyperbolic spaces

and apply it on the elliptic minimal surfaces of [190] in order to construct new minimal

surfaces. In the context of entanglement entropy, the dressing transformation can

be perceived as an operation that changes the entangling surface and consequently

the corresponding minimal surface. Obviously, this affects both the entanglement

entropy in field theory, as well as the holographic entanglement entropy. Nevertheless,

the application of the dressing method is far from trivial due to many technical and

conceptual challenges.

The implementation of the dressing method relies on the mapping of the solution

of the NLSM to an element of an appropriate coset. There exist previous works

that discuss the dressing of Wilson loops in AdS3 and AdS5 or AdS4×S2 8, using

mappings on complex groups [302, 309]. The fact that the world-sheet metric is

Euclidean causes complications to the construction of new real solutions. In these

works, the problem is sidestepped, but this cannot be the case for arbitrary space-

time dimensions. We apply the dressing method via the mapping of H3 to the real

coset SO(1, 3)/SO(3). We set up the problem from scratch and discuss in detail the

constraints that have to be imposed on the solution of the auxiliary system.

Contrary to most applications of the dressing method in the context of classical

string solutions, such as [300, 301], in the case of minimal surfaces, the Pohlmeyer

reduced theory lacks a vacuum (either stable or unstable); the simplest possible seeds

are the elliptic minimal surfaces [190]. As these seeds are non-trivial, more efficient

techniques are incorporated. Surprisingly, studying the dressing transformation of a

general seed, we find that a single dressing transformation, with the simplest dressing

factor, interrelates a real solution of the NLSM to a purely imaginary one. The

imaginary solution of the Euclidean NLSM on hyperbolic space corresponds to a

real solution of the Euclidean NLSM on de-Sitter space. This drawback leads us to

study abstractly the dressing transformation for an arbitrary seed and to develop an

8As a matter of fact, in the latter case the pseudoholomorphicity equations, which describe the

Wilson loops as a result of supersymmetry, can effectively be described as a NLSM on S3.
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iterative procedure that can be employed in order to construct new NLSM solutions

once a solution of the auxiliary system is known. We discuss general quantitative

aspects of the tower of solutions and present an algebraic addition formula for the

surface element. Subsequently, we perform a double dressing transformation to the

elliptic minimal surfaces.

As in both the dressed elliptic strings and the dressed elliptic minimal surfaces

we were able to solve the auxiliary system we identifying the structure of a matrix

and generalizing some parameters of the seed, it worth asking whether one can solve

the auxiliary system for an arbitrary seed. Regarding the O(3) NLSM, it turns

out that the answer is yes. This formal solution is expressed in terms of a specific

element of the family of the seed. This implies that the particular NLSM has a more

fundamental property, which is a non-linear superposition rule. The dressing method

is exactly the implementation of this non-linear superposition rule.

This Part of the dissertation is based on the publications [2–5,9,10]. It is organized

as follows. In section 18, we revisit the Pohlmeyer reduction of the NLSM describing

strings propagating on R×S2 that results in the sine-Gordon equation. In section 19,

we review the class of solutions of the sine-Gordon equation that can be expressed

in terms of elliptic functions. In section 20, it is shown that for these solutions of

the sine-Gordon equation, the equations of motion of the NLSM separate into pairs

of effective Schrödingerproblems. Each pair contains one flat potential, whereas the

other one is the n = 1 Lamé potential. We obtain the general solution for this system

of equations and impose the appropriate constraints to effectively invert Pohlmeyer

reduction. In section 21, we study various properties of the elliptic strings, with

emphasis to the mapping of their properties to those of their Pohlmeyer counterparts.

In section 22, we study the dispersion relations of the string solutions. In section 23,

we set up the application of the dressing method for the coset SO(3)/SO(2) and in

section 24, we apply it on the elliptic string solutions. In section 25, we study the

relation between the dressing method and the Bäcklundtransformations of the sine-

Gordon equation and we obtain the Pohlmeyer counterparts of the dressed elliptic

string solutions presented in section 24. In section 26, we elucidate the properties

of the sine-Gordon counterparts of the dressed elliptic string solutions, in order to

both facilitate the study of the latter and furthermore establish a mapping between

the properties of the string solutions and their counterparts. In section 27, we study

the constraints which have to be imposed on the dressed string solutions, so that

they are closed. In effect they emerge to belong to four distinct classes. In section

28, we study the time evolution of the string solutions focusing on the interaction

of spikes. In section 29, we study a specific class of dressed string solutions that

reveals instabilities of a subset of the elliptic string solutions. In section 30, we

study the linear perturbations of the elliptic strings in the language of the Pohlmeyer
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reduced system and show that there is a one-to-one correspondence of unstable linear

perturbations and the relevant dressed string solutions. In section 31, we specify

explicitly the set of unstable elliptic string solutions. In section 32, we calculate

the energy and angular momentum of the dressed elliptic strings, which have great

interest in the context of the holographic dualities. In section 33 we discuss the

dressing method for the Euclidean NLSM in H3 for a general seed and an arbitrary

number of dressing transformations and a relation between solutions of the NLSM

on H3 and solutions of the NLSM on dS3 is established. In section 34 we study some

basic properties of the dressed surfaces, focusing on the transformation of the surface

element and the entangling surface. In section 35 we present the twice dressed elliptic

minimal surfaces. In section 36 we review basic elements of the NLSM that describes

strings propagating on R × S2 and solve the auxiliary system for an arbitrary seed.

Finally, in section 37, we discuss our results.

There are also some appendices. Appendix J consists of a review of the dressing

method. In appendix K the construction of the simplest dressing factor is presented

and the equivalence of the corresponding dressing transformation to the Pohlmeyer

reduced theory is discussed. In appendix L the double root limits of the dressed

Sine-Gordon solutions are presented. The asymptotic behaviour of the dressed el-

liptic strings with D2 > 0 is derived in M. The angular momentum of the dressed

elliptic strings is calculated in N. In appendix O we prove that the dressed minimal

surfaces with the minimal dressing factor obey the equations of motion and satisfy

the Virasoro constraints. Finally, appendices P and Q contain some technical details

on the derivation of the solution of the auxiliary system for arbitrary seed.

Throughout the text, various properties of the Weierstrass elliptic and related

functions are used. All the necessary formulae can be found in standard mathematical

literature, e.g. [310], or in the appendix of [258].

18 The Pohlmeyer Reduction of Strings Propa-

gating on R×S2

The NLSMs that describe string propagation in symmetric spaces, are reducible to

integrable systems of the same family as the sine-Gordon equation [261–264, 311].

In this section, we revisit the Pohlmeyer reduction of strings propagating on R×S2

(R stands for the time dimension). The main difference of our approach to the

original treatment [259] is the implementation of a more general gauge, instead of

the static one, which will facilitate the construction of the elliptic string solutions

via the inversion of the Pohlmeyer reduction, in section 20. This is the main reason

we review the well-known Pohlmeyer reduction of strings propagating on the sphere
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here.

The basic ingredient of Pohlmeyer reduction is the embedding of the string world-

sheet in a symmetric target space, which is in turn embedded in an enhanced higher-

dimensional flat space. In the case of bosonic strings propagating on R×S2, this

higher dimensional flat space is R(1,3). We denote the coordinates in the enhanced

space as X0, X1, X2 and X3. Throughout this text, we use the following notation:

A ·B ≡ −A0B0 + A1B1 + A2B2 + A3B3, (18.1)

~A · ~B ≡ A1B1 + A2B2 + A3B3. (18.2)

Using this notation, the target space of the non-linear sigma model describing the

propagation of strings on R×S2 is simply the submanifold of the enhanced space:

~X · ~X = R2. (18.3)

Writing the string action as a Polyakov action, we find,

S = T

∫
dξ+dξ−

(
(∂+X) · (∂−X) + λ

(
~X · ~X −R2

))
, (18.4)

where ξ± are the right- and left-moving coordinates, ξ± ≡ (ξ1 ± ξ0) /2 and T is the

tension of the string.

The equations of motion that emerge from the action (18.4) read

∂+∂−X
0 = 0, (18.5)

∂+∂− ~X = λ ~X. (18.6)

Obviously, the equation for the X0 coordinate implies

X0 = f+

(
ξ+
)

+ f−
(
ξ−
)
. (18.7)

We may eliminate the Lagrange multiplier λ from the equations of motion (18.6). The

geometric constraint (18.3) implies that ∂± ~X · ~X = 0. Upon another differentiation

and the use of the equations of motion (18.6), we obtain

λ = − 1

R2

(
∂+

~X
)
·
(
∂− ~X

)
. (18.8)

Therefore, the equations of motion for the embedding functions X i assume the form

∂+∂− ~X = − 1

R2

((
∂+

~X
)
·
(
∂− ~X

))
~X. (18.9)

The stress-energy tensor can be obtained by variation of the action with respect

to the worldsheet metric. The off-diagonal components vanish identically, T+− = 0,

as a result of Weyl invariance. The diagonal elements equal

T±± = (∂±X) · (∂±X) . (18.10)
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It follows that the Virasoro constraints assume the form, (∂±X) · (∂±X) = 0. Using

the general solution for the embedding function X0 given by equation (18.7), the

Virasoro constraints can be written as(
∂± ~X

)
·
(
∂± ~X

)
= (f±

′)
2
. (18.11)

The classical treatment of Pohlmeyer reduction takes advantage of the diffeomor-

phism invariance to set a specific form for the functions f±, in particular selecting the

static gauge, X0 = µ (ξ+ − ξ−). For our purposes, it is more convenient to proceed

without selecting a gauge and leave the advantage of this freedom for later use.

We define a basis in the enhanced three-dimensional flat space (the R3 subspace

of R(1,3)),

~vi =
{
~X, ∂+

~X, ∂− ~X
}
. (18.12)

The magnitudes of the vectors ~vi are fixed by the geometric and Virasoro constraints,

~v2
1 = R2, ~v2

2 = (f+
′)

2
, ~v2

3 = (f−
′)

2
. (18.13)

Furthermore, the geometric constraint upon differentiation yields ∂± ~X · ~X = 0 im-

plying that ~v1 is perpendicular to ~v2 and ~v3,

~v1 · ~v2 = ~v1 · ~v3 = 0. (18.14)

The only parameter that is not fixed by the constraints of the system is the angle

between ~v2 and ~v3. We define it, as the Pohlmeyer field ϕ,(
∂+

~X
)
·
(
∂− ~X

)
:= f+

′f−
′ cosϕ. (18.15)

The relations (18.13), (18.14) and (18.15) for the base vectors ~vi can be used in

order to decompose any vector ~V in the three-dimensional enhanced space in the

base ~vi, as

~V =
1

R2

(
~V · ~v1

)
~v1 +

f−
′
(
~V · ~v2

)
− f+

′
(
~V · ~v3

)
cosϕ

(f+
′)

2
f−
′ ~v2

+
f+
′
(
~V · ~v3

)
− f−′

(
~V · ~v2

)
cosϕ

(f−
′)

2
f+
′ ~v3. (18.16)

We decompose the derivatives of the base vectors into the base itself by introducing

the 3× 3 matrices A+ and A−,

∂±~vi = A±ij~vj. (18.17)
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By definition ∂+~v1 = ~v2, ∂−~v1 = ~v3, while the equations of motion imply

∂+~v3 = ∂−~v2 = −f+
′f−
′/R2 cosϕ~v1. So, the only basis vector derivatives left to

calculate are ∂+v2 = ∂2
+X and ∂−v3 = ∂2

−X. Differentiating the geometric constraint

twice with respect to the same variable yields (∂2
±
~X) · ~X = −(∂± ~X) · (∂± ~X) =

−(f±
′)2. Differentiating the Virasoro constraints yields (∂2

±
~X) · (∂± ~X) = f±

′f±
′′. Fi-

nally, differentiating the Pohlmeyer field definition (18.15), we get (∂2
±
~X) · (∂∓ ~X) =

f±
′′f∓

′ cosϕ − f+
′f−
′∂±ϕ sinϕ. Plugging the above into the decomposition formula

(18.16), we get

∂+~v2 = −(f+
′)

2

R2
~v1 +

(
f+
′′

f+
′ + ∂+ϕ cotϕ

)
~v2 −

f+
′

f−
′ sinϕ

~v3, (18.18)

∂−~v3 = −(f−
′)

2

R2
~v1 +

(
f−
′′

f−
′ + ∂−ϕ cotϕ

)
~v3 −

f−
′

f+
′ sinϕ

~v2. (18.19)

Putting everything together, the matrices A+ and A− assume the form,

A+ =

 0 1 0

− (f+
′)2

R2
f+
′′

f+
′ + ∂+ϕ cotϕ − f+

′∂+ϕ
f−
′ sinϕ

−f+
′f−
′

R2 cosϕ 0 0

 , (18.20)

A− =

 0 0 1

−f+
′f−
′

R2 cosϕ 0 0

− (f−
′)2

R2 − f−
′∂−ϕ

f+
′ sinϕ

f−
′′

f−
′ + ∂−ϕ cotϕ

 . (18.21)

The matrices A+ and A− must obey the compatibility condition ∂+∂−~vi = ∂−∂+~vi,

which can be written as the zero-curvature condition

∂−A
+ − ∂+A

− +
[
A+, A−

]
= 0. (18.22)

Plugging the matrices (18.20) and (18.21) into the zero curvature condition yields

∂+∂−ϕ = −f+
′f−
′

R2
sinϕ. (18.23)

This equation can be simplified using the invariance under diffeomorphisms. We

will not select the static gauge f±(ξ±) := ±µξ±, but we will restrict ourselves to

what is necessary to write (18.23) in the form of the sine-Gordon equation, i.e. a

more general “linear” gauge. We redefine the coordinates ξ±, so that

f±
(
ξ±
)

:= m±ξ
±. (18.24)

The static and linear gauges are obviously connected via a worldsheet boost. In

the following, we will construct classical string solutions, inverting the Pohlmeyer
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reduction, using the techniques of [258]. The latter require solutions of the reduced

system that depend solely on either ξ0 or ξ1. The freedom of the linear gauge selection

allows the construction of classical string solutions, whose Pohlmeyer counterpart

depends on a general linear combination of the worldsheet coordinates in the static

gauge. Furthermore, it turns out that this freedom also facilitates the classification of

the obtained solutions. Once the string solutions are found, one can always perform

a boost to express them in the static gauge.

Calculating the induced metric on the worldsheet, using the Virasoro constraints

(18.11) and the Pohlmeyer field definition (18.15), we find

ds2 = −m+m−sin2ϕ

2

((
dξ1
)2 −

(
dξ0
)2
)
. (18.25)

Therefore, demanding that ξ0 is the time-like parameter and ξ1 is the space-like

parameter sets m+m− < 0. Then, the reduced system equation (18.23) assumes the

form

∂+∂−ϕ = µ2 sinϕ, (18.26)

where µ2 := −m+m−/R
2.

19 Elliptic Solutions of the Sine-Gordon Equation

In this section, we are going to find the solutions of the sine-Gordon equation (18.26)

that depend solely on one of the two worldsheet coordinates, i.e. they are either

static or translationally invariant. In the following, the dot denotes differentiation

with respect to ξ0 and the prime denotes differentiation with respect to ξ1.

Without loss of generality, we consider a solution that depends only on ξ0, namely

ϕ (ξ0, ξ1) = ϕ0 (ξ0). In this case, the sine-Gordon equation reduces to

ϕ̈0 = −µ2 sinϕ0. (19.1)

This equation can be integrated once to yield

1

2
ϕ̇2

0 − µ2 cosϕ0 = E. (19.2)

Similarly, had one considered static solutions, the only difference would be an

overall sign. This sign can be absorbed defining ϕ (ξ0, ξ1) = π + ϕ1 (ξ1), which leads

to

ϕ1
′′ = −µ2 sinϕ1. (19.3)

It follows that static solutions can be produced by translationally invariant ones via

an interchange of the coordinates and a shift of ϕ by π.
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Despite the simple symmetry that connects the translationally invariant solu-

tions to the static ones, these two classes of solutions are characterized by dissimilar

Hamiltonian density. The latter equals

H =
1

2
ϕ̇2 +

1

2
ϕ′2 − µ2 cosϕ. (19.4)

In the case of translationally invariant solutions, the Hamiltonian density is constant

in both space and time and is equal to the integration constant E,

H = E. (19.5)

On the contrary, in the case of static solutions, the Hamiltonian density is not con-

stant, but a non-trivial function of ξ1,

H =
1

2
ϕ1
′2 − µ2 cosϕ1 = E − 2µ2 cosϕ1 = ϕ1

′2 − E. (19.6)

The momentum density is given by

P = −ϕ′ϕ̇ (19.7)

and it vanishes for both translationally invariant and static solutions.

It is clear that equation (19.2) can be regarded as the conservation of energy of

the simple pendulum. It is well known that the solutions to this problem can be

expressed analytically in terms of elliptic functions. Indeed, performing the change

of variable

2y +
E

3
= −µ2 cosϕ0, (19.8)

equation (19.2) assumes the form

y′
2

= 4y3 −
(
E2

3
+ µ4

)
y − E

3

((
E

3

)2

− µ4

)
. (19.9)

This is the standard form of the Weierstrass equation y′2 = 4y3 − g2y − g3, with

specific values for the moduli equal to

g2 =
E2

3
+ µ4, g3 =

E

3

((
E

3

)2

− µ4

)
. (19.10)

The general solution of the Weierstrass equation in the complex domain is pro-

vided by the Weierstrass elliptic function ℘. However, we are interested only in

real solutions defined in the real domain. When the moduli g2 and g3 are real, the

Weierstrass equation has one or two independent real solutions in the real domain,
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depending on the reality of the roots of the cubic polynomial Q (y) = 4y3− g2y− g3.

It turns out that the latter, with the moduli g2 and g3 given by (19.10), has always

three real roots, namely,

x1 =
E

3
, x2 = −E

6
+
µ2

2
, x3 = −E

6
− µ2

2
. (19.11)

The ordering of the three roots depends on the value of the integration constant E,

as shown in figure 15. Defining the ordered roots as ei, where e1 > e2 > e3, we have

−µ2

µ2

µ2/3

−µ2/3

x1

x2

x3

xi

E

Figure 15: The roots of the cubic polynomial as function of the integration constant

E

the identification between xi and ei that is shown in table 1.

ordering of roots

E > µ2 e1 = x1, e2 = x2, e3 = x3

|E| < µ2 e1 = x2, e2 = x1, e3 = x3

E < −µ2 e1 = x2, e2 = x3, e3 = x1

Table 1: The ordering of the roots

When Q (y) has three real roots, the fundamental periods of the Weierstrass

elliptic function can be defined so that one of them is real and the other is purely

imaginary. Let 2ω1 be the real one and 2ω2 be the imaginary one. Then, there are

two distinct real solutions of the Weierstrass equation in the real domain, which read

y = ℘ (x− x0) , (19.12)

y = ℘ (x− x0 + ω2) . (19.13)

The first solution ranges between the largest of the roots and infinity, while the

second one oscillates between the two smaller roots.
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In order to obtain a real solution for ϕ, it is necessary that y is real, but also it

must satisfy ∣∣∣∣2y +
E

3

∣∣∣∣ < µ2, (19.14)

so that the change of variables (19.8) maps a real y to a real ϕ. The table 2 shows

the range of 2y + E/3 for each of the two solutions. It is clear that the unbounded

range of 2℘(x) + E/3 range of 2℘(x+ ω2) + E/3

E > µ2 2y + E/3 > E −µ2 < 2y + E/3 < µ2

|E| < µ2 2y + E/3 > µ2 −µ2 < 2y + E/3 < E

E < −µ2 2y + E/3 > µ2 E < 2y + E/3 < −µ2

Table 2: The range of −µ2 cosϕ0 for both real solutions of the Weierstrass equation

solution does not correspond to a real solution for ϕ, as it does not satisfy the

constraint (19.14). The bounded solution does correspond to a real solution for ϕ,

as long as E > −µ2. This is expected from the physics of the simple pendulum. In

all cases, the solution assumes the form

cosϕ
(
ξ0, ξ1;E

)
= ∓ 1

µ2

(
2℘
(
ξ0/1 + ω2; g2 (E) , g3 (E)

)
+
E

3

)
. (19.15)

Had one desired to find the solution for ϕ0 itself, they would have to connect

appropriate patches of ϕ0, obeying equation (19.15), so that the solution is both

continuous and smooth. This sequence of patches, which satisfies the initial condi-

tions ϕ0 (τ0) = 0 and ϕ̇0 (τ0) =
√

2 (E + µ2), is

ϕ0

(
ξ0
)

=


(−1)

⌊
ξ0−τ0

2ω1

⌋
arccos

(
−2℘(ξ0−τ0+ω2)+E

3

µ2

)
, E < µ2,

(−1)

⌊
ξ0−τ0
ω1

⌋
arccos

(
−2℘(ξ0−τ0+ω2)+E

3

µ2

)
+ 2π

⌊
ξ0−τ0+ω1

2ω1

⌋
, E > µ2,

(19.16)

where arccosx is assumed to take values in [0, π]. These solutions are plotted for

various values of the energy constant E in figure 16. Similarly, the static elliptic

solutions ϕ1 (ξ1) of the sine-Gordon equation, with boundary conditions ϕ0 (σ0) = π

and ϕ1
′ (σ0) =

√
2 (E + µ2), are

ϕ1

(
ξ1
)

= π +


(−1)

⌊
ξ1−σ0

2ω1

⌋
arccos

(
−2℘(ξ1−σ0+ω2)+E

3

µ2

)
, E < µ2,

(−1)

⌊
ξ1−σ0
ω1

⌋
arccos

(
−2℘(ξ1−σ0+ω2)+E

3

µ2

)
+ 2π

⌊
ξ1−σ0+ω1

2ω1

⌋
, E > µ2.

(19.17)

Equations (19.16) and (19.17) imply that:
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π

2π

3π

4π

−π

E = −9µ2/10

E = 0

E = 9µ2/10

E = 99µ2/100

E = µ2

E = 101µ2/100

E = 5µ2/4

E = 3µ2/2

ϕ0

ξ0

Figure 16: The translationally invariant elliptic solutions of the sine-Gordon equation

(19.16), for various values of the energy constant E

1. The solutions with E < µ2 are periodic. Their period is equal to 4ω1. We will

call them the “oscillatory” solutions, inspired by the simple pendulum analogue

of equation (19.2).

2. The solutions with E > µ2 are quasi-periodic, obeying ϕ0/1

(
ξ0/1 + 2ω1

)
=

ϕ0/1

(
ξ0/1
)

+ 2π. We will call them the “rotating” solutions.

19.1 Double Root Limits

When E = ±µ2, two of the roots coincide, giving rise to some special limits of the

elliptic solutions. In the case E = −µ2, the two smaller roots are both equal to

e2 = e3 = −µ2/3, and, thus, ℘
(
ξ0/1 + ω2

)
tends to a constant equal to the double

root. It follows that

ϕ0

(
ξ0;−µ2

)
= 0, (19.18)

ϕ1

(
ξ1;−µ2

)
= π. (19.19)

Translationally invariant solutions tend to the stable vacuum of the sine-Gordon

equation, whereas the static ones tend to the unstable vacuum.

For E = µ2, the two larger roots are both equal to e1 = e2 = µ2/3. In this case

the real period of the Weierstrass elliptic function diverges and the latter degenerates

to a simply periodic hyperbolic function. It turns out that

ϕ0

(
ξ0;µ2

)
= 4 arctan eµ(ξ

0−τ0) + π, (19.20)

ϕ1

(
ξ1;µ2

)
= 4 arctan eµ(ξ

1−σ0). (19.21)
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The first one is an instanton solution evolving from the unstable vacuum ϕ = −π
to the unstable vacuum ϕ = +π. The second one is the usual kink solution of the

sine-Gordon equation, in the frame where it is static and localized in position ξ1 = σ0.

20 Elliptic String Solutions

20.1 The Building Blocks of Elliptic Solutions

Given a string configuration, it is a straightforward process to find the corresponding

solution of the Pohlmeyer reduced system. The inverse problem is highly non-trivial

due to the non-local nature of the Pohlmeyer reduction. This procedure comprises

of using a given solution ϕ of the reduced system and then solving the equations of

motion

− ∂2
0
~X + ∂2

1
~X = µ2 cosϕ ~X, µ2 = −m+m−

R2
, (20.1)

while simultaneously satisfying both the geometric

~X · ~X = R2 (20.2)

and the Virasoro constraints

∂± ~X · ∂± ~X = m2
±. (20.3)

There is an advantage in finding a string solution starting from a given solution

of the reduced system; the equations of motion have taken the form of the linear

differential equations (20.1). Using a solution of the reduced system that depends on

only one worldsheet coordinate provides an extra advantage; these linear differential

equations are solvable using separation of variables [190,258],

X i(ξ0, ξ1) := Σi(ξ1)Ti(ξ0). (20.4)

It is easy to show that in the case of a solution of the sine-Gordon equation that

depends solely on ξ1, the equations of motion (20.1) are written as pairs of effective

Schrödingerproblems of the form,

−Σi′′ +
(
2℘
(
ξ1 + ω2

)
+ x1

)
Σi = κiΣi, (20.5)

−T̈i = κiTi. (20.6)

Similarly, in the case of solutions depending solely on ξ0,

−Σi′′ = κiΣi, (20.7)

−T̈i +
(
2℘
(
ξ0 + ω2

)
+ x1

)
Ti = κiTi. (20.8)
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The form of the elliptic solutions of the sine-Gordon equation (19.15) implies that

in both cases, the non-trivial effective Schrödingerproblem (20.5) or (20.8) assumes

the form of the bounded n = 1 Lamé problem,

− d2y

dx2
+ 2℘ (x+ ω2) y = λy. (20.9)

The eigenfunctions of this problem are given by

y± (x; a) =
σ (x+ ω2 ± a)σ (ω2)

σ (x+ ω2)σ (ω2 ± a)
e−ζ(±a)x. (20.10)

The Weierstrass quasi-periodic functions ζ and σ are defined as ζ ′ = −℘ and σ′/σ =

ζ. The corresponding eigenvalue of both solutions y± is

λ = −℘ (a) . (20.11)

As long as −λ is not equal to any of the roots, the pair of solutions (20.10) are

linearly independent, and, thus, the general solution of (20.9) can be written as a

linear combination of the latter. At the limit −λ becomes equal to any of the roots,

both y± tend to

y± (x;ω2) =
√
℘ (x+ ω2)− e3, (20.12)

y± (x;ω1,3) =
√
e1,2 − ℘ (x+ ω2). (20.13)

In these cases, there is another linearly independent solution,

ỹ (x;ω2) =
√
℘ (x+ ω2)− e3 (ζ (x+ 2ω2) + e3x) , (20.14)

ỹ (x;ω1,3) =
√
e1,2 − ℘ (x+ ω2) (ζ (x+ ω2 + ω1,3) + e1,2x) . (20.15)

When, the eigenvalue obeys λ < −e1 or −e2 < λ < −e3, the eigenfunctions y±
are real and they diverge exponentially at either plus or minus infinity. When the

eigenvalue lies in the complementary segments, λ > −e3 or −e1 < λ < −e2, the

eigenfunctions y± are complex conjugate to each other and they are delta function

normalizable Bloch waves.

Finally, the eigenfunctions y± obey the “normalization” relations

y+y− =
℘ (x+ ω2)− ℘ (a)

e3 − ℘ (a)
(20.16)

and

y+
′y− − y+y−

′ = − ℘′ (a)

e3 − ℘ (a)
. (20.17)
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Summing up, there are three classes of solutions of the pair of effective Schrödinger-

problems (20.5) and (20.6), depending on the sign of the corresponding eigenvalue

κi. Positive eigenvalues lead to embedding functions of the form

X =
[
c1

+y+

(
ξ1; a

)
+ c1
−y−

(
ξ1; a

)]
cos `ξ0 +

[
c2

+y+

(
ξ1; a

)
+ c2
−y−

(
ξ1; a

)]
sin `ξ0,

(20.18)

where κ = `2 = −℘ (a) + x1. Negative eigenvalues lead to embedding functions

X =
[
c1

+y+

(
ξ1; a

)
+ c1
−y−

(
ξ1; a

)]
cosh `ξ0 +

[
c2

+y+

(
ξ1; a

)
+ c2
−y−

(
ξ1; a

)]
sinh `ξ0,

(20.19)

where κ = −`2 = −℘ (a) + x1. Vanishing eigenvalue means that ℘ (a) equals to the

root x1, i.e. a is one of the half-periods. Thus, the corresponding Lamé eigenfunctions

degenerate to the form of eigenfunctions lying at the edge of the allowed bands. In

general the solution is

X =
[
c1

+y
(
ξ1; a

)
+ c1
−ỹ
(
ξ1; a

)]
+
[
c2

+y
(
ξ1; a

)
+ c2
−ỹ
(
ξ1; a

)]
ξ0, (20.20)

where ℘ (a) = x1. For “normalization” reasons that will become apparent later, we

will consider only the part of this solution that can be taken as the limit of positive

or negative eigenvalue solutions, i.e.

X = c
√
x1 − ℘ (ξ1 + ω2). (20.21)

The embedding functions for the case of translationally invariant Pohlmeyer coun-

terparts are identical to the above after an interchange of ξ0 and ξ1.

20.2 Construction of Elliptic String Solutions

In section 20.1, we took advantage of the special form of the elliptic solutions of the

sine-Gordon equation to solve the equations of motion via separation of variables.

The general embedding function can then be written as a linear combination of the

forms (20.18), (20.19) and (20.21). Then, in order to find a classical string solution,

we need to find appropriate expressions for the three embedding functions X1, X2,

and X3 that satisfy the geometric constraint (20.2) and the Virasoro constraints

(20.3). The latter, expressed in terms of the coordinates ξ0 and ξ1, assume the form(
∂0
~X
)
·
(
∂0
~X
)

+
(
∂1
~X
)
·
(
∂1
~X
)

=
m2

+ +m2
−

2
, (20.22)

2
(
∂0
~X
)
·
(
∂1
~X
)

=
m2

+ −m2
−

2
. (20.23)

Since the embedding functions are solutions to the effective Schrödingerproblems

(20.5) and (20.6), we take advantage of the geometric constraint to write down the
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Virasoro constraints in the more handy form

−
(
∂2

0
~X
)
· ~X −

(
∂2

1
~X
)
· ~X =

m2
+ +m2

−

2
, (20.24)

−2
(
∂0∂1

~X
)
· ~X =

m2
+ −m2

−

2
. (20.25)

In this analysis, we focus on the simplest choice, namely the use of a single

eigenvalue for each component. The form of the geometric constraint enforces the

two of the three components to correspond to the same positive eigenvalue and the

third one to correspond to a vanishing one, i.e.

~X =

 c+
1 U

+
1 (ξ1; a) cos `ξ0 + c−1 U

−
1 (ξ1; a) sin `ξ0

c+
2 U

+
2 (ξ1; a) cos `ξ0 + c−2 U

−
2 (ξ1; a) sin `ξ0

c3

√
x1 − ℘ (ξ1 + ω2)

 , (20.26)

where `2 = −℘ (a) + x1 and U±1,2 (ξ1; a) are real linear combinations of y± (ξ1; a).

Substituting the above into the geometric constraint (20.2) and demanding that

the terms proportional to sin `ξ0 cos `ξ0, sin2 `ξ0 and cos2 `ξ0 vanish, yields

c+
2 = −c−1 , c−2 = c+

1 , (20.27)

U+
2 = U−1 , U−2 = U+

1 . (20.28)

Then, the geometric constraint assumes the form(
c+

1 U
+
1

)2
+
(
c−1 U

−
1

)2
+ c2

3

(
x1 − ℘

(
ξ1 + ω2

))
= R2. (20.29)

The normalization properties of the Lamé eigenfunctions (20.16) imply that

c+
1 =c−1 ≡ c1, (20.30)

U+
1 =

1

2
(y+ + y−) , U−1 =

1

2i
(y+ − y−) . (20.31)

It follows that in order to get a real solution, y± must be complex conjugate to each

other, i.e. they must be Bloch wave eigenfunctions of the n = 1 Lamé problem. This

constraints the parameter ℘ (a) to obey e3 > ℘ (a), or e1 > ℘ (a) > e2. Incorporating

this into the geometric constraint, further simplifies it to the form

c2
1y+y− + c2

3

(
x1 − ℘

(
ξ1 + ω2

))
= R2. (20.32)

The normalization property (20.16) has an overall sign depending on whether the

eigenstate belongs to the infinite “conduction” band e3 > ℘ (a) or not. The only way

that the ξ1 dependence in the geometric constraint disappears is that y± are indeed

such states, thus,

e3 > ℘ (a) . (20.33)
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This also implies that a lies on the imaginary axis. Finally, absorbing the e3 − ℘ (a)

factor of (20.16) into the definition of y±, the geometric constraint reduces to

c1 = c3 ≡ c, c2 =
R2

x1 − ℘ (a)
=
R2

`2
. (20.34)

Taking the above into account, the ansatz (20.26) assumes the form

~X = c

 Rey+ (ξ1; a) cos `ξ0 + Imy+ (ξ1; a) sin `ξ0

−Imy+ (ξ1; a) cos `ξ0 + Rey+ (ξ1; a) sin `ξ0√
x1 − ℘ (ξ1 + ω2)

 . (20.35)

Substituting the above to the Virasoro constraint (20.24) results in

`2 =
m2

+ +m2
−

4R2
+

3x1

2
. (20.36)

Notice that the above equation implies that

e3 − ℘ (a) =

(
m+ +m−

2R

)2

> 0, (20.37)

as required in order for the Lamé eigenstates y± to lie in the infinite conduction

band. The bound is saturated for m+ + m− = 0. In this case, which corresponds

to the special selection of the static gauge, the Lamé eigenfunctions y± are real and

periodic functions that lie at the edge of the infinite conduction band. This limit is

the equivalent to the GKP limit [289].

It is left to satisfy the Virasoro constraint (20.25). With the use of formula

(20.17), the latter assumes the form

− i℘
′ (a)

`
=
m2

+ −m2
−

2R2
. (20.38)

The Weierstrass equation implies that

℘′2 (a)

`2
=

4

`2
(℘ (a)− x1) (℘ (a)− x2) (℘ (a)− x3)

= −4
(
x1 − x2 − `2

) (
x1 − x3 − `2

)
= 4

[(
x2 − x3

2

)2

−
(

3x1

2
− `2

)2
]

= 4

[(
µ2

2

)2

−
(
m2

+ +m2
−

4R2

)2
]

= −
(
m2

+ −m2
−

2R2

)2

(20.39)

and thus the Virasoro constraint (20.25) is automatically satisfied without demanding

further constraints in the free parameters of the solution. The subtlety in the sign
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can always by corrected by reflecting the parameter a, which corresponds to the

transformation y± → y∓ or equivalently interchanging m+ and m−.

Putting everything together, the elliptic string solutions corresponding to static

solutions of the sine-Gordon equation are written as

~X =
R√

x1 − ℘ (a)


Re
(
y+ (ξ1; a) e−i`ξ

0
)

−Im
(
y+ (ξ1; a) e−i`ξ

0
)√

x1 − ℘ (ξ1 + ω2)

 . (20.40)

21 Properties of the Elliptic String Solutions

In this section, we proceed to study the geometric characteristics of the string so-

lutions derived in section 20 and their relation to the features of their Pohlmeyer

counterparts. We indicate with index 0, the elliptic string solutions that correspond

to a translationally invariant solution of the sine-Gordon equation and with index

1, the solutions with a static sine-Gordon counterpart. It turns out that the nat-

ural parametrization of our construction, which is based on the Weierstrass elliptic

function, facilitates the study of the properties of the elliptic string solutions.

We take advantage of the fact that Bloch wave eigenfunctions of the Lamé po-

tential are complex conjugates to each other and write them as

y± (ξ; a) =
√
℘ (ξ + ω2)− ℘ (a)e±iΦ(ξ;a), (21.1)

where

Φ (ξ; a) = − i
2

ln
σ (ξ + ω2 + a)σ (ω2 − a)

σ (ξ + ω2 − a)σ (ω2 + a)
+ iζ (a) ξ. (21.2)

Notice that the function Φ possesses the quasi-periodicity property

Φ (ξ + 2ω1; a) = Φ (ξ; a) + 2i (ζ (a)ω1 − ζ (ω1) a) . (21.3)

Thus, the elliptic string solutions assume the form

~X0/1 =
R√

x1 − ℘ (a)



√
℘ (ξ0/1 + ω2)− ℘ (a) cos

(
`ξ1/0 − Φ

(
ξ0/1; a

))
√
℘ (ξ0/1 + ω2)− ℘ (a) sin

(
`ξ1/0 − Φ

(
ξ0/1; a

))
√
x1 − ℘ (ξ0/1 + ω2)

 . (21.4)

Adopting spherical coordinates

X0 = t, (21.5)

X1 = R sin θ cosφ, (21.6)

X2 = R sin θ sinφ, (21.7)

X3 = R cos θ, (21.8)
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we obtain a parametric expression for the elliptic string solutions,

t0/1 = R
√
x2 − ℘ (a)ξ0 +R

√
x3 − ℘ (a)ξ1, (21.9)

cos θ0/1 =

√
x1 − ℘ (ξ0/1 + ω2)

x1 − ℘ (a)
, (21.10)

φ0/1 = −sgn(Ima)
√
x1 − ℘ (a)ξ1/0 − Φ

(
ξ0/1; a

)
. (21.11)

Notice, that we have made the selection m++m− > 0 and m+−m− > 0. The first

choice is equivalent to the physical time t being an increasing function of the time-

like worldsheet coordinate ξ0. Having selected one of the two above quantities to be

negative, requires taking the opposite value of a according to the Virasoro constraint

(20.38). We have restricted a to take values in the segment of the imaginary axis

with endpoints ±ω2. Then, equation (20.38) implies that ` = −sgn(Ima)
√
x1 − ℘(a).

From now on, for simplicity, we make the choice ` > 0.

21.1 Angular Velocity

Both classes of elliptic string solutions can be written in the form

f (θ, φ− ωt) = 0. (21.12)

where

ω0/1 =
`

m+ ±m−
, or

∣∣ω0/1

∣∣ =
1

R

√
x1 − ℘ (a)

x3/2 − ℘ (a)
. (21.13)

This angular velocity is a function of the gauge selection that we performed at the

process of Pohlmeyer reduction.

Each class of elliptic string solutions is comprised of two subclasses, one corre-

sponding to oscillating solutions of the sine-Gordon equation and one corresponding

to rotating solutions of the latter. These are the well-known four classes of helical

string solutions on the two-dimensional sphere [295] (see also [291–294]). These two

subclasses have some qualitative differences:

1. The solutions with rotating counterparts obey x1 > x2. Such solutions do

not cross the equator; they lie between two circles, which are parallel to the

equator and in the same semi-sphere. For example, in the case this is the north

semi-sphere, these solutions obey

θ− < θ < θ+, (21.14)

where

θ± = arccos

√
x1 − x2/3

x1 − ℘ (a)
. (21.15)
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Both subclasses of solutions with rotating counterparts are characterized by

ω0/1 > 1/R. The angles θ± that constrain the string on the sphere also depend

on the gauge selection, since

sin θ∓ =
1

Rω0/1

. (21.16)

2. The solutions with oscillating counterparts obey x1 < x2. These solutions

periodically cross the equator. They lie between two parallel circles, which are

symmetrically placed above and below the equator, namely,

θ− < θ < π − θ−. (21.17)

The angular velocity of solutions with static counterparts obeys ω1 < 1/R. On

the contrary, solutions with translationally invariant counterparts have ω0 >

1/R. Smoothness of the solution requires that cos θ changes sign every time

the string crosses the equator. Thus, the argument of the Weierstrass elliptic

function should be altered by 4ω1 in order to complete a whole period for

θ, in analogy to the period of the corresponding oscillating solutions of the

sine-Gordon equation.

In the static counterpart cases, the angular velocity tends to the critical value

ω0/1 = 1/R, in the positive double root limit (E → µ2), namely the limit of string

solutions with a kink counterpart. The latter are the giant magnons [290]. In the

translationally invariant counterpart cases, the angular velocity tends to the same

critical value in the negative double root limit (E → −µ2), namely the limit of string

solutions corresponding to the stable vacuum of the sine-Gordon equation. This is

the BMN particle solution [288].

Although, elliptic solutions with either static or translationally invariant coun-

terparts accept a description of the form f (θ, φ− ωt) = 0, it is not clear whether

this property should be conceived as a manifestation of rigid rotation or wave prop-

agation. The fundamental difference between these two classes of solutions is that

they can be written in a parametric form as

θ0/1 = f
(
ξ0/1
)
, (21.18)

φ0/1 − ω0/1t0/1 = g
(
ξ0/1
)
. (21.19)

In other words, θ and φ − ωt are parametrized in terms of the spacelike worldsheet

coordinate in the static case. Thus, in this case, we may consider a given point of the

string to be characterized by constant values of θ and ϕ−ωt, implying rigidly rotating

motion of the string. On the contrary, this is not the case for string solutions with

translationally invariant counterparts, since in this case θ and ϕ−ωt are parametrized

in terms of the timelike worldsheet coordinate. These solutions should be understood

as wave propagation solutions.
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21.2 Periodicity Conditions

In order to better understand the form of the solutions, we perform a worldsheet

boost to convert to the static gauge,

ξ0 = γ
(
σ0 − βσ1

)
, (21.20)

ξ1 = γ
(
σ1 − βσ0

)
, (21.21)

where

β =

√
x3 − ℘ (a)

x2 − ℘ (a)
, (21.22)

γ =
1

µ

√
x2 − ℘ (a). (21.23)

Then, the elliptic string solutions assume the form

t0/1 = Rµσ0, (21.24)

cos θ0/1 =

√
x1 − ℘ (γ (σ0/1 − βσ1/0) + ω2)

x1 − ℘ (a)
, (21.25)

φ0/1 =
√
x1 − ℘ (a)γ

(
σ1/0 − βσ0/1

)
− Φ

(
γ
(
σ0/1 − βσ1/0

)
; a
)
. (21.26)

Equations (21.24), (21.25) and (21.26) allow the visualization of a snapshot of the

solution, as freezing the target space time X0 is equivalent to freezing the worldsheet

coordinate σ0. The form of the four classes of elliptic string solutions defined in

section 21.1 is depicted in figure 17.

Clearly, equation (21.25) implies that the angle θ is a periodic function of σ1 in

all cases. The period δσ depends on the type of the solution. More specifically,

δσ0 = δξ/(γβ), (21.27)

δσ1 = δξ/γ, (21.28)

where δξ is the real period/quasi-period of the corresponding sine-Gordon solution,

namely

δξ =

{
4ω1, E < µ2,

2ω1, E > µ2.
(21.29)

Within a period δσ, the azimuthal coordinate φ runs monotonically and its value

changes by δφ, which is determined by the quasiperiodicity property (21.3) of the
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counterpart
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oscillating counterpart
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Figure 17: The four classes of elliptic string solutions

function Φ. It equals

δφ0/1 = ∓δξ
(
i

ω1

(ζ (ω1) a− ζ (a)ω1) +
` (m+ ∓m−)

m+ ±m−

)
= ∓δξ

(
iζ (ω1)

a

ω1

− iζ (a)−

√
(x1 − ℘ (a))

(
x2/3 − ℘ (a)

)
x3/2 − ℘ (a)

)

= ∓iδξ
(
ζ (ω1)

a

ω1

+ ζ
(
ωx3/2

)
− ζ

(
a+ ωx3/2

))
,

(21.30)

where ωxi is the half-period corresponding to the root xi, i.e. ℘(ωxi) = xi. The

quantity δφ0/1 has two contributions; one coming directly from the quasi-periodicity

properties of the phase of the Bloch wave eigenfunctions of the n = 1 Lamé potential

and another one coming from the boost relating the static and linear gauges. Thus,

the appropriate periodicity condition for closed elliptic string solutions without self-
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intersections is

in0/1ω1

(
ζ (ω1)

a

ω1

+ ζ
(
ωx3/2

)
− ζ

(
a+ ωx3/2

))
= π, (21.31)

where n0/1 is an integer when E > µ2 and an even integer when E < µ2.

It seems that for the hoop string solutions that correspond to translationally

invariant solutions of the sine-Gordon equation no periodicity condition is implied.

This apparent asymmetry would have been resolved, if we had considered the R×S2

string target space, as a subspace of AdSn × Sn, implying that the time direction

would be compact, and, thus, the target space would be the fully compact S1×S2. In

AdS spaces, it has be shown that hoop solutions have to obey such a time periodicity

condition [258], which would be inherited in the S2 part of the solution. In general,

in such a case the elliptic solutions would be identical and furthermore it would be

possible to find solutions that wouldn’t simply correspond to closed strings, but to

fully compact toroidal worldsheets. For this purpose, another periodicity condition

similar to the above should be imposed, which would effectively select a subspace of

the elliptic solutions with appropriate angular velocity.

21.3 Spikes

In order to study the shape of the string, we differentiate the altitude θ and the

azimuthal angle ϕ with respect to the spacelike worldsheet variable σ1. This yields

∂θ0/1

∂σ1
= ∓

√
x3/2 − ℘ (a)

2µ
√
x1 − ℘ (a)

℘′
(
γ
(
σ0/1 − βσ1/0

)
+ ω2

)√
℘ (γ (σ0/1 − βσ1/0) + ω2)− ℘ (a)

, (21.32)

∂φ0/1

∂σ1
= ∓

√
(x1 − ℘ (a))

(
x2/3 − ℘ (a)

)
µ

x3/2 − ℘
(
γ
(
σ0/1 − βσ1/0

)
+ ω2

)
℘ (γ (σ0/1 − βσ1/0) + ω2)− ℘ (a)

. (21.33)

As long as solutions with static counterparts are considered, ∂φ1/∂σ
1 vanishes only

when x2 is equal to e2, i.e. only for rotating solutions of the sine-Gordon equation.

In this case, it vanishes when γ (σ1 − βσ0) = (2n+ 1)ω1, where n ∈ Z. Considering

solutions with either oscillating or rotating translationally invariant counterparts,

∂φ0/∂σ
1 vanishes when γ (σ0 − βσ1) = 2nω1, where n ∈ Z. The locations where

∂φ0/1/∂σ
1 vanishes are lying at altitude

sin θspike
0/1 = sin θ∓. (21.34)

Therefore, in such locations the altitude θ obtains an extremal value implying that

its derivative changes sign. Indeed, ∂θ0/1/∂σ
1 also vanishes at these positions. At

174



this points, ∂θ/∂ϕ diverges as

∣∣∣∣∂θ∂φ
∣∣∣∣ ∼

∣∣∣∣∣ ℘′
(
γ
(
σ0/1 − βσ1/0

)
+ ω2

)
℘ (γ (σ0/1 − βσ1/0) + ω2)− x3/2

∣∣∣∣∣ ∼ 1√∣∣℘ (γ (σ0/1 − βσ1/0) + ω2)− x3/2

∣∣ .
(21.35)

It follows that these positions are positions of spikes.

The Pohlmeyer field in the position of a spike assumes the value

ϕspike
Pohlmeyer = 2nπ, n ∈ Z. (21.36)

This justifies the form of the elliptic string solutions presented in figure 17. Transla-

tionally invariant oscillatory solutions of the sine-Gordon equation oscillate around

ϕ = 0. For this reason, the corresponding strings have spikes that appear period-

ically. Half of those spikes point towards the north pole of the sphere and half of

them towards the south pole, corresponding to the Pohlmeyer field being equal to

zero with positive or negative derivative. On the contrary, static oscillatory solutions

of the sine-Gordon equation oscillate around ϕ = π and as a result, the correspond-

ing strings do not have spikes. Both classes of rotating solutions of the sine-Gordon

equation are always increasing (or decreasing) functions and therefore periodically

cross positions with ϕ = 2nπ with the same derivative. For this reason, the string

solutions with rotating counterparts present spikes periodically, which point to the

same pole of the sphere.

It is easy to show that

Rω0/1 sin θspike
0/1 = 1, (21.37)

i.e. the spikes are moving at the speed of light. In the static counterpart case, the

spike may have the interpretation of a given point of the string, which due to initial

conditions, is moving at the speed of light and therefore cannot change velocity no

matter what forces are exerted on it. In the translationally invariant counterpart

case, which has the interpretation of wave propagation, a given point of the string is

spiky at a given time instant, when this point reaches the speed of light, as a result

of the propagation of a wave pattern along the string, and gets violently reflected.

Since the elliptic strings preserve their shape as time evolves, spikes cannot get in

contact, in order to study their interactions. It would be interesting to study the

outcome of the collision of such spiky points; this requires the investigation of string

solutions with more complicated Pohlmeyer counterparts.

The fact that spikes appear at locations where the Pohlmeyer field is a multiple

of 2π is not a coincidence. Writing down the Virasoro constraints in the static gauge
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yields ∣∣∣∂0
~X
∣∣∣2 = R2µ2cos2ϕ

2
, (21.38)∣∣∣∂1

~X
∣∣∣2 = R2µ2sin2ϕ

2
. (21.39)

Thus, any singular point of the string, i.e. a spike, which necessarily is characterized

by vanishing ∂1
~X, is a point where the Pohlmeyer field is a multiple of 2π. Fur-

thermore, the Virasoro constraints imply that these points have
∣∣∣∂0

~X
∣∣∣ = Rµ, which

combined to the fact that at the static gauge t = Rµσ0 implies that the spikes move

at the speed of light. Notice that the Virasoro constraints do not imply that any

point of the string where the Pohlmeyer field is a multiple of 2π, is necessarily a

singular spiky point. However, the latter is also true in the class of elliptic string

solutions.

21.4 Topological Charge and the Sine-Gordon/Thirring Du-

ality

The limit of the elliptic solutions of the sine-Gordon equation at plus and minus

spatial infinity is well-defined only in the vacuum and kink limits. Therefore, a

topological charge can be naturally defined only in these cases. However, in the case

of string configurations with appropriate periodicity conditions, the Pohlmeyer field

obeys periodic and not asymptotic conditions, namely,

ϕ
(
σ0, σ1 + δσ

)
− ϕ

(
σ0, σ1

)
= 2nπ, n ∈ Z. (21.40)

Therefore, a topological charge in the Pohlmeyer reduced theory can be defined in

such solutions, which obviously equals n. We have seen that a spike appears whenever

the Pohlmeyer field assumes a value that is an integer multiple of 2π. It follows that

n = number of spikes. (21.41)

Notice that spikes pointing to opposite poles of the sphere have opposite contributions

to this conserved charge, i.e. they function as spikes and “anti-spikes”. This is evident

in the case of string solutions with translationally invariant oscillating counterparts

(see figure 17). Conservation of the topological charge in the Pohlmeyer reduced

theory implies some kind of “conservation of the number of spikes”, which should

also apply in more complicated string solutions, where spikes may get in touch and

interact.
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It is well known that the sine-Gordon equation is S-dual to the Thirring model

[11]. The Lagrangian densities of the two theories are

LSG =
1

2
∂µϕ∂

µϕ+
α0

β2
cos βϕ, (21.42)

LTh = iΨ̄γµ∂µΨ−m0Ψ̄Ψ− g

2

(
Ψ̄γµΨ

) (
Ψ̄γµΨ

)
. (21.43)

The Thirring model possesses a global symmetry, namely

Ψ→ eiaΨ. (21.44)

This gives rise to a conserved current

jµ = Ψ̄γµΨ (21.45)

and a conserved charge, namely the fermion number,

N =

∫
dσ1Ψ̄γ0Ψ. (21.46)

The duality implies that the parameters and fields of the two dual theories are

connected as,

4π

β2
= 1 +

g

π
, (21.47)

− β

2π
εµν∂νϕ = Ψ̄γµΨ, (21.48)

α0

β2
cos βϕ = −m0Ψ̄Ψ. (21.49)

The classical limit corresponds to β = 1 [312]. According to the above, the conserved

current of the Thirring model can be expressed in terms of the sine-Gordon field as

j0 = − 1

2π
∂1ϕ, (21.50)

j1 =
1

2π
∂0ϕ, (21.51)

and, thus, the fermion number assumes the form

N = − 1

2π

∫
dσ1∂1ϕ = −n, (21.52)

which equals the opposite of the topological charge in the Pohlmeyer reduced theory,

and, thus, the number of spikes.
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The above correspondence naively implies that in the picture of the Thirring

model, the string solutions with rotating counterparts can be considered as multi-

fermion states. On the contrary, solutions with oscillating Pohlmeyer counterparts

have the natural interpretation of bosonic condensates. However, notice that the

sine-Gordon/Thirring duality is a full quantum weak to strong duality. Thus, the

above statement should be viewed cautiously, since taking the classical limit of a

strongly coupled quantum theory is in general non-trivial.

It would be interesting to investigate this duality in the framework of string

theory. Type IIB superstring theory in AdSn×Sn is self-S-dual, with the closed strings

being S-dual to D1-branes [100, 101]. This hints that the spiky elliptic superstrings

should be S-dual to D1-brane configurations, whose Pohlmeyer counterpart has non-

trivial fermion number equal to the number of spikes of the original string solutions.

The investigation of this correspondence requires the derivation of elliptic superstring

solutions propagating on the full AdSn×Sn space and their parallel study in the

corresponding supersymmetric Pohlmeyer reduced theory.

21.5 Interesting Limits and the Moduli Space of Solutions

The elliptic string solutions have some very well known special limits, which are

very simple to study in our parametrization. We do so for the completeness of our

presentation. At these limits, two of the three roots x1, x2 and x3 coincide, and,

thus, the Weierstrass elliptic function degenerates to a simply periodic function,

either trigonometric or hyperbolic. There are two such cases:

In the limit E → −µ2, the two negative roots coincide and the solutions reduce

to

cos θ0/1 = 0, (21.53)

φ0/1 = −µσ0/1. (21.54)

being a hoop around the equator [276] in the static counterpart case and the BMN

particle [288] travelling along the equator at the speed of light in the translationally

invariant counterpart case. Notice that in this limit, the string worldsheet degen-

erates to a one-dimensional manifold. This is not unexpected, since in this limit,

the solution of the Pohlmeyer reduced system degenerates to the vacuum solution of

the sine-Gordon equation, meaning that the vectors ∂+X and ∂−X become parallel.

This property is present to other NLSMs as well(e.g. see [313]).

Similarly, in the limit E → µ2, the two positive roots coincide and the solutions
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degenerate to

cos θ0/1 = sin (iµa) sech
[
µ
(
csc (iµa)σ0/1 − cot (iµa)σ1/0

)]
, (21.55)

φ0/1 = µσ1/0 +
i

2
ln

cosh
[
µ
(
csc (iµa)σ0/1 − cot (iµa)σ1/0 − a

)]
cosh [µ (csc (iµa)σ0/1 − cot (iµa)σ1/0 + a)]

, (21.56)

being the giant magnon [290] with angular opening equal to δφ = 2iµa in the case of

solutions with static counterparts and the single spike [291] in the case of solutions

with translationally invariant counterparts.

The above two limits are specific values for the integration constant E. For a

given value of this constant, the parameter a may take any value on the imaginary

axis on the linear segment defined by the origin and the half-period ω2. Another

interesting limit is the special selection a = −ω2 or ℘ (a) = x3. This is the case

where the linear gauge coincides with the static gauge. Had we restricted Pohlmeyer

reduction to the static gauge, the method applied in section 20 for the construction

of the elliptic string solutions would have resulted to these special solutions only. In

this limit, the solution assumes the form

cos θ0/1 =

√
x1 − ℘ (σ0/1 + ω2)

x1 − x3

, (21.57)

φ0/1 =
√
x1 − x3σ

1/0. (21.58)

In the case of static oscillating counterparts, this is a great circle crossing the two

poles and rotating with angular velocity ω1, whereas in the case of a static rotating

counterpart this is an arc of a great circle centered at one of the two poles and rotating

with angular velocity ω1 so that its endpoints have the speed of light. This is the

well known GKP string solution [289]. Notice that this limit is always compatible

with the periodicity conditions corresponding to the value n1 = 2.

In the case of translationally invariant counterparts, equations (21.57) and (21.58)

describe a hoop being always parallel to the equator which shrinks to a point at the

pole of the sphere and then extends again. In the case of oscillating solutions it

extends further than the equator and then shrinks again to the opposite pole before

it starts re-extending; in the case of rotating solutions it extends up to a maximum

size and then it shrinks again to the same pole. These solutions, although they have

a translationally invariant Pohlmeyer counterpart are spikeless. This is due to the

coincidence of the static gauge to the linear one. As there is no need for a worldsheet

boost to convert to the static gauge, the singular behaviour characterizes solely the

time evolution of the string and not its shape. These solutions satisfy the periodicity

conditions with n0 = 0. The coordinate σ1 takes values in [0, 2π/
√
x1 − x3 ) to

complete one hoop.
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The opposite limit to the above is a/ω2 → 0. In this limit the solution assumes

the form

cos θ0/1 = |a|

√
x1 − ℘

(
σ0/1 − σ1/0

µ |a|
+ ω2

)
, (21.59)

φ0/1 =
x2

µ
σ0/1 − x3

µ
σ1/0 + |a|

(
ζ

(
σ0/1 − σ1/0

µ |a|
+ ω2

)
− ζ (ω2)

)
. (21.60)

This describes strings that have the shape of the general solution, lying very close

to the equator and being characterized by a small angular opening δφ. In this limit,

the static gauge and the linear one are connected via a boost by a velocity close to

the speed of light. These string solutions are the “speeding strings” limit [314].

The elliptic string solutions are a two-parameter family of solutions, in our lan-

guage being the parameters E and a. The advantage of our parametrization is that

only one of the two parameters (the integration constant E) affects the corresponding

solution of the Pohlmeyer reduced system. The worldsheets of the solutions being

characterized by the same constant E comprise an associate (Bonnet) family [190].

Demanding appropriate periodicity conditions, restricts one of the two parameters

to be discrete, or in other words the moduli space of the elliptic string solutions

with appropriate periodicity conditions is a discretely infinite set of one-dimensional

curves. Figure 18 depicts the moduli space of elliptic string solutions and visualises

their classification according to their Pohlmeyer counterpart.
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Figure 18: The moduli space of elliptic string solutions
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22 Energy and Angular Momentum of Elliptic Strings

The R×S2 target space has the symmetry of time translations, leading to a conserved

energy and that of SO(3) rotations, leading to a conserved angular momentum.

Considering solutions with appropriate periodic conditions, the string energy is

given by

E0/1 =

∣∣∣∣ δLδ∂0t

∣∣∣∣ = T

∫ n0/1δσ0/1

0

∂t0/1
∂σ0

dσ1 =
2Tn0/1Rµ

2ω1√
x3/2 − ℘ (a)

, (22.1)

where n0/1 ∈ Z when E > µ2, whereas n0/1 ∈ 2Z in the case E < µ2. The above

expression is indeterminate in the GKP limit of solutions with translationally invari-

ant counterparts (℘(a) = x3, n0 = 0). In this case, the energy assumes the value

E0 = 2πTRµ/
√
x1 − x3.

Similarly, the z-component of the angular momentum is given by

J0/1 =
δL

δ∂0ϕ
= TR2

∫ n0/1δσ0/1

0

sin2θ0/1

∂φ0/1

∂σ0
dσ1

= ∓TR
2

µ

√
x3/2 − ℘ (a)

x1 − ℘ (a)

∫ n0/1δσ0/1

0

(
℘
(
γσ0/1 − γβσ1/0 + ω2

)
− x2/3

)
dσ1

= ±
2Tn0/1R

2
(
ζ (ω1) + x2/3ω1

)√
x1 − ℘ (a)

.

(22.2)

In the following, we define E0/1 := E0/1/(2TR) as well as J0/1 := J0/1/(2TR
2).

The mismatch of the R factors in these definitions is due to the fact that we have

considered time as an independent dimension not related to the radius of the sphere.

Had we considered R×S2 as a submanifold of an AdSn×Sn space with a dual bound-

ary description, the time would have been part of the AdSn, which has the same

radius as that of the sphere, effectively measuring time in units of R. We also recall

that the angular opening δφ, which is associated to the quasi-momentum in the dual

theory, is given by

δφ0/1 = ∓2ω1

iζ (ω1)
a

ω1

− iζ (a)−

√
(x1 − ℘ (a))

(
x2/3 − ℘ (a)

)
x3/2 − ℘ (a)

 . (22.3)

In the positive double root limit, the Weierstrass functions degenerate to simple

trigonometric functions. It is a matter of algebra to show that in this limit and in

the case of static counterparts, the energy and angular momentum diverge, due to

the divergence of ω1 and it holds that

E0 +
δφ0

2
= −2iµa = − arcsinJ , (22.4)

E1 − J1 = n1 sin (−iµa) = n1 sin
δφ1

2
, (22.5)
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which is the very well known dispersion relations of the single spikes and giant

magnons.

In this parametrization, it is also simple to study the limit of the speeding strings.

As a/ω2 → 0 the angular opening δφ tends to zero. whereas the energy and angular

momentum remain finite. In this limit, the angular opening, energy and angular

momentum assume the form

δφ0/1 ' ∓2
(
ζ (ω1) + x3/2ω1

)
(ia) +O

(
a3
)
, (22.6)

E0/1 ' n0/1µ
2ω1 (ia) +O

(
a3
)
, (22.7)

J0/1 ' ±n0/1

(
ζ (ω1) + x2/3ω1

)
(ia) +O

(
a3
)
, (22.8)

implying that

E0/1 − J0/1 '
1

2
n0/1δφ. (22.9)

This is compatible to the giant magnon case since in this limit δφ→ 0.

The expressions (22.1) and (22.2) that provide the energy and angular momentum

of the string in terms of the Weierstrass functions can be used to convert the problem

of the specification of the dispersion relation to an algebraic problem with the help

of appropriate properties of the latter functions. For example, let us consider the

special case the moduli a is equal to the imaginary quarter-period a = −ω2/2. This

is a one-dimensional family of solutions, which in the case of static counterparts,

contains the giant magnon with angular opening equal to π/2. The Weierstrass

functions obey the following quarter period relations

℘
(ω2

2

)
= e3 −

√
(e3 − e1) (e3 − e2) = −E

6
− µ2

2
− µ

√
E + µ2

2
(22.10)

and

ζ
(ω2

2

)
=

1

2

(
ζ (ω2)− i

√
2
√

(e3 − e1) (e3 − e2)− 3e3

)
=

1

2

(
ζ (ω2)− i

(√
E + µ2

2
+ µ

))
.

(22.11)

Using the above properties, the angular opening of the string assumes the form

δφ0/1

(
E,−ω2

2

)
= ±

(
−π

2
+ ω1

(√
E + µ2

2
± µ

))
, (22.12)

whereas the energy of the string is written as

E0

(
E,−ω2

2

)
= µω1

(
E + µ2

2µ2

)− 1
4

, (22.13)

E1

(
E,−ω2

2

)
= µω1

((
E + µ2

2µ2

) 1
2

+ 1

)− 1
2

. (22.14)
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This implies that the integration constant E is equal to the algebraic function of the

ratio (δφ0/1 ± π/2)/E0/1, which solves the equation,

δφ0 + π/2

E0

=

(
E + µ2

2µ2

) 3
4

+

(
E + µ2

2µ2

) 1
4

, (22.15)

δφ1 − π/2
E1

=

(
1−

(
E + µ2

2µ2

) 1
2

)(
1 +

(
E + µ2

2µ2

) 1
2

) 1
2

. (22.16)

These equations are equivalent to cubic equations for E/µ2. Once this function is

specified, it can be substituted in the expression (22.2) in order to obtain an analytic

dispersion relation connecting E , J and δφ that characterises the string solutions with

a = −ω2/2, arbitrarily far from the infinite size limit. Notice that the real period ω1

can also be expressed as an algebraic function of E and δφ through equation (22.1).

So the only transcendental part of the dependence of the angular momentum on E
and δφ is through ζ(ω1) or equivalently the complete elliptic integral of the second

kind, which is finite everywhere in [0, 1].

This procedure can be generalized. Consider the more general case a = −2qω2,

q ∈ Q. This is a one-dimensional sector of the moduli space, which, in the case of

static counterparts, contains a giant magnon solution obeying appropriate periodicity

conditions with δφ = 2qπ (of course this is going to have self-intersections unless q

is of the form 1/n, n ∈ Z). The functions ℘ (2mz/n) with m,n ∈ Z and ℘ (z) are

both elliptic functions with periods 2nω1 and 2nω2. Therefore they are algebraically

related. The above argument for z = ω2 implies that ℘ (2qω2) is an algebraic function

of the root e3.

Furthermore, the Weierstrass zeta function obeys

ζ (z + w) = ζ (z) + ζ (w) +
1

2

℘′ (z)− ℘′ (w)

℘ (z)− ℘ (w)
, (22.17)

ζ (2z) = 2ζ (z) +
℘′′ (z)

2℘′ (z)
. (22.18)

As a direct result of the Weierstrass differential equation ℘′2 = 4℘3−g2℘−g3 and its

derivative ℘′′ = 6℘2−g2/2, ℘′ (z) and ℘′′ (z) are algebraic functions of ℘ (z). Iterative

use of the formulas (22.17) and (22.18) results in ζ (nz) = nζ (z) + fn (℘ (z)), where

fn is an algebraic function. Applying the above for z = 2mω2/n results in the

zeta Weierstrass function ζ (2mω2/n) being equal to 2mζ (ω2) /n plus an algebraic

function of the root e3, or equivalently an algebraic function of the ratio E/µ2, i.e.

ζ (2qω2) = 2qζ (ω2) + fq
(
E/µ2

)
, (22.19)

The specification of these algebraic functions may be a difficult task in practice.

As an indicative example, in the case q = 1/3, ℘ (2ω2/3) is equal to the smallest
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root of the quartic equation 48P 4 − 24g2P
2 − 48g3P − g2

2 = 0, whereas ζ (2ω2/3) =

2ζ (ω2)/3− (℘ (2ω2/3))1/2.

Once these functions have been specified, the angular opening and the energy of

the string assume the form

δφ0/1 (E,−2qω2) = ±
(
−2qπ + µω1gq

(
E/µ2

))
, (22.20)

E0/1 (E,−2qω2) = µω1hq
(
E/µ2

)
, (22.21)

where gq (E/µ2) and hq (E/µ2) are algebraic functions of E/µ2. Therefore, the ratio

E/µ2 is an algebraic function of the quantity (δφ0 ± qπ)/E0/1, i.e.

E = µ2Fq

(
δφ0/1 ± 2qπ

E0/1

)
. (22.22)

Once this algebraic function is specified, it can be substituted in (22.2) to provide a

closed formula for the dispersion relation of elliptic strings that satisfy a = −2qω2.

Since the set of rational numbers is a dense subset of the real numbers, the union

of the trajectories a = −2qω2, where the dispersion relation assumes an analytic

form, is a dense subset of the moduli space of the elliptic string solutions. Figure 19

shows how the a = −2qω2 trajectories lie in the moduli space.

static counterparts translationally invariant counterparts

E−µ2 µ2℘ (a)

q

1/2
1/3

1/4

1/5
...

E−µ2 µ2℘ (a)

q

1/2
1/3

1/4

1/5
...

Figure 19: The trajectories in the moduli space where the dispersion relation can be

specified analytically

The above process cannot be applied in the case of the GKP limit, i.e. the

specific selection q = 1/2. In this case, the angular opening is not a function of the

integration constant E, but it simply equals δφ1 = π, i.e. the algebraic function

gq in equation (22.20) vanishes. Therefore, the integration constant E cannot be

specified algebraically by an appropriate linear combination of the energy and the

angular opening, but it requires the inversion of the elliptic integral that relates it

to the string energy. This cannot be performed analytically; usually this inversion is

performed perturbatively around the infinite size limit [315–318].
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23 Dressed Strings on R× S2

The dressing method enables us to construct new solutions of a NLSM once we are

given a solution of the latter. We refer to this solution as the seed solution. Given

the seed solution we may obtain a new solution of the NLSM by solving a pair of first

order equations, which is called the auxiliary system. This is considered a simpler

task than solving the original equations of motion, which are non-linear and second

order. For a review of the dressing method see appendix J.

The auxiliary system reads

∂±Ψ(λ) =
1

1± λ
(∂±f) f−1Ψ(λ), (23.1)

where λ is the spectral parameter, which is in general complex. The seed solu-

tion X is mapped to an element of the coset SO(3)/SO(2), which is denoted as f .

The compatibility relation ∂+∂−Ψ = ∂−∂+Ψ, which ensures the local existence of

a solution of the auxiliary system, implies that f obeys the equations of motion

∂+ ((∂−f) f−1) + ∂− ((∂+f) f−1) = 0. The normalization of Ψ(λ) is fixed as

Ψ(0) = f. (23.2)

The main idea of the dressing method is the fact that a gauge transformation of the

auxiliary field

Ψ′(λ) = χ(λ)Ψ(λ), (23.3)

corresponds to a new, non-trivial element of the coset, namely

f ′ = χ(0)f, (23.4)

which is associated to a new string solution in S2, via the inverse mapping. We refer

the reader to appendix J for more details on the dressing method.

The mapping from the enhanced space of S2, namely R3, to the coset SO(3)/SO(2),

that is used, is

f = J
(
I − 2XXT

)
, J =

(
I − 2X0X

T
0

)
, (23.5)

where X0 is a constant vector and XTX = XT
0 X0 = 1. For any unit norm vector X,

it is easy to show that
(
I − 2XXT

)2
= I, which implies that

fJfJ = I, fT = f−1. (23.6)

In addition, f is real, i.e.

f̄ = f. (23.7)
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Thus, f is indeed an element of the coset SO(3)/SO(2). On a more formal basis,

starting with the group SL(2;C), the coset can be constructed using the following

involutions

σ1 (f) = (f †)−1, (23.8)

σ2 (f) = JfJ, (23.9)

σ3 (f) = f̄ . (23.10)

Demanding invariance under the first involution restricts f to SU(3). Setting σ2 (f) =

f−1 restricts f further, to the coset SU(3)/U(2). Finally, invariance under the last

involution implies that f is an element of the coset SO(3)/SO(2). Applying the same

involutions on the auxiliary system (23.1) implies that the transformed Ψ(ξ0, ξ1;λ)

must belong to the set of solutions of the auxiliary system. The latter is generated by

the right multiplication with a constant matrix of a given solution; in our discussion

this solution is Ψ(ξ0, ξ1;λ). Thus, the following constraints must be imposed9:

Ψ(λ)m1(λ) =
(
Ψ(λ)T

)−1
, (23.11)

Ψ(λ)m2(λ) = fJΨ(1/λ)J, (23.12)

Ψ(λ)m3(λ) = Ψ(λ̄). (23.13)

The matrices mi themselves are subject to constraints, which stem from the fact that

the involutions satisfy σ2 = I. In particular, they obey

m1(λ) = mT
1 (λ), (23.14)

m2(λ)Jm2(1/λ)J = I, (23.15)

m3(λ)m̄3(λ̄) = I. (23.16)

In addition, since Ψ(0) = f the matrices m1 and m3 must reduce to the identity

matrix for λ = 0, i.e.

m1(0) = m3(0) = I. (23.17)

These matrices are related to the so called reduction group [260, 319]. As we will

show subsequently, the dressed string solution is not affected by the choice of these

matrices.

24 Dressed Elliptic String Solutions

In this section, we apply the dressing method that we review in section J, to the

elliptic string solutions of section 20, using the simplest possible dressing factor, in

order to construct new classical string solutions propagating on R×S2.

9Equation (23.11) corresponds to the action of both involutions (23.8) and (23.10).
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The non-trivial seed solution (21.4) renders the straightforward application of the

dressing method very difficult. This is due to the corresponding auxiliary system,

which is a complicated system of coupled partial differential equations with non-

constant coefficients. In order to avoid these difficulties, we implement an intuitive

detour, by expressing the seed solution as a worldsheet dependent rotation matrix,

acting on a constant vector, which coincides with the rotation axis of the seed so-

lution, i.e. the z-axis. Furthermore, the parametrization of the coset SO(3)/SO(2)

is carried out, so that this constant vector corresponds to its identity element via

the mapping (23.5). In this way, we manage to express one of the two PDEs of the

auxiliary system in a form where one of the two worldsheet coordinates does not

appear explicitly, making the solution of the system possible. Simultaneously, all

components of the auxiliary field equations obtain a given parity under the inversion

λ→ 1/λ, facilitating the application of the coset involution. Finally, the expression

of the seed solution as a rotation matrix acting on a constant vector simplifies the

translation of the dressed solution from the form of a coset element to a unit vector.

24.1 The Auxiliary System for an Elliptic Seed Solution

In order to implement the dressing method, we have to solve the auxiliary system

(J.6). This reads

∂±Ψ (λ) =
1

1± λ
(∂±f) f−1Ψ (λ) , (24.1)

where f is a given seed solution of the NLSM and Ψ (λ) must obey the condition

Ψ (0) = f . As seed solutions, we are going to use the SO(3)/SO(2) coset elements

f corresponding to the elliptic string solutions (21.4) through the mapping (23.5).

These solutions depend in a trivial manner on either the time-like or space-like world-

sheet coordinate. It follows that it is technically advantageous to express the auxil-

iary system (24.1) as a system of differential equations with independent variables the

time-like and space-like coordinates ξ0 and ξ1, instead of the left- and right-moving

coordinates ξ±. Following these lines, the auxiliary system assumes the form

∂iΨ (λ) =
(
∂̃if
)
f−1Ψ (λ) , (24.2)

where i = 0, 1 and

∂̃0 =
1

1− λ2
∂0 −

λ

1− λ2
∂1, (24.3)

∂̃1 =
1

1− λ2
∂1 −

λ

1− λ2
∂0. (24.4)

It turns out to be convenient to express the initial solution X as an orthogonal

matrix U (ξ0, ξ1) acting on another unit vector X̂, as

X := UX̂. (24.5)
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It has to be noted that X̂ is not a solution of the NLSM. In terms of the vector X̂,

the seed solution f reads

f = JUJf̂UT , (24.6)

where

f̂ := J
(
I − 2X̂X̂T

)
. (24.7)

Obviously f̂ ∈ SO(3)/SO(2). It is also convenient to define Ψ̂ (λ) as

Ψ (λ) := JUJΨ̂ (λ) . (24.8)

Then, the equations of the auxiliary system (24.2), expressed in terms of hatted

quantities, assume the form

∂iΨ̂ =
[
JUT

((
∂̃i − ∂i

)
U
)
J−f̂UT

(
∂̃iU
)
f̂T +

(
∂̃if̂
)
f̂T
]

Ψ̂. (24.9)

We select X0 to be the unit norm vector along the z axis, i.e.

X0 =

0

0

1

 , (24.10)

so that J = diag(1, 1,−1). Moreover, the matrix U can be selected so that X̂ = X0.

Thus, f̂ becomes the identity element of the coset and the equations of the auxiliary

system assume the form

∂iΨ̂ =
{
JUT

[(
∂̃i − ∂i

)
U
]
J − UT

[
∂̃iU
]}

Ψ̂, (24.11)

while the normalization (23.2) reduces to

Ψ̂(0) = UT . (24.12)

In addition, the constraints (23.11), (23.12) and (23.13) for Ψ, imply that Ψ̂ is subject

to the following constraints:

Ψ̂(λ)m1(λ) =
(

Ψ̂(λ)T
)−1

, (24.13)

Ψ̂(λ)m2(λ) = JΨ̂(1/λ)J, (24.14)

Ψ̂(λ)m3(λ) =
¯̂
Ψ(λ̄). (24.15)

Equation (24.5) implies that the seed string solution can be expressed as X = UX0,

where

U = U2U1 (24.16)
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and the matrices U1 and U2 are given by

U1 =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , U2 =

 cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 . (24.17)

Until this point, the formalism is valid for any seed string solution. Let us restrict

our attention to the case of elliptic strings. Without loss of generality, we perform

the analysis in the case of seed solutions with static Pohlmeyer counterparts. It this

case

sin θ = F1 (ξ) =

√
℘ (ξ + ω2)− ℘ (a)

x1 − ℘ (a)
,

cos θ = F2 (ξ) =

√
x1 − ℘ (ξ + ω2)

x1 − ℘ (a)
,

(24.18)

φ
(
ξ0, ξ1

)
=
√
x1 − ℘ (a)ξ0 − Φ

(
ξ1; a

)
. (24.19)

Obviously, F1 and F2 obey F 2
1 (ξ1) + F 2

2 (ξ1) = 1. Moreover, F1, F2 and φ satisfy

∂0φ =
√
x1 − ℘ (a), (24.20)

∂1φ = −i℘
′ (a)

2

1

℘ (ξ1 + ω2)− ℘ (a)
, (24.21)

∂0F1 = 0, ∂0F2 = 0, (24.22)

∂1F1 =
F3

F1

, ∂1F2 = −F3

F2

, (24.23)

where

F3

(
ξ1
)

:=
℘′ (ξ1 + ω2)

2 (x1 − ℘ (a))
. (24.24)

In terms of the functions F1, F2 and φ, the Virasoro constraints are expressed as

F 2
1

[
(∂0φ)2 + (∂1φ)2]+ [F2 (∂1F1)− F1 (∂1F2)]2 =

m2
+ +m2

−

2
, (24.25)

2F 2
1 (∂0φ) (∂1φ) =

m2
+ −m2

−

2
. (24.26)

Similarly, the equations of motion imply

F1∂
2
1φ+ 2 (∂1F1) (∂1φ) = 0, (24.27)

F2∂
2
1F1 − F1∂

2
1F2 = F1F2

[
−(∂0φ)2 + (∂1φ)2] , (24.28)

F1∂
2
1F1 + F2∂

2
1F2 = −[F2 (∂1F1)− F1 (∂1F2)]2. (24.29)
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The equations of the auxiliary system require the calculation of the quantities

UT (∂iU) = UT
1 U

T
2 (∂iU2)U1 + UT

1 (∂iU1) . (24.30)

It is a matter of simple algebra to show that

UT
1 U

T
2 (∂iU2)U1 = (∂iϕ) (F2T3 + F1T1) , (24.31)

UT
1 (∂0U1) = 0, (24.32)

UT
1 (∂1U1) = [F2 (∂1F1)− F1 (∂1F2)]T2 =

F3

F1F2

T2, (24.33)

where Ti are the SO(3) generators, namely,

T1 =

 0 0 0

0 0 −1

0 1 0

 , T2 =

 0 0 1

0 0 0

−1 0 0

 , T3 =

 0 −1 0

1 0 0

0 0 0

 . (24.34)

Adopting the notation

UT (∂iU) = kjiTj, (24.35)

equations (24.31), (24.32) and (24.33) imply that

k1
0 = − (∂0φ)F1, k1

1 = − (∂1φ)F1, (24.36)

k2
0 = 0, k2

1 = F2 (∂1F1)− F1 (∂1F2) , (24.37)

k3
0 = (∂0φ)F2, k3

1 = (∂1φ)F2. (24.38)

Notice that none of the coefficients kji depends on the time-like coordinate ξ0.

Similarly, we adopt the notation

∂iΨ̂ = κjiTjΨ̂. (24.39)

Observing that

JT1J = −T1, JT2J = −T2, JT3J = T3, (24.40)

the equations of the auxiliary system (24.11) imply that

κ3
0/1 = −k3

0/1, (24.41)

κ
1/2
0/1 = −1 + λ2

1− λ2
k

1/2
0/1 +

2λ

1− λ2
k

1/2
1/0 = − coth zk

1/2
0/1 + csch zk

1/2
1/0, (24.42)

where λ = ez. The above imply that the coefficients κji obey the properties

κ3
0/1 (1/λ) = κ3

0/1 (λ) , (24.43)

κ
1/2
0/1 (1/λ) = −κ1/2

0/1 (λ) (24.44)
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or in a shorthand notation

κ0/1 (1/λ) = −Jκ0/1 (λ) , (24.45)

where

κ0/1 =

 κ1
0/1

κ2
0/1

κ3
0/1

 . (24.46)

It is a matter of algebra to show that κT0 κ0 equals

κT0 κ0 := ∆ = (∂0φ)2 − 2F 2
1 (∂0φ) (∂1φ)

1 + λ2

1− λ2

2λ

1− λ2

+
{
F 2

1

[
(∂0φ)2 + (∂1φ)2]+ [F2 (∂1F1)− F1 (∂1F2)]2

}( 2λ

1− λ2

)2

. (24.47)

Using the Virasoro constraints (24.25) and (24.26), we can express ∆ in terms of the

quantities E and m±,

∆ =
E

2
+
m2

+

4

(
1− λ
1 + λ

)2

+
m2
−

4

(
1 + λ

1− λ

)2

=
E

2
+
m2

+

4
tanh2 z

2
+
m2
−

4
coth2 z

2
.

(24.48)

Thus, the quantity ∆ is a constant. Moreover, it can be easily shown that ∆ (1/λ) =

∆ (λ). The quantity ∆ could be considered as the generalization of the parameter

`2 of the elliptic seed solution after a “boost” in the worldsheet coordinates with

complex rapidity z/2.

24.2 The Solution of the Auxiliary System

Since all coefficients in the equations of the auxiliary system (24.39) are functions of

ξ1 only, we may proceed to solve those that involve the derivatives of Ψ̂ with respect

to ξ0 as ordinary differential equations, upgrading the undetermined constants to

undetermined functions of ξ1. These equations are a set of three identical linear first

order systems, one for each column of Ψ̂, Ψ̂i, i = 1, 2, 3. This linear system has the

solution

Ψ̂i (λ) = c0
i

(
ξ1
)
v0 + c+

i

(
ξ1
)
v+e

i
√

∆ξ0

+ c−i
(
ξ1
)
v−e

−i
√

∆ξ0

, (24.49)

where

v0 =
1√
∆

 κ1
0

κ2
0

κ3
0

 , v± =
1√

∆
(

(κ1
0)

2
+ (κ2

0)
2
)
 κ3

0κ
1
0 ± i
√

∆κ2
0

κ3
0κ

2
0 ∓ i
√

∆κ1
0

−(κ1
0)

2 − (κ2
0)

2

 . (24.50)

191



The vectors v0 and v± have been selected so that vT0 v0 = 1, whereas vT±v± = 0. Fur-

thermore, the vectors v± obey the relations
(
v++v−

2

)T (v++v−
2

)
=
(
v+−v−

2i

)T (v+−v−
2i

)
=

1.

Using the definitions (24.36), (24.37) and (24.38), as well as the equations of

motion (24.27), (24.28) and (24.29), it is a matter of algebra to show that

∂1k
1
0 = −k2

1k
3
0, ∂1k

1
1 = k3

1k
2
1, (24.51)

∂1k
2
0 = 0, ∂1k

2
1 = −k1

1k
3
1 + k1

0k
3
0, (24.52)

∂1k
3
0 = k2

1k
1
0, ∂1k

3
1 = k2

1k
1
1 + 2k3

1k
2
1k

3
0/k

1
0. (24.53)

Then, the definitions (24.41) and (24.42) imply that

∂1κ
1
0 = κ2

1κ
3
0 − κ3

1κ
2
0, (24.54)

∂1κ
2
0 = κ3

1κ
1
0 − κ1

1κ
3
0, (24.55)

∂1κ
3
0 = κ1

1κ
2
0 − κ2

1κ
1
0 (24.56)

or in a shorthand notation

∂1κ0 = κ1 × κ0. (24.57)

The vectors v0 and v± can be written in terms of κ0 as

v0 =
κ0√
κT0 κ0

:= e3, (24.58)

v± =
X0 × κ0√

(X0 × κ0)T (X0 × κ0)
× κ0√

κT0 κ0

∓ i X0 × κ0√
(X0 × κ0)T (X0 × κ0)

:= e1 ∓ ie2.

(24.59)

The vectors

ei =

 X0 × κ0√
(X0 × κ0)T (X0 × κ0)

× κ0√
κT0 κ0

,
X0 × κ0√

(X0 × κ0)T (X0 × κ0)
,

κ0√
κT0 κ0


(24.60)

form a basis, which obeys eTi ej = δij and ei × ej = εijkek. Notice that as λ→ 0,

e1 (0) =

 −F2

0

−F1

 , e2 (0) =

 0

1

0

 , e3 (0) =

 F1

0

−F2

 (24.61)

and furthermore

e1/2 (1/λ) = θe1/2 (λ) , e3 (1/λ) = −θe3 (λ) . (24.62)
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Using the fact that κT0 κ0 is constant, one can show that

∂1e1 − κ1 × e1 = −
√
κT0 κ0

(X0 × κ1)T (X0 × κ0)

(X0 × κ0)T (X0 × κ0)
e2, (24.63)

∂1e2 − κ1 × e2 =
√
κT0 κ0

(X0 × κ1)T (X0 × κ0)

(X0 × κ0)T (X0 × κ0)
e1, (24.64)

∂1e3 − κ1 × e3 = 0, (24.65)

implying that

∂1v0 − κ1 × v0 = 0, (24.66)

∂1v± − κ1 × v± = ∓i
√
κT0 κ0

(X0 × κ1)T (X0 × κ0)

(X0 × κ0)T (X0 × κ0)
v± := ∓ig

(
ξ1
)
v±, (24.67)

where

g
(
ξ1
)

=
√

∆
κ1

1κ
1
0 + κ2

1κ
2
0

(κ1
0)

2
+ (κ2

0)
2 . (24.68)

It is a matter of algebra to show that

g
(
ξ1
)

=

√
∆
(
m2

+

4

(
1−λ
1+λ

)2 − m2
−

4

(
1+λ
1−λ

)2
)

℘ (ξ1 + ω2) + E
6

+
m2

+

4

(
1−λ
1+λ

)2
+

m2
−

4

(
1+λ
1−λ

)2
= − i

2

℘′ (ã)

℘ (ξ1 + ω2)− ℘ (ã)
,

(24.69)

where

℘ (ã) = −E
6
−
m2

+

4

(
1− λ
1 + λ

)2

−
m2
−

4

(
1 + λ

1− λ

)2

= −E
6
−
m2

+

4
tanh2 z

2
−
m2
−

4
coth2 z

2
.

(24.70)

and

℘′ (ã)

i
√

∆
=
m2

+

2

(
1− λ
1 + λ

)2

−
m2
−

2

(
1 + λ

1− λ

)2

=
m2

+

2
tanh2 z

2
−
m2
−

2
coth2 z

2
. (24.71)

The quantity ã has the property ã (1/λ) = ã (λ).

Substituting the above to the spatial derivative equation of the auxiliary system,

we get

dc0
i (ξ1)

dξ1
v0 +

[
dc+

i (ξ1)

dξ1
− ig

(
ξ1
)
c+
i

(
ξ1
)]
v+e

i
√

∆ξ0

+

[
dc−i (ξ1)

dξ1
+ ig

(
ξ1
)
c−i
(
ξ1
)]
v−e

−i
√

∆ξ0

= 0, (24.72)

193



implying that

c0
i

(
ξ1
)

= c0
i (24.73)

c±i
(
ξ1
)

= c±i e
±i
∫
dξ1g(ξ1) := c±i e

∓iΦ(ξ1;ã), (24.74)

where the function Φ is the same quasi-periodic function that appears in the con-

struction of the elliptic strings and it is defined in equation (21.2). Then,

Ψ̂i (λ) = c0
i v0 + c+

i v+e
i(
√

∆ξ0−Φ(ξ1;ã)) + c−i v−e
−i(
√

∆ξ0−Φ(ξ1;ã)) (24.75)

or equivalently

Ψ̂i (λ) =C1
i (λ)

[
cos
(√

∆ξ0 − Φ
(
ξ1; ã

))
e1 + sin

(√
∆ξ0 − Φ

(
ξ1; ã

))
e2

]
+ C2

i (λ)
[
− cos

(√
∆ξ0 − Φ

(
ξ1; ã

))
e2 + sin

(√
∆ξ0 − Φ

(
ξ1; ã

))
e1

]
+ C3

i (λ) e3

:=Cj
i (λ)Ej,

(24.76)

where C1
i = c+

i + c−i , C2
i = i

(
c+
i − c−i

)
and C3

i = c0
i . The vectors Ej are defined as

E1 := cos
(√

∆ξ0 − Φ
(
ξ1; ã

))
e1 + sin

(√
∆ξ0 − Φ

(
ξ1; ã

))
e2, (24.77)

E2 := − cos
(√

∆ξ0 − Φ
(
ξ1; ã

))
e2 + sin

(√
∆ξ0 − Φ

(
ξ1; ã

))
e1, (24.78)

E3 := e3 (24.79)

and they obey ET
i Ej = δij and Ei × Ej = −εijkEk. Notice that as λ→ 0,

∆ (0) = x1 − ℘ (a) = `2, ã (0) = a (24.80)

and thus, √
∆ξ0 − Φ

(
ξ1; ã

)∣∣∣
λ=0

= `ξ0 − Φ
(
ξ1; a

)
= ϕ

(
ξ0, ξ1

)
. (24.81)

Therefore,

E1 (0) =

 −F2 cosϕ

sinϕ

−F1 cosϕ

 , E2 (0) =

 −F2 sinϕ

− cosϕ

−F1 sinϕ

 , E3 (0) =

 F1

0

−F2

 . (24.82)

Additionally, the properties (24.62) imply

E1/2 (1/λ) = JE1/2 (λ) , E3 (1/λ) = −JE3 (λ) , (24.83)
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which implies E (1/λ) = JE (λ) J . Finally, notice that the basis vectors Ei have the

property

∂0/1Ei = κ0/1 × Ei. (24.84)

Defining the matrices E and C as the matrices comprised by the three columns

being the vectors Ej and Cj respectively, the solution can be written in the form

Ψ̂ (λ) = EC. (24.85)

It is straightforward to show that the above imply that one can define

m1(λ) =
[
CT (λ)C(λ)

]−1
, (24.86)

m2(λ) = C−1(λ)J(λ)C(1/λ)J, (24.87)

m3(λ) = C−1(λ)C̄(λ̄), (24.88)

so that (23.14), (23.15) and (23.16) are identically satisfied.

Finally, the solution should satisfy the condition (24.12), i.e.

Ψ̂ (0) =

 F2 cosφ F2 sinϕ −F1

− sinφ cosφ 0

F1 cosφ F1 sinφ F2

 . (24.89)

Since the matrix E obeys E (0) = −Ψ̂ (0), it follows that the matrix C should obey

C (0) = −I. (24.90)

Thus, it is simple to satisfy all the conditions, selecting

C (λ) = C (0) = −I, (24.91)

implying that the solution of the auxiliary system that obeys all the appropriate

involutions and the initial condition is

Ψij (λ) = −Ei
j. (24.92)

24.3 The Dressed Solution in the Case of Two Poles

As analysed in section J, the simplest possible dressing factor has two poles lying on

the unit circle at positions complex conjugate to each other. In this case, the dressed

solution is

f ′ = χ (0) Ψ (0) , (24.93)
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where χ (λ) is given by equations (J.35) and (J.36). The constant vector p obeys

pTp = 0, p̄ = Jp and thus, it may be parametrized in terms of two real numbers ρ

and ω as

p =

 ρ cosω

ρ sinω

iρ

 . (24.94)

We also define

λ1 := eiθ1 . (24.95)

In order to visualize and understand the behaviour of the dressed solution, we

would like to find the unit vector X ′ that corresponds to the coset element f ′ through

the mapping (23.5). For this purpose we define

f ′ = JUJf̂ ′UT . (24.96)

Then

f̂ ′ = J
(
I − 2X̂ ′X̂ ′T

)
, (24.97)

where

X ′ = UX̂ ′, (24.98)

in a similar manner to the definitions we used to solve the auxiliary system. Then,

f̂ ′ = I − λ1 − 1/λ1

λ1

JΨ̂ (λ1) JppTJΨ̂T (λ1)

pTJΨ̂T (λ1) JΨ̂ (λ1) Jp
− 1/λ1 − λ1

1/λ1

Ψ̂ (λ1) JppTJΨ̂T (λ1) J

pTJΨ̂T (λ1) JΨ̂ (λ1) Jp
(24.99)

or

f̂ ′ = I − λ1 − 1/λ1

λ1

X−X
T
+

XT
+X−

− 1/λ1 − λ1

1/λ1

X+X
T
−

XT
+X−

, (24.100)

where

X+ = Ψ̂ (λ1) Jp, X− = JΨ̂ (λ1) Jp. (24.101)

The vectors X± obey the property XT
±(X±) = 0 and they are complex conjugate to

each other. Using these facts, along with the mapping (23.5), it is straightforward

to show that

X̂ ′ = sin θ1
X+ +X−

−iXT
0 (X− −X+)

+ cos θ1X0

=

√
1

2XT
+X−

sin θ1 (X+ +X−) + cos θ1X0

:= sin θ1X1 + cos θ1X0.

(24.102)

Thus, the dressed string solution is

X ′ = UX̂ ′, (24.103)
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where X̂ ′ is given by (24.102).

It is easy to show that the vector X1 is a unit vector, which is perpendicular to

X0, due to the fact that X− = JX+. Thus, equation (24.102) implies that the arc

connecting the endpoints of the vectors X0 and X̂ ′ is equal to θ1. Since the seed

solution is given by X = UX̂ = UX0 and the dressed solution is given by X ′ = UX̂ ′,

this property is transferred to the points of the seed and dressed solutions that

correspond to the same worldsheet parameters ξ0/1. In other words, the dressed

string solution can be visualized as being drawn by a point in the circumference of

an epicycle of arc radius θ1, which moves so that its center lies on the seed string

solution.

This statement provides a nice geometric visualization of the action of the dressing

on the shape of the string. It is a general property that follows from equation (24.102),

which is the outcome of the form of the dressing factor in the case it has only two

poles (J.35), as well as the mapping (23.5) between unit vectors and elements of the

coset SO(3)/SO(2). It follows that the epicycle picture is not a specific property of

the dressed elliptic solutions; it is rather a generic property that holds whenever the

simplest dressing factor is adopted. This interesting property of the dressing method

deserves further investigation in the case of strings propagating on other symmetric

spaces or in the case of a more complicated dressing factor. A further implication

of the above is the fact that at the limit θ1 → 0 the dressed solution tends to the

seed, whereas as θ1 → π the dressed solution tends to the reflection of the seed with

respect to the origin of the enhanced space.

In figure 20, four representative dressed elliptic string solutions are depicted. In

these plots, the dressed string solutions are depicted with a thick black line, whereas

the seed solutions are depicted with a thin one. In the top row, the seed solution has

a translationally invariant elliptic Pohlmeyer counterpart, whereas in the bottom row

it has a static one. On the left column the seed solution has an oscillating counterpart

with E = µ2/10 and a selected so that n = 10, whereas on the right column the seed

solution has a rotating counterpart with E = 6µ2/5 and a selected so that n = 7. In

all cases the pair of poles of the dressing factor lies at λ = e±i
π
12 . Large spheres are

points of the dressed solution, whereas small spheres are points of the seed solution.

Spheres with the same color correspond to the same worldsheet coordinates ξ0 and

ξ1 and they are connected via an epicycle plotted with the same color, too.

Our analysis focused on the case of seed solutions that are elliptic string solutions

with static Pohlmeyer counterparts. It is trivial to show that had we used elliptic

strings with translationally invariant counterparts as seed solutions, we would have

resulted in dressed string solutions that can be obtained from the ones presented

here after the trivial operation ξ0 ↔ ξ1.
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seed with static
oscillating counterpart

seed with static
rotating counterpart

seed with translationally invariant
oscillating counterpart

seed with translationally invariant
rotating counterpart

Figure 20: The dressed elliptic string solutions

25 The Sine-Gordon Equation Counterparts

The elliptic string solutions presented in section 20 can be naturally classified with

respect to their Pohlmeyer counterparts. Furthermore, in 21 it was also shown that

many of the properties of these solutions are connected to the properties of their

corresponding sine-Gordon counterparts. For example, the number of spikes equals

the topological number in the sine-Gordon theory. For these reasons, we proceed to

specify in this section the sine-Gordon equation counterparts of the dressed elliptic

string solutions, which are obtained in section 24.
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25.1 BäcklundTransformations

The sine-Gordon equation (18.26) possesses the well-known Bäcklundtransformations

∂+
ϕ+ ϕ̃

2
= aµ sin

ϕ− ϕ̃
2

, (25.1)

∂−
ϕ− ϕ̃

2
=

1

a
µ sin

ϕ+ ϕ̃

2
, (25.2)

connecting pairs of solutions. As described in the introduction, they can be used for

the construction of new solutions from a seed one. Their merit is the fact that this is

achieved via solving a pair of first order differential equations, instead of the original

second order one. The usual application of these transformations is the construction

of the kink solutions, using the vacuum ϕ = 0 as seed.

A nice property of the Bäcklundtransformations is the fact that their iterative use

does not require further solving of differential equations. Multi-kink solutions can

be obtained from the single-kink ones algebraically, using the Bianchi permutabil-

ity theorem. If ϕ1 is related to the seed ϕ through a Bäcklundtransformation with

parameter a1 and ϕ2 is related to the same seed ϕ through a Bäcklundtransforma-

tion with parameter a2, then a new solution ϕ12 that is connected to ϕ1 through a

Bäcklundtransformation with parameter a2 (or equivalently to ϕ2 through a Bäck-

lundtransformation with parameter a1) will be given by

tan
ϕ12 − ϕ

4
=
a1 + a2

a1 − a2

tan
ϕ1 − ϕ2

4
. (25.3)

25.2 Virasoro Constraints

A basic ingredient of the Pohlmeyer reduction is the fact that the energy momentum

tensor can be set constant, with obvious consequences for the form of the Virasoro

constraints. In the following, as a first step towards the specification of the Pohlmeyer

counterparts of the dressed solutions discovered in section 24, we show explicitly that

they obey the Virasoro constraints as expected by the analysis in section J.4.

We have shown that the dressed solution is written as

X ′ = UX̂ ′ = U (X1 sin θ1 +X0 cos θ1) . (25.4)

The vectors X0 and X1 are unit vectors, orthogonal to each other.

In appendix K.2 we show that the dressed solution satisfies the Virasoro con-

straints, as long as the seed solution does so. The notation of the appendix, i.e. W

and W̄ , is related to X± adW = UX− and W̄ = UX+.
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25.3 Dressing vs BäcklundTransformation

In appendix 24 we show that the dressed solution gives rise to the following set of

equations

∂−
ϕ− ϕ̃

2
= −m− cot

θ1

2
sin

ϕ+ ϕ̃

2
, (25.5)

∂+
ϕ+ ϕ̃

2
= m+ tan

θ1

2
sin

ϕ− ϕ̃
2

, (25.6)

which are the usual Bäcklundtransformations (25.1) and (25.2) with parameter10

a =

√
−m+

m−
tan

θ1

2
. (25.7)

It follows that the dressed string solutions obtained in section 24 have Pohlmeyer

counterparts that are connected to the elliptic solutions of the sine-Gordon equa-

tion presented in section 20 via a single Bäcklundtransformation with parameter

determined by the position of the poles of the dressing factor.

25.4 BäcklundTransformation of Elliptic Solutions

The last step towards obtaining the Pohlmeyer counterparts of the dressed elliptic

string solutions of section 24 is the application of a Bäcklundtransformation to the

elliptic solutions of the sine-Gordon equation (19.15). Such solutions have been

studied in the past [320–323] in a different context and language.

In general, a much wider class of solutions of the sine-Gordon equation can be ex-

pressed in terms of hyperelliptic functions [304,305]. Such solutions can be classified

in terms of the genus of the relevant torus. The elliptic solutions that we have studied

in section 20 are the simple case of genus-one solutions. Pairs of solutions connected

via a Bäcklundtransformation are characterized by genuses whose difference equals

one. This extra hole in the relevant torus is a degenerate one meaning that one

of the corresponding periods is infinite. Therefore, the solutions that we are going

to construct applying a Bäcklundtransformation to elliptic solutions are degenerate

cases of genus two solutions of the sine-Gordon equation. In a different approach one

may find other genus two solutions via separation of variables [324,325].

The technical advantage of using an elliptic solution as seed is the fact that they

depend solely on either the space-like or time-like worldsheet coordinate. Writing

down the Bäcklundtransformations (25.1) and (25.2) in terms of the coordinates ξ0

10Actually the sign of a cannot be determined, since it corresponds to a shift of ϕ or ϕ̃ by 2π.
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and ξ1 yields

∂1
ϕ

2
+ ∂0

ϕ̃

2
=
µ

2

(
a+

1

a

)
sin

ϕ

2
cos

ϕ̃

2
− µ

2

(
a− 1

a

)
cos

ϕ

2
sin

ϕ̃

2
, (25.8)

∂0
ϕ

2
+ ∂1

ϕ̃

2
=
µ

2

(
a− 1

a

)
sin

ϕ

2
cos

ϕ̃

2
− µ

2

(
a+

1

a

)
cos

ϕ

2
sin

ϕ̃

2
. (25.9)

Without loss of generality, we start our analysis considering that ϕ is a transla-

tionally invariant elliptic solution of the sine-Gordon equation as given by equation

(19.16). Equation (19.15) directly implies that

cos2ϕ

2
=

1

µ2

(
x2 − ℘

(
ξ0 + ω2

))
, (25.10)

sin2ϕ

2
=

1

µ2

(
℘
(
ξ0 + ω2

)
− x3

)
, (25.11)

(∂0ϕ)2 = 4
(
x1 − ℘

(
ξ0 + ω2

))
. (25.12)

The sign of the quantities cosϕ
2
, sinϕ

2
and ∂0ϕ depends on whether ϕ is an oscillating

or rotating solution. Although these signs are not going to play a crucial role in the

following, equation (19.16) implies

sgn cos
ϕ

2
= +1,

sgn sin
ϕ

2
= (−1)

⌊
ξ0

2ω1

⌋
,

sgn∂0ϕ = (−1)

⌊
ξ0

2ω1
+ 1

2

⌋
,

(25.13)

for oscillating solutions, and

sgn cos
ϕ

2
= (−1)

⌊
ξ0

2ω1

⌋
,

sgn sin
ϕ

2
= (−1)

⌊
ξ0

2ω1
− 1

2

⌋
,

sgn∂0ϕ = +1,

(25.14)

for the rotating ones with increasing ϕ.

Equation (25.9) contains only the derivative of ϕ̃ with respect to ξ1 and simul-

taneously all other functions that appear depend solely on ξ0. Therefore, it can be

solved as an ordinary differential equation, substituting the undetermined constant

of integration with an undetermined unknown function of ξ0. The latter equation

assumes the form

∂1
ϕ̃ (ξ0, ξ1)

2
= A

(
ξ0
)

cos
ϕ̃ (ξ0, ξ1)− ϕ̂ (ξ0)

2
+B

(
ξ0
)
, (25.15)
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where

A sin
ϕ̂ (ξ0)

2
= −µ

2

(
a+ a−1

)
cos

ϕ

2
, (25.16)

A cos
ϕ̂ (ξ0)

2
=
µ

2

(
a− a−1

)
sin

ϕ

2
, (25.17)

B
(
ξ0
)

= −∂0
ϕ

2
. (25.18)

One should be careful in the inversion of (25.16) and (25.17), so that ϕ̂ is continuous

and smooth and A has the correct sign. Defining the inverse tangent function so

that its codomain is (−π/2, π/2), an appropriate selection for ϕ̂ and A is

ϕ̂ = 2 arctan

(
a− a−1

a+ a−1
tan

ϕ

2

)
+ (2k − 1) π + sgn

(
a2 − 1

)
2π

⌊
ϕ

2π
+

1

2

⌋
, (25.19)

A = sc
µ

2

√
a2 + a−2 + 2 cosϕ, (25.20)

where k ∈ Z and we defined the sign sc as

sc := (−1)ksgna. (25.21)

For a translationally invariant oscillating seed solution given by (19.16) it holds that⌊
ϕ
2π

+ 1
2

⌋
= 0, whereas for a rotating one

⌊
ϕ
2π

+ 1
2

⌋
=
⌊
ξ0

2ω1
+ 1

2

⌋
.

Notice also that the monotonicity of ϕ̂ is the same as that of the seed solution ϕ

when |a| > 1 and opposite when |a| < 1. We define

sd := sgn (|a| − 1) . (25.22)

The quantity A2 − B2 ≡ D2, which is going to play an important role in the

following, is actually a constant, namely,

D2 ≡ A2 −B2 =
1

4

[
µ2
(
a− a−1

)2
+ 2

(
µ2 − E

)]
=

1

4

[
µ2
(
a2 + a−2

)
− 2E

]
. (25.23)

For a given value of E, the constant D may assume any value larger or equal to

D2
min = (µ2 − E) /2. The latter assumes any given value larger than the minimum

one, for exactly four distinct values of the Bäcklundtransformation parameter a; let

a be one of them, then the other three are −a and ±1/a. Therefore, there is exactly

one value of the Bäcklundparameter a corresponding to a given value of D2 in each

of the segments (−∞,−1], [−1, 0), (0, 1] and [1,∞). There is an exception to this

rule; there are only two distinct values of a, corresponding to the minimum value of

D2 = D2
min, namely a = ±1.

It is clear that in the case of oscillating solutions, since E < µ2, the quantity D2

is always positive. On the contrary, in the case of rotating solutions the sign of this
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quantity depends on the value of a. Therefore, for cases where D2 can become nega-

tive, we are able to select the sign of A±B, choosing the direction of rotation of the

solution ϕ. In the following, we will assume that rotating solutions are characterized

by increasing ϕ, and, thus, for these solutions B is always negative. We define

D :=

{√
A2 −B2, A2 −B2 > 0

−i
√
B2 − A2, A2 −B2 < 0.

(25.24)

Substituting
A+B

D
g = tan

ϕ̃− ϕ̂
4

, (25.25)

equation (25.15) assumes the form

∂1g

1− g2
=
D

2
, (25.26)

whose solution is

g = tanh
D

2

(
ξ1 + f

(
ξ0
))
. (25.27)

Therefore, ϕ̃ assumes the form

ϕ̃ = ϕ̂+ 4 arctan
A+B

D
tanh

D

2

(
ξ1 + f

(
ξ0
))
. (25.28)

Returning to the Bäcklundtransformation (25.8) that we have not used so far, we

may write it as

∂0
ϕ̃

2
=
µ

2

(
a+ a−1

)
sin

ϕ

2
cos

ϕ̃

2
− µ

2

(
a− a−1

)
cos

ϕ

2
sin

ϕ̃

2
, (25.29)

since ϕ does not depend on ξ1. It is a matter of trivial algebra to write it in the form

∂0
ϕ̃

2
=
µ

2
cos

ϕ̃− ϕ̂
2

((
a+ a−1

)
sin

ϕ

2
cos

ϕ̂

2
−
(
a− a−1

)
cos

ϕ

2
sin

ϕ̂

2

)
− µ

2
sin

ϕ̃− ϕ̂
2

((
a+ a−1

)
sin

ϕ

2
sin

ϕ̂

2
+
(
a− a−1

)
cos

ϕ

2
cos

ϕ̂

2

)
, (25.30)

which is significantly simplified with the use of equations (25.16) and (25.17) to

∂0
ϕ̃

2
=
µ2

4A

((
a2 − a−2

)
cos

ϕ̃− ϕ̂
2

+ 2 sinϕ sin
ϕ̃− ϕ̂

2

)
. (25.31)

Equation (25.18) and the equation of motion imply that ∂0B = µ2 sinϕ/2. Fur-

thermore, equation (25.19) implies that ∂0ϕ̂ = −µ2 (a2 − a−2)B/(2A2), while equa-

tion (25.20) implies that ∂0A = µ2B sinϕ/(2A). Finally, the function g satisfies

203



∂0g = D (1− g2) f ′ (ξ0) /2. Performing the substitution (25.25) and putting every-

thing together, we arrive at

f ′
(
ξ0
)

=
µ2 (a2 − a−2)

4A2
= −

µ2

4
(a2 − a−2)

℘ (ξ0 + ω2)− µ2

4
(a2 + a−2) + E

6

. (25.32)

The denominator in the above relation is always positive. Therefore, the sign of

f ′ (ξ0), and, thus, the monotonicity of f (ξ0), is determined by the sign of the nu-

merator. The function f is increasing when |a| > 1 and decreasing when |a| < 1.

We define ã so that

℘ (ã) = −E
6

+
µ2

4

(
a2 + a−2

)
= x1 +D2 = x2 +

µ2

4

(
a− a−1

)2

= x3 +
µ2

4

(
a+ a−1

)2

(25.33)

and demand that it lies within the cell of the Weierstrass elliptic function, whose ver-

tices are the four complex numbers ±ω1±ω2. Then, the Weierstrass differential equa-

tion ℘′2 = 4℘4−g2℘−g3 and equation (25.33) imply that ℘′2 (ã) = µ4D2(a2 − a−2)
2
/4,

which specifies ã up to an overall sign. We select the ã such that

℘′ (ã) =
µ2

2
D
(
a2 − a−2

)
(25.34)

or in other words, so that the real part of ã has always opposite sign than sd.

Equation (25.33) implies that ℘ (ã) is larger than at least two of the three roots.

When D2 > 0, it is also larger than the largest root, implying that ã lies in the

real axis, in the interval (0, ω1), when |a| < 1, and in the interval (−ω1, 0), when

|a| > 1. When D2 < 0, ℘ (ã) lies between the two larger roots and therefore ã lies

in the linear segment with endpoints ω1 and ω3 ≡ ω1 + ω2, when |a| > 1, and −ω1

and −ω3, when |a| < 1. In the special limiting case a = ±1, the derivative of the

function f vanishes, and, thus, ℘′ (ã) vanishes too. At this limit, ℘ (ã) assumes the

value of the root x2, implying that ã is equal to ±ω1 for oscillating backgrounds

and ±ω3 for the rotating ones. In the latter case, there is yet another a for which

ã assumes the value ±ω1, and, thus, once again ℘′ (ã) vanishes. This is the specific

choice a = ±
(
E ±

√
E − µ2

)
/µ, which sets D = 0. These are depicted in figure

21.

Using the above definitions, it can be shown that

f ′
(
ξ0
)

= − 1

2D

℘′ (ã)

℘ (ξ0 + ω2)− ℘ (ã)
(25.35)

204



ã = ω1

D2 = 0

ã = ω3

D2 = (µ2 − E) /2
a = ±1

ã = 0
D2 → +∞ D2 > 0

D2 < 0

ã = ω1

D2 = (µ2 − E) /2
a = ±1

ã = 0
D2 → +∞ D2 > 0

oscillating background rotating background

QQk

���

B
BN

PP
Pi

B
BN

Figure 21: The allowed values of ã in the complex plane. Each point in the ã complex

plane corresponds to two discrete values of the Bäcklundparameter a, differing only

in their sign.

implying

f
(
ξ0
)

=
i

D
Φ
(
ξ0; ã

)
, (25.36)

where the function Φ is the same quasi-periodic function that appears in the expres-

sions of the elliptic strings and it is defined in (21.2). Putting everything together

ϕ̃ = ϕ̂+ 4 arctan

[
A+B

D
tanh

Dξ1 + iΦ (ξ0; ã)

2

]
. (25.37)

Equations (25.35) and (25.36) imply that when D2 < 0, the function Φ (ξ0; ã) is

real, whereas when D2 > 0, the function Φ (ξ0; ã) is purely imaginary. Therefore, in

all cases the solution ϕ̃ is real. It can be written in a manifestly real form as,

ϕ̃ =


ϕ̂+ 4 arctan

[
A+B
D

tanh
Dξ1+iΦ(ξ0;ã)

2

]
, D2 > 0,

ϕ̂+ 4 arctan
[

1−sc
2
B (ξ1 + iΦ (ξ0; ã))

]
, D2 = 0,

ϕ̂+ 4 arctan

[
A+B
iD

tan
iDξ1−Φ(ξ0;ã)

2

]
, D2 < 0.

(25.38)

Equation (25.38) reveals that there is a bifurcation of the qualitative character-

istics of the dressed elliptic solutions of the sine-Gordon equation that occurs at

E = µ2. As we have commented above, in the case of an oscillatory seed solution

D2 is always positive, whereas in the case of rotating seeds, there is a range of Bäck-

lundparameters that sets it negative. Equation (25.38) implies that the solutions

with D2 > 0 look like a localized kink at the region Dξ1 + iΦ (ξ0; ã) = 0. Far from

this region, they assume a form that is completely determined by the seed solution
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and it has the same periodicity properties as the latter. Thus, solutions with D2 are

localized disturbances on the elliptic background. On the contrary, solutions with

D2 < 0 do not have this property. They do not describe any kind of localized kink

and they do not have the same periodicity properties as the seed solution in any

region.

The same procedure can be repeated for a static elliptic seed solution. As ex-

pected by the symmetries of the sine-Gordon equation, the obtained solution reads

ϕ̃ = ϕ̂+ 4 arctan

[
A+B

D
tanh

Dξ0 + iΦ (ξ1; ã)

2

]
, (25.39)

which can be obtained by equation (25.37) interchanging the two coordinates and

adding an overall angle π.

To sum up, the dressed elliptic string solution (24.103) has a sine-Grodon coun-

terpart that is given by equation (25.39), where the Bäcklundparameter is given by

equation (25.7).

The parameters appearing in the dressed string solutions and the solutions of

the sine-Gordon equation presented in this section are also connected. The function

∆ (λ), when λ = eiθ1 , which is the case of interest, is real and assumes the value

∆ = − (µ2 (a2 + a−2)− 2E) /4, where a is given by (25.7). This is exactly equal

to the opposite of the parameter D2 defined in (25.23) that appears in the dressed

elliptic sine-Gordon solutions. This is in line with the form of the dressed string

solution; whenever D2 is positive and thus ∆ is negative, the trigonometric func-

tions that appear in the dressed string solution will actually be hyperbolic functions

when expressed in a manifestly real form, a fact expected for solutions with a kink

counterpart.

Similarly, when λ = eiθ1 , the function ã (λ) appearing in the dressed elliptic

string solutions, assumes a given value so that ℘ (ã) = −E/6 +µ2 (a2 + a−2) /4, and,

furthermore, ℘′ (ã) = −i
√

∆µ2 (a2 − a−2) /2. Comparing to the defining properties

(25.33) and (25.34) of the parameter ã of the corresponding sine-Gordon solutions,

the two parameters coincide, as long as one defines
√

∆ = i
√
−∆, whenever ∆ < 0.

26 Properties of the Sine-Gordon Counterparts of

the Dressed Elliptic Strings

It has been shown that many physical properties of the elliptic strings solutions are

directly connected to properties of their sine-Gordon counterparts 21. The establish-

ment of this mapping enhances the intuitive understanding of the dynamics of string

propagation on the sphere via the dynamics of the sine-Gordon equation, which is
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a much simpler system. For this purpose, in this section, we will study some ba-

sic properties of the sine-Gordon counterparts of the dressed elliptic string solutions

reviewed in section 20.

The dressed strings, as well as their sine-Gordon counterparts can be classified

into two large categories depending on the sign of the constant D2. When D2 > 0

(or equivalently when ã lies on the real axis), equation (25.38) describes a localized

kink travelling on top of an elliptic background. The position of the kink can be

identified with the position where the argument of the tanh in equation (25.38)

vanishes, namely ξ1 = −iΦ (ξ0; ã)/D, where it holds that ϕ = ϕ̂. Far away from this

region, the solution assumes a form that is determined solely by the seed solution. As

we have commented in section 25.4, a Bäcklundtransformation increases the genus of

the solution by one, adding a degenerate hole to the relevant torus, which corresponds

to a diverging period. This is evident in this case, where the two periods appearing

in the solution are the one of the seed solution and the infinite time/space required

to accommodate the kink.

The minimum value of the parameter D2 is D2
min = (µ2 − E)/2. Thus, when a

rotating seed is considered, it is possible that D2 < 0 (or equivalently ã lies on the

imaginary axis shifted by the real half period ω1). In such a case, the hyperbolic

tangent function appearing in the dressed solution becomes trigonometric tangent.

As a result, the effect of the dressing on the solution is not localized in the position

where the argument of this function vanishes, but it is rather spread everywhere in

a periodic fashion. It follows that these solutions do not describe a kink propagating

on an elliptic background. They should be understood as a periodic structure of

oscillating deformations on top of a rotating elliptic background. Such solutions

contain two periods; one of the seed solution and one imposed by the aforementioned

trigonometric tangent. However, it is the imaginary period of the trigonometric

tangent that is divergent, and, thus, these solutions are still degenerate genus two

solutions, in this manner similar to the solutions of the D2 > 0 class.

It follows that a bifurcation of the qualitative characteristics of the dressed solu-

tion occurs at D2 = 0.

26.1 D2 > 0: Kink-Background Interaction

We start our analysis considering solutions whose seeds are translationally invariant.

Figure 22 depicts two such dressed solutions of the sine-Gordon equation, one with

an oscillatory seed and one with a rotating seed. It is evident from the form of the

solution (25.38), as well as figure 22, that the solutions with D2 > 0 have the form of

a localized kink at ξ1 = −iΦ (ξ0; ã) /D propagating on top of an elliptic background.

Let us determine, whether the kink is left- or right-moving. This is determined by
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ϕ̃

ξ1

ξ0

4ω1

−4ω1

4ω1

−4ω1

0

2π

ϕ̃

ξ1

ξ0

2ω1

−2ω1
2ω1

−2ω1

−4π

4π

Figure 22: The dressed sine-Gordon solution for a translationally invariant oscillating

seed with E = −9µ2/10 and a translationally invariant rotating seed with E =

11µ2/10. In both cases, the Bäcklundparameter equals a = 2.

the monotonicity of the function −iΦ (ξ0; ã) /D. It turns out that

d

dξ0

(
−iΦ (ξ0; ã)

D

)
=
µ2

4

a2 − a−2

℘ (ξ0 + ω2)− ℘ (ã)
, (26.1)

implying that the direction of the motion of the kink is determined by the sign of

a2 − a−2, i.e. by sd := sgn (|a| − 1). Since ℘ (ξ0 + ω2) < ℘ (ã), as the former takes

values between the two smaller roots and the latter is larger than the largest root,

it turns out that the regime |a| > 1 corresponds to the left-moving kinks and the

regime |a| < 1 corresponds to the right-moving ones, similarly to the usual analysis

for kinks built on top of the sine-Gordon vacuum.

Moreover, equation (25.38) implies that far away from the kink location, the so-

lution depends solely on ξ0. This is also visible in figure 22. As this is the defining

property of the elliptic solutions of the sine-Gordon equation, we expect that asymp-

totically the solution assumes the form of an elliptic solution. One can easily check,

either directly or via the calculation of the energy density far away from the kink

location (see section 26.4), that this is not an arbitrary elliptic solution, but the seed

one up to a time shift (and possibly a reflection). This time shift may be different

before and after the passage of the kink. It is a matter of algebra to show that

lim
Dξ1+iΦ(ξ0;ã)→±∞

sdϕ̃ = sd

(
ϕ̂± 4 arctan

A+B

D

)
= ϕ

(
ξ0 ± ã

)
+ sd (2k − 1± sc) π.

(26.2)

Thus, indeed the asymptotic form of the solution is a shifted version of the seed

solution, being reflected depending on the sign sd. In the following, taking advantage
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of the reflection symmetry ϕ → −ϕ of the sine-Gordon equation, we will avoid this

reflection, considering the properties of the solution sdϕ̃. The above asymptotic

expression (26.2) determines ϕ̂ and 4 arctan(A+B)/D in terms of the seed solution,

allowing the re-expression of the dressed solution (25.38) in terms of the latter as

sdϕ̃ =
1

2

(
ϕ
(
ξ0 + ã

)
+ ϕ

(
ξ0 − ã

))
+ sd (2k − 1) π

+ 4sd arctan

[
tanh

Dξ1 + iΦ (ξ0; ã)

2
tan

(
1

8

(
ϕ
(
ξ0 + ã

)
− ϕ

(
ξ0 − ã

))
+ sc

π

4

)]
.

(26.3)

Equation (26.2) clearly implies the asymptotic behaviour lim
ξ0→±∞

sdϕ̃ = ϕ (ξ0 ∓ |ã|)+
2n±π, where n± ∈ Z. Therefore, as depicted in figures 23 and 24, the passage of the

kink effectively causes a delay to the motion of the system equal to

∆ξ0 = 2 |ã| . (26.4)

This observation provides a nice physical meaning to the parameter ã. This time

delay quantifies the effect of the interaction of the elliptic background with the kink

that was introduced by the Bäcklundtransformation.

0

2π

ϕ̃+

ξ0

2 |ã|
4ω1−4ω1

Figure 23: The dressed solution for an oscillating seed with E = 9µ2/10 and Bäck-

lundparameter a = 2 at ξ1 = 0. The dashed lines indicate the asymptotic behaviour

ϕ (ξ0 ± ã).

Finally, studying the average value of ϕ̃ in a full period of the seed solution at
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spatial infinity, we find that〈
lim

ξ1→+∞
sdϕ̃− lim

ξ1→−∞
sdϕ̃

〉
=
〈
ϕ
(
ξ0 − |ã|

)
− ϕ

(
ξ0 + |ã|

)〉
+ 2πsc

=

{
2πsc, E < µ2,

2πsc − 2π |ã|
ω1
, E > µ2,

(26.5)

implying that the solution is a kink or antikink depending on the sign sc. Notice that

in the case of a rotating background, as shown in figure 24, the jump in the rotation

induced by the kink is not an integer multiple of 2π, but it ranges in [−4π,−2π] ∪
[0, 2π]; it is actually ±2π minus a quantity induced by the delay to the background

rotation. The apparent asymmetry is due to the fact that we have considered the

−2π

2π

ϕ̃+

ξ0

2 |ã|
2ω1

−2ω1

Figure 24: The dressed solution for a rotating seed with E = 11µ2/10 and Bäck-

lundparameter a = 2 at ξ1 = 0. The dashed lines indicate the asymptotic behaviour

ϕ (ξ0 ± ã). The jump due to the kink is positive, but smaller than 2π, as a result of

the delay in the background motion.

rotating elliptic seed solutions to be always increasing functions of time. All cases

are summarized in table 3. These four classes of solutions are the physical depiction

of the fact that the same value of D2 can be obtained for four distinct values of the

Bäcklundparameters a. The definition of the sign of the function A (25.20) has been

made so that all four classes of solutions can be accessed with the same formula,

simply varying the parameter a, in a similar manner to the usual analysis of kinks

built using the vacuum as the seed solution. The special case a = ±1 corresponds to

static kinks/antikinks leading to only two physical distinct cases.

The situation is similar in the case of static seed solutions. In this case, lim
ξ0→±∞

sdϕ̃ =

ϕ (ξ1 ± ã) + 2n±π, where n± ∈ Z. Thus, the effect of the passage of the kink is a

210



parity a ∈ (−∞,−1) a ∈ (−1, 0) a ∈ (0, 1) a ∈ (1,∞)

of k

k even left right right left

moving moving moving moving

antikink antikink kink kink

k odd left right right left

moving moving moving moving

kink kink antikink antikink

Table 3: The translationally invariant background kink solutions for all a and k.

displacement of the background static configuration by

∆ξ1
± = ∓2ã. (26.6)

Furthermore, considering the average value of ϕ̃ in a full spatial period of the

background solution at spatial infinity, we find that〈
lim

ξ1→+∞
(sdϕ̃− ϕ)

〉
−
〈

lim
ξ1→−∞

(sdϕ̃− ϕ)

〉
=

{
2scπ, E < µ2,

2π ã
ω1

+ 2scπ, E > µ2.
(26.7)

This implies that the solution is a kink or an antikink depending on the sign sc. All

cases are summarized in table 4.

parity a ∈ (−∞,−1) a ∈ (−1, 0) a ∈ (0, 1) a ∈ (1,∞)

of k

k even right left left right

moving moving moving moving

antikink kink antikink kink

k odd right left left right

moving moving moving moving

kink antikink kink antikink

Table 4: The static background kink solutions for all a and k.

26.2 D2 > 0: Kink Velocity

Let us consider the class of kinks propagating on a translationally invariant elliptic

background. A naive way to define the kink velocity is

v0 =
dξ1

dξ0

∣∣∣∣
Dξ1+iΦ(ξ0;ã)=c

=
1

2D

℘′ (ã)

℘ (ξ0 + ω2)− ℘ (ã)
. (26.8)
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The above velocity is not constant but rather it is a periodic function of time. Its

range is

|v0| ≥
∣∣∣∣a− a−1

a+ a−1

∣∣∣∣ =

√
℘ (ã)− x2

℘ (ã)− x3

,

|v0| ≤
∣∣∣∣ a2 − a−2

a2 + a−2 − E/µ2

∣∣∣∣ =

√
(℘ (ã)− x2) (℘ (ã)− x3)

℘ (ã)− x1

(26.9)

for oscillating backgrounds and

|v0| ≥
∣∣∣∣a− a−1

a+ a−1

∣∣∣∣ =

√
℘ (ã)− x2

℘ (ã)− x3

,

|v0| ≤
∣∣∣∣a+ a−1

a− a−1

∣∣∣∣ =

√
℘ (ã)− x3

℘ (ã)− x2

(26.10)

for the rotating ones. The minimum value is always smaller than the speed of light,

whereas the maximum value is always larger than the speed of light in the case

of rotating backgrounds. In the case of oscillating backgrounds, when E < 0 the

maximum instant velocity is always smaller than that of light, whereas when E > 0

it is so only when the Bäcklundparameter satisfies

µ2

E
> a2 >

E

µ2
⇔ D2 <

µ4 − E2

2E
. (26.11)

The velocity defined above is a notion of instant velocity. Within a period of the

elliptic background, the propagation of the kink is quite complicated, since the shape

of the kink is fluctuating periodically. A more natural definition of the kink velocity

is the mean velocity in a period, v̄, defined as

v̄0 =
Φ (ξ0 + 2ω1; ã)− Φ (ξ0; ã)

2iω1D
. (26.12)

The function Φ (ξ0; ã) is a quasi-periodic function. Its property (21.3) implies that

the mean velocity of the kink equals

v̄0 =
ζ (ã)ω1 − ζ (ω1) ã

ω1D
. (26.13)

This velocity should not be apprehended as the velocity of the kink. Any of these

solutions can be boosted to an arbitrary frame, altering the kink velocity. It should

rather be understood as a parameter of the family of dressed elliptic solutions of the

sine-Gordon equation, which is equal to the velocity of the kink at the specific frame,

where the background is translationally invariant.
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ϕ̃

ξ1

ξ0

4ω1

−4ω1

4ω1

−4ω1

0

2π

ξ1

ξ04ω1−4ω1

−4ω1

4ω1

Figure 25: The solution for an oscillating background with E = 7µ2/10 and Bäck-

lundparameter a = 2. The blue line indicates the position of the kink. The dashed

line is the average position. Its inclination is the mean velocity of the kink.

For the solutions with D2 > 0, the parameter ã takes values on the real axis

between −ω1 and ω1. The mean velocity is a decreasing function of ã for energies

smaller than a critical value Ec ' 0.65223µ2 defined through the equation

6ζ (ω1 (Ec) ; g2 (Ec) , g3 (Ec)) = Ecω1 (Ec) (26.14)

and an increasing function for E > µ2. In the intermediate range of constants E

there is a global maximum. Bearing in mind the pendulum picture for the transla-

tionally invariant elliptic solution of the sine-Gordon equation, the criterion (26.14)

is equivalent to demanding that the mean potential energy of the pendulum vanishes.

Furthermore,

lim
ã→0

v̄0 = 1. (26.15)

In the case of an oscillating background, it is also trivial that

lim
ã→ω1

v̄0 = 0. (26.16)

Thus, all possible velocities between 0 and 1 relative to the translationally invariant

background are allowed. In the case of rotating backgrounds though, the expression

for the velocity (26.13) is undetermined at the limit ã→ ω1 and it turns out that

lim
ã→ω1

v̄0 =
ζ (ω1)/ω1 + x1√

(x1 − x2) (x1 − x3)
≡ v̄max > 1, (26.17)

implying that all kinks on a rotating background are moving with speeds larger than

the speed of light and up to the value given by (26.17). The top panel of figure 26
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depicts the dependence of the mean velocity on the modulus ã for various values

of the other modulus E. To sum up, only when E < Ec, all kinks moving on the

elliptic background are subluminal. When E > Ec, there is always a range of ã

corresponding to superluminal kinks.

When kinks propagating on a static elliptic background solution are considered,

both the instant and the mean velocity are simply the inverse of the ones calculated

for the translationally invariant backgrounds as given by equations (26.8) and (26.13),

i.e.

v̄1 =
ω1D

ζ (ã)ω1 − ζ (ω1) ã
. (26.18)

Therefore, kinks propagating on an oscillating static background are always super-

luminal, when E < Ec, but there are kinks moving with velocities under the speed

of light when E > Ec, whereas kinks propagating on a rotating static background

move with velocities smaller than the speed of light. However, they cannot move

with an arbitrarily small velocity. The minimum velocity is the inverse of v̄max as

given by (26.17). The bottom panel of figure 26 depicts the dependence of the mean

velocity on the modulus ã. In the case of the static seed, only when E > µ2 all

1

1

v̄0

ã
ω1 1

1

v̄1

ã
ω1

E = 21/20µ2
E = 101/100µ2
E = 99/100µ2
E = 9/10µ2
E = Ec
E = −9/10µ2

Figure 26: The mean velocity as function of ã for translationally invariant seeds (left)

and static seeds (right) for various values of the energy constant E

kinks propagating on the elliptic background are subluminal. When E < µ2, there

is always a range of ã which gives rise to superluminal kinks.

26.3 D2 > 0: Periodic Properties

The elliptic solutions of the sine-Gordon equation have specific periodic properties.

These are critical in the determination of the appropriate periodicity conditions for
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the construction of the corresponding elliptic strings solutions. The translationally

invariant elliptic solutions obey

ϕ
(
ξ0 + 4ω1, ξ

1 + δξ1
)

= ϕ
(
ξ0, ξ1

)
, (26.19)

when they are oscillatory, and

ϕ
(
ξ0 + 2ω1, ξ

1 + δξ1
)

= ϕ
(
ξ0, ξ1

)
+ 2π, (26.20)

when they are rotating. The above properties hold for any value of δξ1, which

is a result of the fact that ϕ does not depend on ξ1. The static solutions have

similar periodic properties that are given by the relations above after the interchange

ξ0 ↔ ξ1.

The periodic properties of the dressed elliptic solutions have been disturbed due

to the presence of the kink, which needs infinite time to complete. However, the new

solution still has some interesting periodic properties.

Firstly, in the region far away from the location of the kink |Dξ1 + iΦ (ξ0; ã)| � 1,

the solution tends to a shifted version of the elliptic seed solution. Therefore, at this

region, the periodic properties (26.19) and (26.20) are approximately recovered.

Secondly, as the shape of the kink also alters periodically in time, an observer that

follows the kink thinks that the sine-Gordon field alters periodically in all positions.

This is evident in equation (26.3), which implies

ϕ̃
(
ξ0 + 4ω1, ξ

1 + 4v̄0ω1

)
= ϕ̃

(
ξ0, ξ1

)
(26.21)

for solutions with oscillatory seeds and

ϕ̃
(
ξ0 + 2ω1, ξ

1 + 2v̄0ω1

)
= ϕ̃

(
ξ0, ξ1

)
+ 2π (26.22)

for solutions with rotating seeds.

In a trivial manner, one can obtain the corresponding periodic properties of the

dressed elliptic solutions with static seeds, after the interchange ξ0 ↔ ξ1.

26.4 D2 > 0: Energy and Momentum

The energy-momentum tensor of the sine-Gordon theory is given by

T 00 =
1

2
(∂0ϕ)2 +

1

2
(∂1ϕ)2 − µ2 cosϕ ≡ H, (26.23)

T 01 = − (∂0ϕ) (∂1ϕ) ≡ P ≡ JH, (26.24)

T 11 =
1

2
(∂0ϕ)2 +

1

2
(∂1ϕ)2 + µ2 cosϕ ≡ JP . (26.25)
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The static solutions can be derived from the translationally invariant ones via the

interchange of the variables ξ0 and ξ1 and a shift of ϕ by π. It follows that if

T 00
st = f 0 (ξ0, ξ1), then T 11

ti = f 0 (ξ1, ξ0) and similarly if T 01
st = f 1 (ξ0, ξ1), then

T 01
ti = f 1 (ξ1, ξ0).

The elliptic solutions of the sine-Gordon equation lead to simple expressions for

most of the elements of the energy-momentum tensor (see section 19). Namely,

T 00
ti = T 11

st = E and T 01
ti = T 01

st = 0. However, the elements T 11
ti and T 00

st are non-

trivial functions of ξ0 and ξ1 respectively.

Let us study the energy and momentum of the dressed solutions of the sine-

Gordon equation. We initiate our analysis considering the kinks propagating on a

translationally invariant elliptic background. It is a matter of algebra to calculate

the energy density and find

H = 2DA

sin

[
4 arctan

(
A+B
D

tanh
Dξ1+iΦ(ξ0;ã)

2

)]
sinh (Dξ1 + iΦ (ξ0; ã))

+ E. (26.26)

Therefore, the energy density, far away from the kink position assumes the same

constant value that matches the energy density of the seed solution. This is not

surprising, since we have seen that the asymptotics of the dressed solution far away

from the kink is the seed solution shifted by an appropriate time/position. Actually,

we could also have deduced the above fact by the form of the energy density.

Defining the kink energy density as the difference of the energy densities of the

dressed solution and the background solution, we can calculate the energy of the

kink and find it equal to

Ekink =

∫
dξ1 (H− E) = 8D. (26.27)

The above formula reveals the physical meaning of the constant D. It is now clear

why the quantity D2 is a decreasing function of the energy constant E, since the

larger the background energy, the smaller the necessary energy for a kink to jump

from the region of one vacuum to the region of the neighbouring one. Furthermore,

it is also physically expected that the kink energy is a decreasing function of the

background time delay 2ã. As the latter gets larger approaching ω1, the jump is

facilitated and less energy is required for this purpose (see figure 23).

As the kink propagates, it periodically changes shape, due to its interaction with

the elliptic background. This is also depicted in the profile of the energy density. One

measure that quantifies this phenomenon is the peak energy density at the location

of the kink. The latter equals

Hpeak − E = 4A (A+B) , (26.28)
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which obviously is a periodic function of time. In the limit E → −µ2, the energy

density of the peak becomes constant as expected from the physics of the kinks

propagating on the vacuum. Figure 27 depicts the energy density for the two solutions

depicted in figure 22.

H

ξ1

ξ0

4ω1

−4ω1

4ω1

−4ω1

E

H

ξ1

ξ0

4ω1

−4ω1

4ω1

−4ω1

E

Figure 27: The energy densities of the dressed elliptic solutions with translationally

invariant seeds depicted in figure 22

In a similar manner, we may calculate the momentum density of the kink solution

P = − A℘′ (ã)

℘ (ξ0 + ω2)− ℘ (ã)

sin

[
4 arctan

(
A+B
D

tanh
Dξ1−Φ(ξ0;ã)

2

)]
sinh (Dξ1 − Φ (ξ0; ã))

− 2µ2D

A

sin2

[
2 arctan

(
A+B
D

tanh
Dξ1−Φ(ξ0;ã)

2

)]
sinh (Dξ1 − Φ (ξ0; ã))

sinϕ. (26.29)

The momentum density vanishes far away from the location of the kink, a fact which

is expected since the momentum density of the elliptic background vanishes. We

define the kink momentum as the integral of the momentum density over all space

to find

Pkink = −4
℘′ (ã)

℘ (ξ0 + ω2)− ℘ (ã)
= 8Dv0 = Ekinkv0, (26.30)

as one would expect for a particle. Like the instant velocity, the kink momentum is

not constant in time. One could define the mean kink momentum as

P̄kink = 8Dv̄0 = Ekinkv̄0. (26.31)

It may appear surprising that the momentum of the kink is not conserved, al-

though the theory possesses translational symmetry. This is due to the asymptotic
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behaviour of T 11 in the case of translationally invariant seeds. The momentum con-

servation law ∂0T
01 + ∂1T

11 = 0 implies that

∂0P = T 11
(
ξ1 → +∞

)
− T 11

(
ξ1 → −∞

)
. (26.32)

Asymptotically, the solution assumes the form of the translationally invariant seed

solution, with a time shift, which is different at plus and minus infinities. As the

element T 11 is a non-trivial periodic function of time in this case, it follows that

the kink momentum cannot be conserved. On the contrary, the energy is conserved,

since

∂0E = P
(
ξ1 → +∞

)
− P

(
ξ1 → −∞

)
= 0, (26.33)

as the momentum density of the seed solution vanishes.

When we consider kinks propagating on a static background, it is not easy to

repeat the above calculations, since the dependence of the dressed solution on the

space-like coordinate ξ1 is highly non-trivial. However, we may adopt a different

approach, calculating the total flow of energy or momentum that passes through

a given location. Converting from static to translationally invariant backgrounds,

leaves the expression of the momentum density the same, apart from an interchange

of ξ0 and ξ1. It follows that the flow of energy Eflow
st =

∫
dξ0Pst (ξ0, ξ1) through a

given point can be derived from the total momentum of the kink on a translationally

invariant background, i.e. Pti =
∫
dξ1Pti (ξ0, ξ1) after the same interchange, Thus,

Eflow = −4
℘′ (ã)

℘ (ξ1 + ω2)− ℘ (ã)
. (26.34)

Naturally, this is not constant. As we have already commented in section 26.1, the

passage of the kink has translated the static background, and as the latter has a

non-trivial energy density profile, it has translated energy. In this case, the effect

of the interaction of the kink with the background is not limited to a time delay,

but it extends to the energy density. The kink energy can be identified as the mean

energy flow per spatial period. Bearing in mind that the kink velocity on a static

background is the inverse of that on a translationally invariant background with the

same Bäcklundparameter a, the above imply

Ekink = Ēflow = 8

(
ζ (ω1)

ã

ω1

− ζ (ã)

)
=

8D

v̄1

. (26.35)

In a similar manner, the flow of momentum from a given point in the case of a

static seed P flow
st =

∫
dξ0T 11

st (ξ0, ξ1), can be deduced from the energy in the case of a

translationally invariant seed Eti =
∫
dξ1Hti (ξ0, ξ1), after the interchange of ξ0 and

ξ1. Subtracting the momentum flow of the background solution, in order to define
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the kink momentum, yields

Pkink =

∫
dξ0
(
T 11

(
ξ0, ξ1

)
− E

)
= 8D = Ekinkv̄1. (26.36)

Notice that in the case of a static seed, both the energy and momentum of the

kink are conserved quantities, since

∂0E = P
(
ξ1 → +∞

)
− P

(
ξ1 → −∞

)
= 0, (26.37)

∂0P = T 11
(
ξ1 → +∞

)
− T 11

(
ξ1 → −∞

)
= E − E = 0. (26.38)

The algebra of the Bäcklundtransformations results in dressed elliptic solutions,

which are naturally expressed in terms of the parameters D and ã. Interestingly, both

parameters have a simple physical meaning. The parameter D is directly related

to the energy of the kink in the case of a translationally invariant seed solution

(equation (26.27)) or its momentum in the case of a static one (equation (26.36)). The

parameter ã directly measures the degree of interaction of the kink with the elliptic

background. In the case of a translationally invariant seed, it is directly related to the

time delay in the background field oscillation induced by the kink (equation (26.4));

in the case of a static seed, it is related to the spatial displacement of the static

background (equation (26.6)). Bearing in mind that there are not two independent

parameters in this class of solutions, but only one (the Bäcklundparameter a), there

is a relation connecting the energy/momentum of the kink to the effect that it has

on the background. This reads

E2
kink

64
= ℘

(
∆ξ0

2
;
E2

3
+ µ4,

E

3

(
E2

9
− µ4

))
− E

3
, (26.39)

for translationally invariant backgrounds and

P 2
kink

64
= ℘

(
∆ξ1

2
;
E2

3
+ µ4,

E

3

(
E2

9
− µ4

))
− E

3
, (26.40)

for static ones. The above relations can in principle be verified experimentally in

physical systems realizing the sine-Gordon equation, such as coupled torsion pendula,

Josephson junctions, spin waves in magnetics, etc. (see e.g. [326])

26.5 D2 < 0: Periodicity

When D2 < 0, the solution assumes the form

ϕ̃ = ϕ̂+ 4 arctan

[
A+B

iD
tan

iDξ1 − Φ (ξ0; ã)

2

]
. (26.41)
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Figure 28: The solution with D2 < 0 for two distinct Bäcklundparameters. The

background solution has energy density E = 3µ2/2 and the Bäcklundparameter take

the value a = 1.45482 on the left and a = 1.36771 on the right.

Figure 28 depicts two example cases of such solutions. These solutions do not describe

a localized kink propagating on top of an elliptic background. They are actually a

periodic disturbance propagating on top of a translationally invariant rotating elliptic

background. This transition of the qualitative characteristics of the solution is in a

sense similar to the well-known behaviour of the solutions that occur after the action

of two Bäcklundtransformations of the vacuum. These solutions form two classes;

one class of two-kink scattering solutions and one class of bound states, the so called

breathers. Having this picture in mind, we may understand the Bäcklundtransformed

elliptic solutions with D2 > 0 as the analogue of the scattering solutions, since the

kink induced by the Bäcklundtransformation propagates on top of the train of kinks

that forms the elliptic background, interacting with it, causing a delay/translation.

On the contrary, the solutions with D2 < 0 are the analogue of the breathers. Of

course instead of a single oscillating breather, these solutions are a whole periodic

structure of such oscillating formations, a ”train of breathers”.

The solution (26.41) is obviously periodic in ξ1 since

ϕ̃
(
ξ0, ξ1 + 2π/ (iD)

)
= ϕ̃

(
ξ0, ξ1

)
. (26.42)

Furthermore, the quasi-periodic properties of the function Φ imply that

ϕ̃

(
ξ0 + 2ω1, ξ

1 + 2
ζ (ã)ω1 − ζ (ω1) ã

D

)
= ϕ̃

(
ξ0, ξ1

)
+ 2π. (26.43)

It follows that the solutions with D2 < 0 are either periodic or quasi-periodic

under translations in a non-orthogonal two-dimensional lattice. One of the two di-

rections of the lattice coincides with the space-like (in the case of translationally
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invariant seeds) or time-like (in the case of static seeds) directions. The other is

determined by a velocity, which is the average velocity of the periodic disturbances.

This velocity equals

vtb
0 =

ζ (ã)ω1 − ζ (ω1) ã

ω1D
(26.44)

and it is the analytic continuation of the kink mean velocity (26.13).

As ã moves from ω1 to ω3, the velocity of the periodic disturbances vtb
0 increases.

It also obeys

lim
ã→ω3

vtb
0 =

π

ω1

√
2 (E − µ2)

(26.45)

and

lim
ã→ω1

vtb
0 = lim

ã→ω1

v0 =
ζ (ω1) /ω1 + x1√

(x1 − x2) (x1 − x3)
, (26.46)

which implies that vtb
0 is always larger than the speed of light. In a similar manner,

in the case of a static seed solution, the velocity of the periodic disturbances is given

by the inverse of equation (26.44)

vtb
1 =

ω1D

ζ (ã)ω1 − ζ (ω1) ã
. (26.47)

The velocity vtb
1 decreases as ã moves from ω1 to ω3 and it is always smaller than

the speed of light. The above are displayed in figure 29.

1

1

vtb
0

ã−ω1

ω2 1

1

vtb
1

ã−ω1

ω2

E = 21/20µ2
E = 101/100µ2

Figure 29: The velocity of the periodic disturbances as function of ã for translation-

ally invariant seeds (left) and static seeds (right) for various values of the energy

constant E. These curves are a smooth continuation of the corresponding ones of

figure 26 with the same color.
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It is not obvious, whether the solution (26.41) is a periodic function of ξ0. In

general we have that

ϕ̃
(
ξ0 + 2ω1, ξ

1
)

= 2π + ϕ̂
(
ξ0, ξ1

)
+ 4 arctan

[
A (ξ0) +B (ξ0)

iD
tan

(
iDξ1 − Φ (ξ0; ã)

2
− i (ζ (ã)ω1 − ζ (ω1) ã)

)]
.

(26.48)

The quantity ζ (ã)ω1 − ζ (ω1) ã is the Bloch phase of the finite valence band states

of the n = 1 Lamé problem. It is always purely imaginary and its imaginary part

decreases monotonically from 0 to −π/2 as ã moves from ω1 to ω3. It follows that

i(ζ (ã)ω1 − ζ (ω1) ã) = cπ/2, where c ∈ [0, 1]. The periodicity properties of the

solution ϕ̃ as a function of time, are determined by number-theoretic properties

of the number c. If the number c is a rational number of the form α/β, where

gcd (α, β) = 1, then ϕ̃ will be a quasi-periodic function of ξ0 with period 4βω1 and

the quasi-periodicity property ϕ̃ (ξ0 + 4βω1, ξ
1) = ϕ̂ (ξ0, ξ1) + 2π (α + β). On the

contrary, if the number c is irrational, then ϕ̃ will not be periodic in ξ0. In figure 30,

a periodic and a non-periodic example are shown. Similarly, if a static background

ϕ̃

ξ1

8ω1 16ω1

12π

6π

ϕ̃

ξ1

12ω1 24ω1 36ω1

64π

32π

Figure 30: The solution with D2 < 0 at ξ1 = 0 for two distinct Bäcklundparameters.

The background solution has energy density E = 3µ2/2 and the Bäcklundparameter

take the value a = 1.45482 on the left, corresponding to a periodic solution with

c = 1/2 and a = 1.36771 on the right, corresponding to a non-periodic solution with

c = (
√

5− 1)/2.

is considered, the solution is always periodic in ξ0, but not always periodic in ξ1,

obeying the periodicity properties

ϕ̃
(
ξ0 + 2π/ (iD) , ξ1

)
= ϕ̃

(
ξ0, ξ1

)
, (26.49)

ϕ̃

(
ξ0 + 2

ζ (ã)ω1 − ζ (ω1) ã

D
+ 2ω1, ξ

1 + 2ω1

)
= ϕ̃

(
ξ0, ξ1

)
+ 2π. (26.50)
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In this case the velocity of the periodic disturbances equals

vtb =
Dω1

ζ (ã)ω1 − ζ (ω1) ã
, (26.51)

which is the analytic continuation of equation (26.18).

26.6 D2 < 0: Energy and Momentum

Once again, we first consider a translationally invariant seed solution. As we showed

in section 26.5, these solutions are always periodic in space. Therefore, they cannot

have a finite energy difference to the energy of the background solution. However,

we may study the average energy density per spatial period of the new solution. It

turns out that

〈H〉 =
iD

2π

∫ ξ1+ 2π
iD

ξ1

dξ1H = E. (26.52)

Thus, the solution has on average the same energy density as the background solution.

In a similar manner the average momentum density vanishes, also similarly to the

background solution.

〈P〉 =
iD

2π

∫ ξ1+ 2π
iD

ξ1

dξ1P = 0. (26.53)

Figure 31 shows the energy density and the momentum density for a periodic solution.

The relevant solutions whose seed is a static elliptic solution are not manifestly

H

ξ1

ξ0

4ω1

−4ω1

π/(iD)

−π/(iD)

P

ξ1

ξ0

4ω1

−4ω1

π/(iD)

−π/(iD)

Figure 31: The energy and momentum density for a solution with D2 < 0, back-

ground energy density E = 3µ2/2 and Bäcklundparameter a = 1.45482, correspond-

ing to a periodic solution with c = 1/2.

periodic in space. They are periodic in time. One can show that the average current
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of momentum and energy through a given point is identical to those of the seed

solutions, namely,

〈P〉 =
iD

2π

∫ ξ0+ 2π
iD

ξ0

dξ0P = 0, (26.54)

〈
T 11
〉

=
iD

2π

∫ ξ0+ 2π
iD

ξ0

dξ0T 11 = E. (26.55)

26.7 The D → 0 Limit

In the limit D → 0, the solution degenerates to the form

ϕ̃ = ϕ̂+ 4 arctan

[
1− sc

2
B
(
ξ1 − isdΦ0

(
ξ0
))]

, (26.56)

where

Φ0

(
ξ0
)

= Φ
(
ξ0;ω1

)
=

i√
E2 − µ4

(
ζ
(
ξ0 + ω3

)
− ζ (ω2) + x1ξ

0
)
. (26.57)

There are four such solutions, as there are four distinct values of a, namely a =

±
√
E ±

√
E2 − µ4/µ, which set D equal to zero. Half of those correspond to a

localized solution that generates an overall jump to the background solution equal to

−4π. For the other half, the solution is equal to ϕ̂, thus a periodic, translationally

invariant solution. It turns out that in this specific case, ϕ̂ coincides with an elliptic

solution, as the corresponding parameter ã is equal to ±ω1, namely,

ϕ̂ =
1

2
sd
(
ϕ
(
ξ0 + ω1

)
+ ϕ

(
ξ0 − ω1

))
+ (2k − 1) π = sdϕ

(
ξ0 + sd (2k − 1)ω1

)
.

(26.58)

Interestingly enough, the limit D → 0 separating the localized and non-localized

solutions comprises of two localized and two non-localized solutions, the latter coin-

ciding with the background solution shifted by an odd number of half-periods.

The total energy and momentum of these solutions exactly match those of the

seeds in this limit, not only in the case the dressed solution is a trivial displacement

of the seed, but also in the non-trivial cases.

27 Asymptotics and Periodicity of the Dressed El-

liptic Strings

In this and the following three sections, we will study some properties of the dressed

elliptic string solutions that we presented in section 24 and compare them to the
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properties of their Pohlmeyer counterpart that we presented in section 26. Here, we

determine the appropriate values of the moduli that result in closed string solutions.

In order to visualize the string solutions, first we have to select the static gauge,

so that the time-like world sheet coordinate σ0 is proportional to the physical time

X0. This is equivalent to a boost in the worldsheet of the form (21.20) and (21.21).

In the static gauge, the time coordinate assumes the form X0 = µσ0 and it is easier

to study a time snapshot of the string solution in order to determine the periodic

properties that it obeys. It is also easier to visualize the time evolution of the string,

which will become handy in sections 28 and 29.

The dressed string solutions, similarly to their elliptic seeds, are naturally infinite

string solutions. They are parametrized by the spacelike coordinate taking values in

the whole real axis. However, the periodic properties of the sine-Gordon counter-

parts of the elliptic strings (26.19) and (26.20) imply that the string solution obeys

appropriate periodicity conditions for specific values of the moduli, giving rise to

finite string solutions.

In the case of the dressed elliptic strings with D2 > 0, the sine-Gordon counter-

parts cease to obey periodicity conditions of the form (26.19) and (26.20) due to the

existence of the extra kink that propagates on the non-trivial elliptic background.

However, the above periodic properties are recovered in the region far away from the

position of the kink, as the sine-Gordon solution tends to a shifted version of the

elliptic seed. This asymptotic behaviour can be used to construct approximate finite

closed dressed elliptic string solutions in the same manner as the closed finite elliptic

strings. In order to do so, we first need to study the asymptotics of the dressed

elliptic string solutions with D2 > 0.

Even though the dressed solutions do not have the extended periodicity properties

of their elliptic seeds, they still obey the periodic properties (26.21) and (26.22) in

the case D2 > 0, as well as (26.42) and (26.43) in the case D2 < 0. One can take

advantage of these periodic properties in order to construct exact finite closed string

solutions. It has to be noted that the above equations are expressed in the linear

gauge; however, the closed string solution should exhibit appropriate periodicity in

their dependence on the spacelike coordinate in the static gauge. In the following,

we present all these classes of closed string solutions and derive the appropriate

constraints that the moduli should obey for each class.

27.1 D2 > 0: The Asymptotics of the Dressed Strings

Bearing in mind the asymptotic form of the sine-Gordon counterparts of the dressed

string solutions with D2 > 0, which is described in section 26.1, it is not surprising

that in the region far away from the location of the kink, the dressed string solutions
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tend to a rotated version of their seed, elliptic string solution. Assume that the seed

solution is written in spherical coordinates, in parametric form as,

θ0/1 = θseed

(
σ0, σ1

)
, (27.1)

φ0/1 = φseed

(
σ0, σ1

)
. (27.2)

The functions θseed and ϕseed have the properties

θseed

(
σ0, σ1 + δσ0/1

)
= ±θseed

(
σ0, σ1

)
, (27.3)

φseed

(
σ0, σ1 + δσ0/1

)
= φseed

(
σ0, σ1

)
+ δφ, (27.4)

where the ± sign in the first equation applies in the case of rotating/oscillating

counterparts, δϕ is the angular opening of the elliptic string, i.e. the azimuthal

angular distance between two consecutive spikes of the seed solution,

δφ0/1 = ∓2iω1

(
ζ (ω1)

a

ω1

+ ζ
(
ωx3/2

)
− ζ

(
a+ ωx3/2

))
(27.5)

and

δσ0 =
2ω1

γβ
, (27.6)

δσ1 =
2ω1

γ
. (27.7)

Furthermore, we define the function

Φ̃
(
σ0, σ1

)
:= Dξ1/0 + iΦ

(
ξ0/1; ã

)
. (27.8)

The kink which propagates on the elliptic background is located in the region Φ̃ '
0. Several periods away from the kink position, one may use the quasiperiodicity

property of the function Φ to show that

Φ̃
(
σ0, σ1

)
'

Dγ (1 + βv̄0)
(
σ1 − β+v̄0

1+βv̄0
σ0
)
, for transl. invar. seeds,

−Dγ
(
β + 1

v̄1

)(
σ1 − β+v̄1

1+βv̄1
σ0
)
, for static seeds.

(27.9)

The parameters v̄0/1 are the mean velocity of the kink relatively to the elliptic back-

ground, in the case of a translationally invariant and static seed, respectively, which

are given by equations (26.13) and (26.18). Notice that the above approximations

are exact whenever σ1 = nδσ0/1, with n ∈ Z.

Then, one can show that in the region far away from the kink position, the dressed

solution assumes the form

lim
Φ̃→±∞

θ0

(
σ0, σ1

)
= θseed

(
σ0, σ1 ∓ ã

2ω1

δσ0

)
, (27.10)

lim
Φ̃→±∞

φ0

(
σ0, σ1

)
= φseed

(
σ0, σ1 ∓ ã

2ω1

δσ0

)
±∆φ0, (27.11)
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for translationally invariant seeds and

lim
Φ̃→±∞

θ1

(
σ0, σ1

)
= θseed

(
σ0, σ1 ± ã

2ω1

δσ1

)
, (27.12)

lim
Φ̃→±∞

φ1

(
σ0, σ1

)
= φseed

(
σ0, σ1 ± ã

2ω1

δσ1

)
±∆φ1, (27.13)

for static seeds, respectively. An overall reflection with respect to the origin, θ →
π − θ, φ→ φ+ π, may be present; we will comment on it later on. The angle ∆φ0/1

is equal to

∆φ0/1 = arg (`+ iD) + arg σ (ã+ a) + i
(
ζ
(
a+ ωx3/2

)
− ζ

(
ωx3/2

))
ã

= arg (`+ iD) + arg σ (ã+ a) +

(
ζ (ω1) a±

δφ0/1

2

)
ã

ω1

.
(27.14)

The half-period ωxi is the half-period corresponding to the root xi. More specifically,

ωx3 is always the imaginary half-period ω2, whereas ωx2 is equal to the real half-

period ω1 for oscillating seeds and to ω3 = ω1 + ω2 for rotating seeds. The details of

the above derivations are included in the M.

The above approximation is valid at the region
∣∣∣Φ̃∣∣∣� 1 or in other words in the

region ∣∣∣∣σ1 − β + v̄0

1 + βv̄0

σ0

∣∣∣∣� 1

Dγ |1 + βv̄0|
, (27.15)∣∣∣∣σ1 − β + v̄1

1 + βv̄1

σ0

∣∣∣∣� 1

Dγ
∣∣∣β + 1

v̄1

∣∣∣ , (27.16)

for each case respectively. The above inequalities are expressed in terms of the static

gauge worldsheet coordinates, and, thus, they describe which region of the dressed

elliptic string in any time snapshot is indeed well-approximated by a rotated version

of the seed solution. Notice also that one has to be careful in the correspondence

between the σ1 and Φ̃ infinite limits. This is determined by whether the kink velocity

is larger or smaller than the inverse of the velocity of the boost connecting the linear

and static gauges. We define the sign sΦ as

lim
σ1→±∞

Φ̃ = ±sΦ∞. (27.17)

Equation (27.9) implies that

sΦ =

sgn (1 + βv̄0) , for transl. invar. seeds,

−sgn
(
β + 1

v̄1

)
, for static seeds.

(27.18)
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The dependence of the sign sΦ on the moduli of the dressed string solutions is studied

exhaustively in the N. In the special case where 1 + βv̄0 = 0 or β + 1/v̄1 = 0, the

string does not exhibit this kind of asymptotic behaviour. This is an interesting

special case, which is studied in section 27.5.

Equation (27.14) implies that the angle ∆φ obeys

lim
ã→ω1

∆φ0/1 = arg (`+ iD)±
δφ0/1

2
, (27.19)

where the angle δφ is the angular opening of the elliptic string. Further details are

provided in M.

The behaviour of ã and ∆ϕ as functions of θ1 is shown in figure 32. For solutions

2∆φ
δφ

-1

1-n

-n

θ1
θ̃ π/2 π

2∆φ
δφ

-1

1-n

-n

θ1
θ̃− θ̃+ π/2 π

ã
ω1

–2

–1

θ1
θ̃ π/2 π

ã
ω1

–2

–1

θ1
θ̃− θ̃+ π/2 π

E = −µ2

E = 3µ2/10
E = µ2

E = µ2

E = 6µ2/5
E = 2µ2

Figure 32: The parameters ã and ∆φ determining the asymptotic behaviour of the

dressed solutions as function of the angle θ1. The parameter a of the seed elliptic

solution is selected so that the latter obeys appropriate periodicity conditions with

n = 6.

with D2 > 0, usually we select ã to lie on the real axis in the segment (−ω1, ω1).

However, in figure 32 it is selected to lie in the segment (−2ω1, 0) to show the

continuity of its dependence on the position of the poles of the dressing factor. In
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the case of a seed solution, with an oscillating counterpart, there is a special value

of θ1 = θ̃, equal to

θ̃ = 2 arctan

√
−m−
m+

, (27.20)

where ã equals the real half period ω1. At θ1 = θ̃, ∆φ is stationary and at the same

time discontinuous. It performs a jump by π − δφ, which is related to the inversion

of the asymptotics of the solution. In the case of a seed solution with a rotating

counterpart, there are two such special values for θ1, namely,

θ̃± = 2 arctan

√
E ±

√
E2 − µ4

m2
+

, (27.21)

where ã equals the real half period ω1. When θ1 is equal to θ̃±, D2 vanishes and

the absolute value of ∆ϕ is maximum and equal to δφ/2 and π− δφ/2, respectively.

For values of θ1 between these two, it turns out that D2 < 0 and the solution has

a Pohlmeyer counterpart being a periodic disturbance on a rotating background; we

will study these solutions in section 27.4.

It follows that, in the case of rotating backgrounds, the dressed solutions with

Pohlmeyer counterparts, which are kinks or antikinks propagating on top of a train

of kinks, have been separated into two classes. Recalling the epicycle description of

the action of the dressing on the string solution11, their difference is the following:

the class with θ1 < θ̃− asymptotically tends to the seed solution rotated around the

z-axis by an appropriate angle; the class with θ1 > θ̃+ asymptotically tends to the

seed solution, first inverted with respect to the origin of the enhanced space and then

rotated appropriately around the z-axis. Finally, notice that ∆ϕ tends to 0 at the

limits θ1 → 0 and θ1 → π as expected, since the epicycle becomes a point.

27.2 D2 > 0: Approximate Finite Closed Strings

Strictly speaking, it is not possible to fix the parameters of the solution, so that

a dressed string with D2 > 0 satisfies appropriate periodicity conditions (except

for very specific cases that we will study in section 27.5). In the elliptic strings

case, the functions θseed and φseed have the periodic properties (27.3) and (27.4).

Therefore, arranging the solution parameters so that δφ = 2π/n where n ∈ Z, in the

case of a rotating counterpart, and n ∈ 2Z in the case of an oscillating one, results

11The dressed string solutions with the simplest dressing factor, as those presented here, have an

interesting geometric relation to their seeds. Every point of the dressed string is connected to the

point of the seed solution with the same worldsheet coordinates, via an arc of a maximum circle

equal to θ1. Therefore, the dressed string can be considered drawn by a point on an epicycle of

constant arc radius θ1 whose center is running on the seed solution.
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in a well defined, closed string of finite length, parametrized by σ1 ∈
[
0, nδσ0/1

)
.

However, when one considers dressed strings with a Pohlmeyer counterpart that is

a kink propagating on an elliptic background, in general these functions are not

periodic/quasi-periodic due to the presence of the kink.

Nevertheless, we have shown that the dressed solutions asymptotically approach

a rotated version of the seed elliptic ones. This is due to the fact that the effect

of the kink is exponentially damped with the distance from its center. Therefore,

as long as the characteristic length of the exponential damping of the kink is much

smaller that the number of periods appearing in the seed solution, we can claim that

we may adjust the periodicity conditions in order to find a string solution that is not

exactly a closed finite string, but nevertheless an exponentially good approximation

of such a solution. For such a purpose, the parameters of the solution should obey a

modified periodicity condition, due to the asymptotic behaviour (27.11), (27.13) of

the dressed solution, namely,

(n1δφ+ 2sΦ∆φ)n2 = 2π, n1, n2 ∈ Z. (27.22)

It has to be noted that in general dressed elliptic string solutions that satisfy the

condition (27.22) have elliptic seeds which do not obey the appropriate periodicity

conditions, and, thus, they are not finite closed strings. This holds in the simple

case that we considered here, where the strings perform only one winding around the

z-axis and thus, it is possible that they do not contain self-intersection. In general,

one could consider a generalization of (27.22) where the left hand side is 2πm, where

m ∈ Z. In such a case, the seed and the dressed solutions are both closed, as long

as the ratio ∆φ/δφ is rational; however, they correspond to different ranges of the

spacelike parameter σ1. The simplest case of this kind is the limit ã→ ω1 for rotating

seeds, where the angle ∆φ tends to δφ/2.

Figure 33 depicts six such solutions. All solutions of figure 33 depict approximate

finite closed dressed strings with n2 = 1. Two indicative examples of dressed solutions

with n2 > 1 are depicted in figure 34.

The conditions (27.15) and (27.16), which determine the regions where the asymp-

totic form (27.12) and (27.13) of the dressed solution is a good approximation, imply

that solutions obeying the condition (27.22) are an exponentially good approximation

of a finite closed string as long as∣∣∣∣D( 1

β
+ v̄0

)
ω1

∣∣∣∣n1 � 1, (27.23)∣∣∣∣D(β +
1

v̄1

)
ω1

∣∣∣∣n1 � 1, (27.24)

in the case of seed solutions with translationally invariant and static Pohlmeyer

counterparts, respectively.
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seed solution
rotated seed solution
dressed solution

Figure 33: The finite dressed string solution with approximate periodicity conditions.

The left and right column solutions have seeds with translationally invariant and

static Pohlmeyer counterparts, respectively. On the first row the seed solution has

an oscillating counterpart with E = µ2/10 and a selected so that n1 = 10 and

n2 = 1. On the second and third rows the seed solution has a rotating counterpart

with E = 6µ2/5 and a selected so that n1 = 7 and n2 = 1. On the first and second

rows θ1 = π/12, whereas on the third row θ1 = 7π/8. The solutions of the second

and third row belong to the θ1 < θ̃− and θ1 > θ̃+ classes of solutions, respectively.
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Figure 34: Two closed string solutions with approximate periodicity conditions and

n2 = 2

Such solutions approximate non-degenerate genus two solutions with appropri-

ate periodicity conditions. Figure 35 clarifies the performed approximation in the

language of the sine-Gordon equation. The performed approximation is analogous

to the fact that solutions of the simple pendulum with energies close to that of the

unstable vacuum can be well approximated by a series of patches of appropriate seg-

ments of the kink solution. This holds for both oscillatory and rotating solutions of

the simple pendulum. In our problem, the former case is depicted in the top row of

figure 35, whereas the latter case is depicted in the bottom row of the same figure.

In the top row of figure 35, the non-degenerate genus two solution that we approxi-

mate, has a Pohlmeyer counterpart, which is the non-trivial, non-linear superposition

of a train of kinks-antikinks with a train of kinks-antikinks, the latter corresponding

to the seed solution. In the bottom row case, it is the superposition of a train of

kinks with a train of kinks-antikinks when the seed solution has an oscillatory coun-

terpart and a train of kinks when the seed solution has a rotating counterpart. In

a similar manner to the construction of elliptic strings, where the string solutions

with oscillatory Pohlmeyer must obey periodicity conditions corresponding to even

integers n, the dressed solutions Pohlmeyer counterparts of the kind of the top row

of figure 35 must have an even value for n2. The string solution depicted on the left

of figure 34 has a Pohlmeyer counterpart of the kind of the bottom row of figure 35,

whereas the one on the right has a Pohlmeyer counterpart of the kind of the top row.

This picture implies that, as time evolves, the finite segment of the coordinate σ1

that parametrizes the finite closed string should move so that the kink in always inside

this segment. More specifically the asymptotic formulae (27.10), (27.11), (27.12) and

(27.13) imply that each of the n2 patches comprising the closed string is parametrized
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Figure 35: On the left, the kink solution propagating on top of an elliptic background,

a degenerate genus two solution of the sine-Gordon equation. The part of this solution

between the thick vertical black lines is used to approximate the non-degenerate genus

two solution depicted on the right.

by the coordinate σ1 taking values in the segment

σ1 ∈ [Σ0 −∆Σ,Σ0 + ∆Σ) , (27.25)

where

Σ0 =
β + v̄0

1 + βv̄0

σ0, ∆Σ =
n1ω1 + sΦã

γβ
, (27.26)

in the case of translationally invariant seeds, whereas

Σ0 =
β + v̄1

1 + βv̄1

σ0, ∆Σ =
n1ω1 − sΦã

γ
, (27.27)

in the case of static seeds. This segment is visualized in figure 36, where it is depicted

in the original ξ0/1 coordinates. In this figure, the green dashed lines correspond to

the periodic properties of the asymptotic limit of the Pohlmeyer counterpart of the

solution, i.e. The Pohlmeyer field at all points on the green dashed lines has the

same value (or values differing by an integer multiple of 2π).
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Figure 36: Taking advantage of the asymptotic periodicity properties of the sine-

Gordon counterpart to form an approximate finite closed string. Notice that the σ1

segment that covers the closed string moves with the velocity of the kink and not

parallely to the σ0 axis.

27.3 D2 > 0: Exact Infinite Closed Strings

Had we not restricted to finite length strings, we could form infinite strings that obey

appropriate and exact periodicity conditions in the same sense as the single spike

solution [291]. Unlike the single spike solution, which far away from the region of

the spike tends asymptotically to the equator, thus, providing appropriate boundary

conditions at infinity (after infinite self-intersections), this is not the case for dressed

elliptic strings. In order to have a well-defined periodic asymptotic behaviour of the

dressed string, it is required that δφ = 2πm1/n1, where m1 and n1 are integers. In

other words, the seed solution must obey appropriate periodicity conditions (obvi-

ously having self-intersections whenever gcd (m1, n1) = 1 and m1 6= 1). A single

patch of the dressed string does not form a closed string, even in this case, due to

the phase difference of the periodic behaviours of the solution before and after the

kink location. However, when ∆φ = πm2/n2, where m2 and n2 are integers with

gcd (m2, n2) = 1, it is possible to unite n2 such patches, each one rotated by an angle

2πm2/n2 in comparison to the previous one. In this way, the asymptotic region of

each patch after the location of the kink, coincides with the asymptotic region of the

next one before the location of the kink, so that an infinite smooth closed string is

formed. An infinite closed dressed elliptic string of this kind is depicted in figure 37.
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Figure 37: An infinite closed string with exact periodicity conditions and δϕ = 2π/3

and 2∆ϕ = π/2. The seed solution has a rotating static Pohlmeyer counterpart with

E = 6µ2/5. Four patches of the original seed string solution are required to form the

dressed string.

These exact infinite closed string solutions can be considered as the n1 →∞ limit

of the approximate finite closed strings presented in the previous section, with the

additional constraint that the seed solution obeys appropriate periodicity conditions

so that the asymptotic behaviour of the infinite dressed string is well-defined. In

this limit, the conditions (27.23) and (27.24) are trivially satisfied and the solution

ceases being approximate and becomes exact. It follows that the approximate closed

strings of the previous section can also play the role of a regularization scheme for

the infinite ones of this section. This will become handy in section 32, where we will

calculate the energy and momentum of the dressed string solutions.

It may appear annoying, that such solutions are parametrized by many infinite

patches. However, this is not unexpected. In the literature, there are very well-

known examples of simpler solutions with similar behaviour, namely the multi-giant

magnons. These are degenerate limits of elliptic solutions (the E → µ2 limit of

the elliptic solutions (21.4)). Let us consider an elliptic solution (a solution de-

fined on a torus) that obeys periodicity conditions with δϕ = 2π/n. This solution

is parametrized by a segment of σ1 which corresponds to n windings around the

circle of the torus that corresponds to the real period 2ω1. In the limit that this

solution becomes a multi-giant magnon, this period diverges, and, thus the torus is

transformed to a cylinder. It follows that appropriate parametrization in this limit,

requires the union of n such infinite cylinders, and for this reason these solutions

require an infinite range of σ1 for the parametrization of each hop. The solutions of

this section exhibit the same behaviour. They should be understood as the degen-

eration of genuine genus two solutions, in the limit when one of the two real periods
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diverges.

27.4 D2 < 0: Exact Finite Closed Strings

When considering dressed string solutions with D2 < 0, the corresponding Pohlmeyer

counterpart is not a kink propagating on an elliptic background, but rather a periodic

disturbance of the background. This means that the effect of the dressing on the

string (as well as in its Pohlmeyer counterpart) is not localized in some region, as it

was in the case D2 > 0. This also implies that there is no limit where the dressed

solution tends to become similar to the seed. Thus, in this case, it is not possible to

construct an approximate genus two solution, similar to those of section 27.2.

It is possible to find dressed string solutions with D2 < 0 that obey exact ap-

propriate periodicity conditions, i.e. it is possible to construct a closed string that

corresponds to a finite interval of the space-like parameter σ1. The dressing solution

contains elliptic functions with argument of the form

γσ0/1 − γβσ1/0 + ω2, (27.28)

inherited by the seed solution. These have the periodicity properties of the seed,

i.e. they are periodic in σ1, with period δσ0 = 2ω1/(γβ) and δσ1 = 2ω1/γ, for

translationally invariant and static seeds, respectively. This implies that a closed

string, which is covered by σ1 ∈ [Σ0,Σ0 + ∆Σ) obeys

∆Σ = nδσ0/1, n ∈ N. (27.29)

Except for this dependence of the dressed solution on the worldsheet variables,

there are two angles that appear as arguments in trigonometric functions, one inher-

ited from the seed solution and one from the dressing factor, namely

φseed
(
σ0, σ1

)
= `

(
γσ1/0 − γβσ0/1

)
− Φ

(
γσ0/1 − γβσ1/0; a

)
, (27.30)

φdress
(
σ0, σ1

)
=
√
−D2

(
γσ1/0 − γβσ0/1

)
− Φ

(
γσ0/1 − γβσ1/0; ã

)
. (27.31)

These functions obey the following quasi-periodicity properties

φseed
(
σ0, σ1 + δσ0/1

)
= φseed

(
σ0, σ1

)
+ δφseed

0/1 , (27.32)

φdress
(
σ0, σ1 + δσ0/1

)
= φdress

(
σ0, σ1

)
+ δφdress

0/1 , (27.33)

where

δφseed
0/1 = ∓2ω1

[
iζ (ω1)

a

ω1

−

iζ (a) +

√
(x1 − ℘ (a))

(
x2/3 − ℘ (a)

)
x3/2 − ℘ (a)

], (27.34)

δφdress
0/1 = ∓2ω1

[
iζ (ω1)

ã

ω1

−

iζ (ã) +

√
(℘ (ã)− x1)

(
x2/3 − ℘ (a)

)
x3/2 − ℘ (a)

]. (27.35)
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Obviously, appropriate periodicity conditions imply

δφseed =
mseed

nseed
2π, (27.36)

δφdress =
mdress

ndress
2π, (27.37)

wheremseed, nseed,mdress, ndress ∈ Z. If we select the above integers, so that gcd
(
mseed, nseed

)
=

gcd
(
mdress, ndress

)
= 1, then we will obtain a finite closed string solution with

n = lcm
(
nseed, ndress

)
.

The first of these conditions (27.36) simply states that the seed solution obeys

appropriate periodicity conditions. The second one (27.37) is closely related to

the periodicity properties of the sine-Gordon counterpart analysed in section 26.5.

More specifically, this condition is equivalent to demanding that the direction of the

boosted axis σ1 coincides with one of the directions defined by the periodicity lattice

of the sine-Gordon counterpart. This can become more transparent expressing the

condition (27.37) in terms of the velocity of the periodic disturbance vtb
0/1, given by

equations (26.44) and (26.47). It reads

δφdress
0 =

√
−D2

(
1

β
− vtb

0

)
2ω1 =

mdress

ndress
2π, (27.38)

δφdress
1 = −

√
−D2

(
β − 1

vtb
1

)
2ω1 =

mdress

ndress
2π, (27.39)

which after some algebra results in

1

β
=

2π√
−D2m

dress + 2ω1v
tb
0 n

dress

2ω1ndress
, (27.40)

1

β
=

2ω1n
dress

− 2π√
−D2m

dress + 2ω1

vtb
1
ndress

, (27.41)

for solutions whose seeds have a translationally invariant or static Pohlmeyer coun-

terpart, respectively. Bearing in mind, that the sine-Gordon counterpart solution

is periodic under the translations (26.42) or (26.49) and quasi-periodic under the

translations (26.43) or (26.50), the above equations imply that the σ1 axis is lying in

the direction of mdress periodic displacements and ndress quasi-periodic displacements

on the periodicity lattice of the sine-Gordon counterpart. Figure 38 visualises the

above. These finite closed string solutions can be considered as the analytic continu-

ation of the exact infinite closed strings that we studied in section 27.3. However in

this case, the resulting strings are of finite size. Similarly to the exact infinite closed

strings with D2 > 0, the seed solution must obey appropriate periodicity conditions,

too. However, depending on the integers nseed and ndress, the dressed string may
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Figure 38: The segment of σ1 parametrizing a finite closed dressed elliptic string with

D2 < 0, as specified by the periodicity properties of the sine-Gordon counterpart. In

the depicted example ndress = 1 and mdress = 2.

require several (lcm
(
nseed, ndress

)
/nseed) repetitions of the σ1 interval of the original

seed solution in order to complete a closed string. Figure 39 depicts an example of

such a dressed string solution.

Similarly to the exact infinite closed string solutions with D2 > 0, these solutions

are also the degenerate limit of genuine genus two solutions. The difference between

the two classes of solutions is the fact that the divergent period is the real one in

the former case and the imaginary one in the latter. In other words, in this case,

the σ1 segment parametrizing the string solution corresponds to winding around the

compact direction of the cylinder, which is the degenerate limit of the torus.

27.5 D2 > 0: Special Exact Finite Closed Strings

In section 27.2, we showed that under some conditions, it is possible to take advan-

tage of the asymptotic behaviour of the solutions to construct approximate closed

dressed elliptic string solutions. The appropriate conditions are given in equations

(27.23) and (27.24) and it is simple to see that, selecting an adequately large n,

these conditions can be satisfied, independently of the value of the other parameters.

However, there is a special case where this is not possible namely,

β = − 1

v̄0/1

. (27.42)
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dressed solution
seed solution

Figure 39: Two dressed strings with D2 < 0 with seed solution, which have a trans-

lationally invariant counterpart (left) and a static counterpart (right)

In this case, it is not possible to construct such an approximate solution, as the

spacelike coordinate σ1 follows exactly the motion of the kink, and, thus, no matter

how large values σ1 takes, a snapshot of the string never reaches the asymptotic

region.

In a different approach, in the case D2 < 0, there is a two-dimensional lattice of

symmetries of the sine-Gordon counterpart that allows the construction of periodic

and thus, finite string solutions. In the case D2 > 0, this set of symmetries is one-

dimensional and thus, it is not generally possible to use these symmetries for the

construction of finite string solutions, unless the σ1 axis coincides with the direction

of the periodic symmetry of the sine-Gordon counterpart. The condition (27.42)

corresponds to exactly this case. Therefore, one may use the exact periodic properties

of the sine-Gordon counterparts of the dressed elliptic strings (26.21) and (26.22) to

construct the special exact finite closed string solutions, as shown in picture 40. The

condition (27.42) is not sufficient to ensure appropriate boundary conditions of the

solution. Similarly to the D2 < 0 case of section 27.4, the worldsheet coordinates

appear in three distinct combinations in the solution. The first one is trivially ξ0/1

or (27.28) in terms of σ0/1, which implies that the possible segment of σ1 covering a

finite string is given by equations (27.6) and (27.7) for translationally invariant and

static seeds respectively. One should remember that in the case under study it holds

D2 > 0 and thus, the seed may have an oscillating sine-Gordon counterpart. In such

a case, 2ω1 should be substituted with 4ω1 in these expressions.

Except for this dependence on the worldsheet variable, two more angles appear,
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Figure 40: Taking advantage of the periodicity properties of the sine-Gordon coun-

terpart to form a special exact finite closed string

namely

φseed
0/1

(
σ0, σ1

)
= `

(
γσ1/0 − γβσ0/1

)
− Φ

(
γσ0/1 − γβσ1/0; a

)
, (27.43)

φdress
0/1

(
σ0, σ1

)
= D

(
γσ1/0 − γβσ0/1

)
− Φ

(
γσ0/1 − γβσ1/0; ã

)
. (27.44)

The first angle appears as argument of trigonometric functions, whereas the second

one in hyperbolic functions. Thus, in juxtaposition with the D2 < 0 case of the

previous section, appropriate periodicity conditions require a condition identical to

(27.36), whereas the periodicity condition (27.37) should be substituted with

δφdress = 0. (27.45)

The condition (27.36) is equivalent to the seed solution obeying appropriate period-

icity conditions, whereas the condition (27.45) simply implies the condition (27.42).

Obviously, such a solution is possible only when the kink propagates with a speed

larger than the speed of light.

Both infinite and finite exact periodic string solutions with D2 > 0 can be con-

sidered as the analytic continuation of the exact finite string solution with D2 < 0.

The space or time period of the corresponding sine-Gordon counterparts is equal to

2π/
√
−D2. As D → 0 this period diverges. Therefore, naturally the finite strings

with D2 < 0 of section 27.4 tend to the infinite strings with D2 > 0 of section 27.3,

unless this vector does not contribute to the σ1 direction, i.e. mdress = 0, in which

case they tend to the finite exact solutions with D2 > 0 of this section.
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28 Time Evolution and Spike Interactions

28.1 Shape Periodicity

28.1.1 D2 > 0: Approximate Finite and Exact Infinite Strings

The time evolution of the approximate finite dressed strings with D2 > 0 is shown in

figure 41. The dressed strings, in the region far away from the extra kink induced by

the dressing, are similar to a rotated version of the seed elliptic string solutions. The

time evolution of the later is simply a rigid rotation around the z-axis with angular

velocity equal to

ω0/1 =
1

R

√
x1 − ℘ (a)

x3/2 − ℘ (a)
. (28.1)

In figure 41, this rigid rotation has been frozen in order to focus on the change of

the shape of the string. The shape of the string alters periodically with period equal

to

T shape
0 = (2) 2µγω1 (1− βv̄0) ,

T shape
1 = (2) 2µγω1

(
1

v̄1

− β
)
,

(28.2)

where the extra 2 applies in the case of oscillatory seed solutions and v̄0/1 is given by

equations (26.13) and (26.18), depending on whether the seed solution has a trans-

lationally invariant or static counterpart. At the level of the sine-Gordon equation,

this formula yields the time necessary for the kink to travel over a whole period of

the elliptic background. This time is directly related to the mean velocity of the

kink, as calculated in section 26.2 in the linear gauge. The above formula is just the

appropriate adaptation to the static gauge.

The time evolution of the exact infinite dressed strings with D2 > 0 is similar to

the time evolution of the approximate finite strings.

28.1.2 D2 < 0

The question whether the dressed elliptic string solutions with D2 < 0 are also

periodic in time has a similar answer to the same question imposed about the sine-

Gordon counterpart. In a similar manner to the periodic in space properties, the

dependence of the solution on elliptic functions of ξ0/1 implies that a possible period

for the motion of the string has to be a multiple of the quantity

δτ0 =
2ω1

γ
, (28.3)

δτ1 =
2ω1

γβ
. (28.4)
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t = 0
t = T shape/8
t = T shape/4
t = 3T shape/8
t = T shape/2

Figure 41: The time evolution of the dressed elliptic string solutions depicted in

figure 33
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In this case it is not necessary to impose any condition for the angle φseed. It turns

out that the angle φseed is altered by an amount that it is independent of σ1. Since

this angle enters into the solution as an overall rotation via the matrix U , such an

angle does not correspond to a variation of the shape of the string. On the contrary,

periodicity in time requires appropriate condition for the angle φdressed. This turns

out to be

δφdress
0 = −

√
−D2

(
β − vtb

0

)
2ω1 =

mdress

ndress
2π, (28.5)

δφdress
1 =

√
−D2

(
1

β
− 1

vtb
1

)
2ω1 =

mdress

ndress
2π, (28.6)

which after some algebra can be written as

β =
− 2π√

−D2m
dress + 2ω1v

tb
0 n

dress

2ω1ndress
, (28.7)

β =
2ω1n

dress

2π√
−D2m

dress + 2ω1

vtb
1
ndress

. (28.8)

These equations imply that the σ0 axis coincides with a direction of the periodicity

lattice of the sine-Gordon counterpart. Therefore, only in such a case, the string

solutions of this class are periodic in time.

28.2 Spike Dynamics

We observe several forms of interaction between the spikes. Two spikes pointing to

opposite directions may approach each other until a given time instant when they

both disappear. After some time, they reappear at a different position. This is

evident in figure 41 top-left, middle-left and middle-right. It is also possible, as

shown in the bottom-left part of figure 41, that a loop shrinks until a time instant

when it disappears and two spikes pointing in the same direction appear. Then, the

loop reappears in a different position, after the combination of a different pair of

spikes. It has to be noted that although the kink induced by the dressing bypasses

the kinks of a rotating background, it is possible that the corresponding spikes bypass

each other without interacting, as shown in the bottom-right part of figure 41. A

close-up of these kinds of interactions is depicted in figure 42. The time evolution of

the string in this figure advances from red to purple. On the left two spikes approach

each other and then disappear. It is clear that they cease to exist for a finite time

and then, a pair of spikes appears in a symmetric fashion and starts diverging until

one of those combines with another spike. On the right the situation is similar, but

when the two spikes disappear a loop takes their place.
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Figure 42: Two kinds of spike interactions. On the left a spike and anti-spike an-

nihilate and regenerate at a different position. On the right a loop dissolves to two

spikes. Then, one of those is recombined with another one to form again a loop. The

time evolves from the red curve to the purple one.

The above processes are quite simple to understand in the language of the sine-

Gordon equation. As noted in section 21.3, a spike may appear only at positions

where the Pohlmeyer field ϕ assumes a value that is an integer multiple of 2π, as in

these positions the derivative ∂X
∂σ1 vanishes. Actually, unless a very special coincidence

happens (the second derivative also vanishes), at such points the derivative ∂X
∂σ1 gets

inverted, and, thus, these points are positions of spikes. In figure 43, the time

evolution of the sine-Gordon counterparts of the dressed elliptic strings is depicted.

On the left, the solution is a kink propagating on a translationally invariant oscillating

elliptic seed, whereas on the right it is an antikink propagating on a train of kinks,

i.e. a rotating elliptic seed. As analysed in section 26, the shape of the kink alters

periodically as it advances in the elliptic background. As the shape changes, it is

possible that the solution ceases to cross a ϕ = 2nπ horizontal line, or on the opposite

may start crossing such a line. Continuity ensures that whenever this happens two

points where the solution crosses a ϕ = 2nπ line appear or disappear. As these

points correspond to spikes, it naturally implies that spikes may interact in pairs

that disappear or appear from nothing. The left part of figure 43 depicts the kind of

interaction occurring in the top left panel of figure 41, whereas the right part depicts

the kind of interaction happening in the middle row and the bottom right panel of

figure 41. Had one considered the case of a kink propagating on a train of kinks, the

situation would be rather different. Such a solution is always monotonous (see figure

24), and, thus, it is not possible that such phenomena occur. Therefore, although

the extra spike corresponding to the kink will overpass all other spikes, as the kink
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Figure 43: The time evolution of a kink propagating on a translationally invariant

oscillatory background and an anti-kink propagating on a rotating background being

a train of kinks. The dots are positions of spikes. The thick dots are the “interacting”

spikes that disappear and reappear in either of the interactions depicted in figure 42.

advances in the elliptic background, it is not possible to get in touch and interact

with any of those. This is the case of the bottom right panel of figure 41.

The same kinds of spike interactions occur in the time evolution of the other

classes of closed strings that we developed in section 27.

28.3 A Conservation Law Preserved by Spike Interactions

In the case of the dressed string solutions with approximate periodicity conditions

plotted in figure 33, the space-like worldsheet coordinate σ1 runs in a finite interval.

Such solutions are characterized by a topological number N , being proportional to

the difference in the value of the Pohlmeyer field at the endpoints of this interval,

obviously being a multiple of 2π,

2πN =

∫
string

dσ∂σϕ, N ∈ Z. (28.9)

This number is conserved as the string moves due to the continuity of the time

evolution of the Pohlmeyer counterpart of the solution.

In the case of the elliptic strings this has been identified to the number of spikes.

However, in this case the spikes never interact with each other, as the time evolution

of the elliptic strings is simply a rigid rotation. In the case of dressed elliptic strings,

we have seen that spikes may interact in a way that their number is not conserved.

Thus, the identification of the topological number in the sine-Gordon equation as

the number of spikes cannot be extended beyond the case of the elliptic strings.

The form of these spike interactions guide us to search for a conserved quantity,

which receives ±1 contributions from each spike and ±2 contributions from each
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loop. Let us consider the turning number of the closed string. This is a difficult task

since the string has singular points (the spikes), where the tangent vector is not well

defined. However, it is true that the string contains only this kind of non-smooth

points, i.e. points where the tangent gets inverted. Other non-smooth points where

the tangent is instantly rotated by an arbitrary angle are not allowed. Therefore,

the unoriented tangent to the string is continuous, and, thus, an unoriented turning

number can be defined. This is an element of the fundamental group of the mappings

from S1 to the one-dimensional real projective space RP 1. Notice that possible self

intersections of the string should not be treated as the same point, where the tangent

would not be well-defined, but as separate points. This way the desired turning

number is naturally a member of π1 (RP 1) = Z and must be conserved.

Figure 44 shows that the existence of a single spike between two points of the

string with the same unoriented tangent contributes a ±1 to this turning number.

Similarly, the existence of a loop contributes ±2. This explains the two kinds of

Figure 44: The turning number contributions from a spike (left) and a loop (right)

interactions we found in section 28.2. Whenever two spikes with opposite contribu-

tions to the unoriented turning number get combined, they just disappear. When

two spikes with identical contributions to the turning number get combined they

disappear and necessarily the conservation of the turning number implies that a loop

must take their place. The above imply that the unoriented turning number and the

topological charge of the sine-Gordon equation are in correspondence. They do not

have to be equal, but they may differ by an even integer.

The above are also in line with the effect of the dressing on the shape of the string

that we observe in figure 33. In all cases, the action of the dressing procedure on the

Pohlmeyer field adds a kink or an antikink to the seed solution, which according to the

above should increase or decrease the aforementioned turning number by one. The

simplest case is that of a seed solution with a static oscillating counter part (figure
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33 top-right). In this case the seed solution has no spikes, while the dressed solution

has exactly one. In a similar manner, when a seed solution with a translationally

invariant oscillating counterpart is considered (figure 33 top-left), the seed solution

has equal number of spikes that contribute +1 and spikes that contribute −1 to the

turning number, having net turning number 0, whereas the dressed string has net

turning number equal to 1. In the case of seeds with rotating elliptic counterparts

the behaviour is also similar.

29 Instabilities of the Elliptic Strings

When one desires to study the stability of a classical string solution, they usually

study the stability of its Pohlmeyer counterpart, as the equations of motion of the

reduced system are simpler to study since they contain fewer degrees of freedom and

they do not possess any reparametrization symmetry. More specifically, the stability

of the elliptic solutions of the sine-Gordon equation has been studied in [308]. It

turns out that only the static rotating elliptic solutions of the sine-Gordon equation

are stable. Therefore, only one of the four classes of elliptic string solutions on the

sphere S2 is stable.

However, we should be concerned about the above result. The stability analysis is

performed introducing an arbitrary infinitesimal perturbation to the elliptic solutions

of the sine-Gordon equation. However, when a closed elliptic string is considered,

appropriate periodicity conditions must be applied, and, thus, only perturbations

preserving these conditions should be considered in the stability analysis.

In the following, we will follow a different approach to discover instabilities of the

elliptic string solutions. Instead of performing an infinitesimal perturbation to the

string solution, we will try to find explicit solutions that tend asymptotically in time

to an elliptic string solution, but in general they are not a small perturbation around

the latter. Such solutions are the analogue, for example in the case of the simple

pendulum, to the trajectories connecting asymptotically two consecutive unstable

vacua. The existence of such a solution reveals that the elliptic solution, which is

the asymptotic limit of the latter, is unstable.

This class of string solutions that reveals instabilities of the elliptic strings may

contain solutions with various genera. However, the simplest case to consider is

a degenerate genus two solution, where only one of the two genera is degenerate.

The solution should have a non-degenarate genus, associated with the initial elliptic

solution, and furthermore it should have a degenerate one describing the infinite

motion that tends asymptotically to the elliptic solution at plus and/or minus infinite

time. This is exactly the class of dressed elliptic string solutions.

It turns out that the relevant dressed elliptic solutions are the special finite exact
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solutions with D2 > 0 presented in section 27.5. These solutions have counterparts

with D2 > 0 being a kink propagating on an elliptic background. Therefore, the

sine-Gordon counterparts of these solutions have a specific asymptotic behaviour,

namely, far away from the region of the kink they tend to a shifted version of the

seed, and similarly the string tends to a rotated version of the seed string solution.

In this specific class of solutions, the σ1 direction is parallel to the direction that

the kink moves in spacetime, thus the asymptotic behaviour of the string is never

reached at a snapshot of the string, but it is rather reached asymptotically in time.

It follows that these specific string solutions evolve from a rotated version of the seed

elliptic spiky string solution to another one, rotated by the opposite angle. Notice

that these asymptotic string solutions obey appropriate periodicity conditions and

thus, they are finite.

The existence of these solutions indicates that their seed elliptic solutions are

unstable. They describe a finite disturbance of a spiky string emerging after an

infinitesimal perturbation at minus infinity time.

The special solutions of this kind emerge only when the kink propagating on top of

an elliptic background in the sine-Gordon counterpart of the solution is superluminal,

as shown in section 27.5. Therefore, following section 26.2, only elliptic strings with

a translationally invariant sine-Gordon counterpart that is rotating, or oscillating

with E > Ec, and elliptic strings with a static oscillating sine-Gordon counterpart

may expose this kind of instability. Interestingly, as shown in figure 26, the strings

with an oscillating translationally invariant counterpart with E > Ec give rise to two

distinct dressed string solutions exposing their instability, whereas all other classes

give rise to only one. Figure 45 shows the time evolution of the special finite dressed

elliptic strings with D2 > 0. The rigid body rotation of the asymptotic elliptic string

has been frozen in the figure so that the time evolution is clearly depicted. In all

cases the string finally resettles to the same unstable elliptic string configuration

but with a delay proportional to 2 |ã| in comparison to the state it would lie had it

followed the simple rigid rotation evolution of the elliptic string.

The above are in line with the findings of [308], which support that in general

string solutions with sine-Gordon counterparts that can accommodate superluminal

kinks are unstable. However, in our case there is a particular difference. The solutions

exposing the string instability emerge only when there is a superluminal kink with

velocity equal to the inverse of the velocity of the boost connecting the linear and

static gauges. This is due to the fact that only such solutions do not disturb the

periodicity conditions of the closed seed string solution. Recalling figure 26, the

above implies that the elliptic strings with oscillating static counterparts always

expose this kind of instability, since the kink velocity diverges at the limit ã → ω1,

and, thus, any possible superluminal kink velocity can be obtained for some value
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Figure 45: The dressed elliptic string solutions that reveal instabilities of their seed

elliptic strings. The dashed lines correspond to times opposite to the continuous ones

with the same color. On the top row, the two solutions related to an elliptic string,

with a translationally invariant oscillatory counterpart with E = 9µ2/10 and n = 4,

are depicted. The bottom left panel shows the solution related to an elliptic string

with a translationally invariant rotating counterpart with E = 3µ2/2 and n = 8.

Finally, the bottom right panel depicts the solution related to an elliptic string with

a static oscillatory counterpart with E = −µ2/2 and n = 8.

249



of ã. On the contrary, for elliptic strings with translationally invariant counterparts,

even in the case they can accommodate superluminal kinks, there is a maximum

velocity of the latter. This means that, depending on the elliptic string moduli E

and a, which determine the velocity of the boost connecting the static and linear

gauges, this kind of instability may or may not exist. More specifically, given a value

of E, there is a minimum value of ℘ (a), or in other words, there is a minimum

number of spikes required for the existence of the instability. This in turn implies

that the ”speeding strings” limit of the elliptic strings always exposes this kind of

instability (when they have translationally invariant counterparts). Figure 46 shows

the subset of elliptic strings that present this kind of instabilities within the moduli

space of elliptic string solutions as parametrized by the quantities E and ℘ (a). In the

static counterparts translationally invariant counterparts

E−µ2 µ2℘ (a)
n1

2
3
4
5
6
7
8
9

10

E−µ2 Ec µ
2℘ (a)

n0

0
1
2
3
4
5
6

7

GKP limit/oscillating hoops
giant magnons/single spikes
hoop/BMN partiple

unstable solutions
rotating counterparts
oscillating counterparts

Figure 46: The set of unstable elliptic string solutions in the moduli space

right panel, the thick black line enclosing the unstable elliptic string solutions with

oscillating translationally invariant counterparts tends asymptotically to the E = Ec
vertical line, where the constant Ec is defined in equation (26.14).

Of course the above argument is not a proof of the existence of stable closed

elliptic string solutions, with sine-Gordon counterparts that accommodate superlu-

minal kinks; it is possible that more complicated multi-kink generalizations of the

above solutions conserve the periodicity conditions and thus give rise to instabilities.

These should possess only one non-degenerate genus, thus, they could emerge from

the dressing of the elliptic strings with more complicated dressing factors. The latter

can be constructed from the solution of the auxiliary system presented in section

24 in a straightforward manner. Such solutions should not correspond to multiple

kinks travelling on top of an elliptic background, as they would have different veloc-

ities and thus, their asymptotic behaviour could not be only temporal. They would
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rather correspond to a single breather propagating on top of an elliptic background.

Nevertheless, the stability issue of the spiky strings requires further investigation

concerning the constraints originating from the periodicity conditions.

A simple case to consider in particular is the stability of the GKP strings [289].

These are the elliptic strings with static Pohlmeyer counterparts and modulus a = ω2

implying that β = 0, i.e. the linear gauge coincides with the static gauge. It follows

that a dressed elliptic solution exposing an instability of a GKP string should have

a Pohlmeyer counterpart being a superluminal kink on top of an elliptic background

with infinite velocity, in other words a translationally invariant kink. As we have

shown in section 26.2, the kink velocity on static backgrounds is diverging only in

the case of an oscillating seed at the limit ã = ω1. Therefore, the GKP strings with

an oscillating Pohlmeyer counterpart are unstable. This is expected since the latter

are great circles rotating around the sphere with subluminal velocities and they tend

to shrink due to the string tension.

30 Perturbations of the Pohlmeyer Field

As we discussed in previous sections, the NLSM describing the propagation of strings

on R × S2 is Pohlmeyer reducible to the sine-Gordon equation. This turns out to

be handy whenever one wants to study the stability of a classical string solution.

Instead of studying the stability of the original NLSM solution, one may study the

stability of its Pohlmeyer counterpart, which is a much simpler task.

The stability of the elliptic solutions of the sine-Gordon equation has been studied

in the literature [308]. It turns out that all elliptic solutions are unstable except for

the static rotating ones. However, this analysis has been performed without taking

into account the necessary periodic conditions that a solution of the sine-Gordon

equation must obey in order to correspond to a closed string on the NLSM side. We

will perform this analysis in the following.

The sine-Gordon equation reads

∂2
1ϕ(ξ0, ξ1)− ∂2

0ϕ(ξ0, ξ1) = µ2 sinϕ(ξ0, ξ1). (30.1)

Assume we are given a solution of the sine-Gordon equation ϕ̄(ξ0, ξ1). We introduce

a perturbed solution of the form

ϕ(ξ0, ξ1) = ϕ̄(ξ0, ξ1) + ϕ̃(ξ0, ξ1), (30.2)

where ϕ̃(ξ0, ξ1) � ϕ̄0(ξ0, ξ1). For notational convenience we drop the arguments

of the fields in what follows. At linear order, the perturbations obey the following

equation

∂2
1ϕ̃− ∂2

0ϕ̃ = µ2 (cos ϕ̄) ϕ̃. (30.3)
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This equation has exactly the same form as the equation obeyed by the embedding

functions of the string solution. We restrict our attention to the case where ϕ̄ is

an elliptic solution. Such solutions have the property that they depend on a sole

world-sheet coordinate in an appropriate frame. We abbreviate ϕ̄(ξ0/1) = ϕ̄0/1 and

denote as ϕ̃0/1 the corresponding perturbation (which depends on both worldsheet

coordinates).

The elliptic solutions in the frame where they depend on only one worldsheet

coordinate assume the form

cos ϕ̄0/1 = ∓ 1

µ2

(
2℘
(
ξ0/1 + ω2

)
+ x1

)
. (30.4)

Equation (30.3) turns to

∂2
1ϕ̃0/1 − ∂2

0ϕ̃0/1 = ∓
(
2℘
(
ξ0/1 + ω2

)
+ x1

)
ϕ̃0/1. (30.5)

This equation can be solved via separation of variables. It has solutions of the form

ϕ̃0 = eikξ
1

y0(ξ0), (30.6)

ϕ̃1 = eiωξ
0

y1(ξ1), (30.7)

where the functions y0/1 satisfy the following equations

−∂2
0y0 + 2℘

(
ξ0 + ω2

)
y0 =

(
k2 − x1

)
y0, (30.8)

−∂2
1y1 + 2℘

(
ξ1 + ω2

)
y1 =

(
ω2 − x1

)
y1, (30.9)

which are the famous n = 1 Lamé problem. Our analysis is based on the band

structure of this potential, which can be analytically determined.

Before we proceed, two crucial remarks are in order. So far we have used a

linear gauge for the physical time, (21.9). This choice facilitates the separation

of variables. It is a key element of our approach in constructing classical string

solutions in R × S2. Yet, the study of the string should be performed in the static

gauge, since it is in this gauge that the physical time coincides with the timelike

worldsheet coordinate. The second remark is the relation of the string worldsheet to

the domain of the sine-Gordon equation. The boundary conditions of closed strings

imply that the Pohlmeyer field should be periodic with respect to the spacelike

worldsheet coordinate in the static gauge, which is equivalent to considering the sine-

Gordon equation in R × S1. This compactification assigns well defined topological

charge to the solutions and sets strict constraints on the linear perturbations.

30.1 The band structure of the n = 1 Lamé potential

We will present some basic facts about the band structure of the Lamé potential.

We refer the reader to [258,327] for details.
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The eigenfunctions of the n = 1 Lamé equation

− ∂2y + 2℘ (ξ + ω2) y = λy (30.10)

are

y±(ξ) =
σ (ξ + ω2 ± ã)σ (ω2)

σ (ξ + ω2±)σ (ω2 ± ã)
e−ζ(±ã)ξ, (30.11)

where the corresponding eigenvalue is λ = −℘(ã). The symbol ã used in this section

should not be confused with the modulus ã of the dressed string solutions presented

in the previous section. However, we use the same symbol as in what follows it

will turn out that they coincide. The eigenvalue λ should be taken real, so that

the perturbations are also real for any value of both worldsheet coordinates. This

constraints ã to take values on a specific domain on the complex plane. Since the

roots of the cubic polynomial associated to the Weierstrass elliptic function are always

real, the Weierstrass elliptic function has a real period 2ω1 and a purely imaginary

period 2ω2. Then, the fundamental domain, where the Weierstrass elliptic function is

real, is the union of four linear segments (obviously it is also real in all other positions

that are congruent to this fundamental domain). These are the segments connecting

the origin to ω1 and ω2, as well as the segments connecting ω3 = ω1 + ω2 to the

latter. These form a closed rectangle. The Weierstrass elliptic function assumes any

real value at exactly one point on this rectangle. More specifically, on the segment

connecting the origin to ω1 it decreases monotonously from +∞ to the largest root as

ã moves from the latter to the former. Similarly, on the segment connecting ω1 to ω3

it assumes any value between the two largest roots. On the segment connecting ω3

to ω2 it assumes any value between the two smallest roots. Finally, on the segment

connecting ω2 to the origin it assumes any value smaller than the smallest root.

When ã lies in the segment connecting the origin to ω1 or the segment connecting

ω2 to ω3 the eigenfunctions y± are both real and unbounded, while in the other

two cases, the eigenfunctions y± are complex conjugate to each other and bounded,

corresponding to Bloch waves of the n = 1 Lamé potential.

In all cases, the eigenfunctions obey the quasi-periodicity property

y±(ξ + 2ω1) = y±(ξ)e±2(ζ(ω1)ã−ζ(ã)ω1). (30.12)

This quasi-periodicity property of the eigenfunction is of critical importance. It is

determined by the behaviour of the function f(z) = ζ(ω1)z − ζ(z)ω1 on the do-

main where the Weierstrass elliptic function is real. This function has the following

properties

1. When z lies on the segment defined by 0 and ω1, the function f is real. As z

moves from 0 to ω1, f(z) increases monotonously from −∞ to 0.

253



2. When z lies on the segment defined by ω1 and ω3, the function f is purely

imaginary. As z moves from ω1 to ω3 the imaginary part of f(z) increases

monotonously from 0 to π/2.

3. When z lies on the segment defined by ω3 and ω2, the function f is complex. Its

imaginary part is constant and equals to π/2; as z moves from ω3 to ω2 its real

part decreases monotonously from 0 to a minimum value and then increases

monotonously to 0.

4. Finally, when z lies on the segment defined by ω2 and 0, the function f is purely

imaginary. As z moves from ω2 to 0, its imaginary part increases monotonously

from π/2 to +∞.

30.2 Perturbations of Closed Strings

The static gauge, which is defined by t = µσ0, is connected to the linear gauge

(21.9) via an appropriate boost with velocity given by (21.22). In this gauge, the

perturbations of static elliptic solutions assume the following form

ϕ̃1(σ0, σ1) = eiωγ(σ
0−βσ1)y1(γ

(
σ1 − βσ0

)
), (30.13)

where γ = 1/
√

1− β2. The parameter ω is related to the eigenvalue of the Lamé

equation as

ω2 = x1 − ℘(ã). (30.14)

The perturbation ϕ̃1 obeys the following quasi-periodicity property

ϕ̃1(σ0, σ1 + 2nω1/γ) = ϕ̃1(σ0, σ1)e2n(−iβω1ω±f(ã)). (30.15)

Assume that this perturbation corresponds to a small perturbation of a closed string

solution, which is covered by σ1 ∈ [0, 2nω1/γ), where n ∈ Z. The perturbation

should be periodic in σ1 with period 2nω1/γ, thus, the perturbation should obey the

periodicity condition

− iβω1ω + f(ã) =
m

n
πi, (30.16)

where m,n ∈ Z.

Similarly, the perturbations of the translationally invariant elliptic solutions are

of the form

ϕ̃0(σ0, σ1) = eikγ(σ
1−βσ0)y0(γ

(
σ0 − βσ1

)
). (30.17)

The parameter k is related to the eigenvalue of the Lamé equation as

k2 = x1 − ℘(ã). (30.18)
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The perturbation ϕ̃0 has the following quasi-periodicity property

ϕ̃0(σ0, σ1 + (2nω1)/(βγ)) = ϕ̃0(σ0, σ1)e−2n(−iω1k
β
±f(ã)). (30.19)

Similarly, the appropriate periodicity condition for perturbations of translationally

invariant elliptic solutions of the sine-Gordon equation, which correspond to closed

string solutions, are

− iω1k

β
+ f(ã) =

m

n
πi, (30.20)

where m,n ∈ Z.

30.3 The Time Evolution of the Perturbations

In the previous section, we derived the conditions that are obeyed by perturbations

of closed elliptic strings, namely equations (30.16) and (30.20). These conditions

determine the spectrum of the perturbations defining the admissible values of ã.

Nevertheless the existence of such perturbations is not sufficient in order to analyse

the stability properties. One should proceed and study the time evolution of these

perturbations.

The quasi-periodicity properties of the solutions determine the time evolution of

the perturbations. More specifically, it holds that

ϕ̃1

(
σ0 +

2nω1

γβ
, σ1

)
= ϕ̃1

(
σ0, σ1

)
en∆Φ1 , (30.21)

ϕ̃0

(
σ0 +

2nω1

γ
, σ1

)
= ϕ̃0

(
σ0, σ1

)
en∆Φ0 , (30.22)

where n ∈ Z and

∆Φ1 = 2

(
i
ωω1

β
∓ f (ã)

)
, (30.23)

∆Φ0 = 2 (−iβkω1 ± f (ã)) . (30.24)

Whenever the spatial periodicity conditions (30.16) or (30.20) are obeyed, the

quasi-periodicity properties (30.21) and (30.22) are obeyed with

∆Φ1 = 2i
ωω1

βγ2
, (30.25)

∆Φ0 = 2i
kω1

βγ2
. (30.26)
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These equations clearly imply that whenever ω or k are real, the perturbation has

an oscillatory and bounded evolution in time, with period

T1 =
2πγ

|ω|
, (30.27)

T0 =
2πβγ

|k|
. (30.28)

On the other hand, when ω or k is imaginary, the perturbations grow exponentially,

revealing that the elliptic solution is unstable. In these cases the corresponding

Lyapunov exponents are

λ1 =
|ω|
γ
, (30.29)

λ0 =
|k|
βγ
. (30.30)

30.4 Analysis of the Spectrum of the Perturbations

The parametrization in terms of Weierstrass elliptic functions turns out to be a great

advantage, since the whole presentation can be held very short, without relying on

a tentative case by case analysis. The table 5 summarizes the range of the function

f(z) = ζ(ω1)z − ζ(ã)z that is related to the quasi-periodicity of the eigenfunctions

of the Lamé equation.

ã ℘(ã) x1 − ℘(ã) f (ã) c

segment defined by 0 and ω1 ∈ (e1,∞) − c c ∈ (−∞, 0)

segment defined by ω1 and ω3 ∈ (e2, e1) −/+ ic c ∈ (0, π/2)

segment defined by ω3 and ω2 ∈ (e3, e2) + c+ iπ/2 c ∈ (M, 0)

segment defined by ω2 and 0 ∈ (−∞, e3) + ic c ∈ (π/2,∞)

Table 5: The values of the parameters, entering the equations (30.16) and(30.20), for

various values of ã. In the 3rd column, 2nd row the sign − corresponds to oscillating

solutions, while the sign + corresponds to rotating solutions.

1. When ã lies on the segment defined by 0 and ω1, ℘ (ã) is larger than any of the

three roots, thus, equations (30.14) and (30.18) imply that the parameter ω or

k is imaginary. The left-hand-side of (30.16) and (30.20) is real, as a result

only the m = 0 sector could provide solutions with appropriate periodicity

conditions. The spatial periodicity conditions (30.16) and (30.20), for m = 0

are equivalent to the condition

β =
f (ã)

iωω1

, (30.31)
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in the case of a static elliptic solution and

β =
ikω1

f (ã)
, (30.32)

for translationally invariant elliptic solutions.

Let us compare the above to the findings from the dressed elliptic string solu-

tion. Taking into account equations (26.13) (26.18), (25.33) and the fact that

the parameters ω and k are given by the expressions (30.14) and (30.18), the

above conditions (30.31) and (30.32) become identical to the conditions that

emerged from the dressed elliptic solutions (27.42). This identifies the ã pa-

rameter of the linear analysis to the ã modulus of the kinks that propagate on

top of the elliptic background as presented in sections 24 and 26.

Whenever such solution can be found, since ω or k is imaginary, the perturba-

tions grow exponentially in time, and, thus, the elliptic solution is unstable.

2. When ã lies on the segment defined by ω1 and ω3, ℘ (ã) lies between the two

largest roots. In the case that the elliptic solution is oscillatory (x2 > x1 > x3),

following equations (30.14) and (30.18), the parameter ω or k is imaginary and

the left-hand-side of equations (30.16) and (30.20) is complex, thus providing

no solution with appropriate periodicity conditions. On the other hand, in the

rotating case (x1 > x2 > x3) the parameter ω or k is real, and as a result,

equations (30.16) and (30.20) could possess valid solutions.

Since they are characterized by real parameter ω or k, these perturbations

are stable. Interestingly enough, the spacial periodicity condition in this case

assumes the same form as the condition of existence of closed dressed elliptic

solutions with D2 < 0. These indeed exist only when the seed is a rotating

elliptic solution, similarly to the outcome this linear analysis.

3. When ã lies on the segment defined by ω3 and ω2, ℘ (ã) lies between the two

smallest roots, and, thus, the parameter ω or k is real. The left-hand-side of

(30.16) and (30.20) is complex, as a result they do not possess solutions with

appropriate periodicity conditions.

4. Finally, when ã lies on the segment defined by ω2 and 0, ℘ (ã) is smaller than

the smallest root and the parameter ω or k is real similarly to the previous case.

The left-hand-side of (30.16) and (30.20) is imaginary. As a result, they could

provide valid solutions, in which case the perturbations are also stable, since

either ω or k is real. The spatial periodicity condition assumes a form similar

to the appropriate periodicity conditions for the elliptic strings themselves.
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Summing up, the elliptic solutions are unstable, whenever one can find a per-

turbation with ã in the segment connecting the origin and ω1 that obeys the con-

dition (30.31) or (30.32), for static and translationally invariant elliptic solutions,

respectively. The results of the linear analysis are identical to the full non-linear

construction of the unstable trajectories with the use of the dressing method. This

strongly supports the dressing method as a tool for the stability analysis of classical

string solutions.

31 The Moduli Space of Unstable Elliptic Solu-

tions

The main purpose of our analysis, i.e. the demonstration of equivalence between a

linear stability analysis and the non-linear construction of unstable trajectories with

the use of the dressing method, has been realized. In this section, we will determine

the subset of unstable elliptic string solutions in their moduli space parametrized by

the constants E and a, as introduced in section 20.

In all cases, the condition for the existence of an instability has been expressed

as

β = − 1

v̄0/1

, (31.1)

where v̄0/1 is given by (26.13) or (26.18). Thus, we must study the dependence of

v̄0/1 on ã in order to specify whether there are unstable perturbations of the elliptic

strings.

The mean kink velocity v̄0 on a translationally invariant background is

v̄0 =
ζ(ã)ω1 − ζ(ω1)ã

ω1D
. (31.2)

Depending on the values of ã and E, this velocity can be either superluminal or

subluminal. We are going to prove that this velocity is strictly superluminal in the

case of solutions with a rotating counterpart, whereas there exists a critical value

Ec for the moduli E, obeying 0 < Ec < µ2, such that the kinks on an oscillating

background are strictly subluminal for E < Ec.

Without loss of generality, let us consider the case 0 ≤ ã ≤ ω1. It is a simple

task to determine the limits of the velocity as ã tends to the endpoints of its allowed

region. It holds true that

lim
ã→0

v̄0 = 1. (31.3)

In the case of an oscillating background, one can show that

lim
ã→ω1

v̄0 = 0. (31.4)
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In the case of rotating backgrounds though, the expression for the velocity (31.2) is

undetermined at the limit ã→ ω1. Expanding appropriately the numerator and the

denominator yields (26.17). In the vicinity of ã→ 0+ it holds

v̄0 = 1 + c2 (E) ã2 +O
(
ã4
)
, (31.5)

where

c2 (E) =
x1

2
− ζ(ω1)

ω1

. (31.6)

The addition formula of the Weierstrass ζ function implies that

2ζ(ω1) = ζ (z + 2ω1)− ζ (z) = −
∫ z+2ω1

z

℘(x)dx. (31.7)

The Weierstrass elliptic function assumes real values on the segment connecting ω2

and ω3 whose range is between the two smallest roots e2 and e3. Thus, for z = ω2,

we obtain
ζ(ω1)

ω1

= − 1

2ω1

∫ 2ω1

0

℘(x+ ω2)dx. (31.8)

We recall that the Weierstrass elliptic function on the segment connecting ω2 and ω3

ranges between the two smallest roots. Therefore, it is evident that

− e2 ≤
ζ(ω1)

ω1

≤ −e3. (31.9)

In the case of an oscillating background (e2 = x1), the above relation can be re-

expressed as
3x1

2
≥ c2 (E) ≥ −µ

2

2
, (31.10)

which implies trivially that

c2 (E) < 0, when 0 > E ≥ −µ2. (31.11)

Thus, the second order term in the expansion of the kink velocity with ã is negative,

whenever the constant E is negative. However, it is not possible to derive its sign

with such simple arguments when E > 0. This is the subject of what follows.

Let us specify the extrema of the kink velocity. Its derivative with respect to ã

is given by

∂v̄0

∂ã
= −

℘(ã) + ζ(ω1)
ω1√

℘(ã)− x1

−
℘′(ã)

(
ζ(ã)− ζ(ω1)

ω1
ã
)

2 (℘(ã)− x1)3/2
. (31.12)

The absence of a linear term in (31.5) obviously implies that

∂v̄0

∂ã

∣∣∣∣∣
ã=0

= 0. (31.13)
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At the other endpoint of the possible values of ã, the derivative of the mean kink

velocity depends on whether the elliptic solution is oscillatory or rotating. In both

cases, the Weierstrass elliptic function assumes the value of the largest root at ã = ω1.

In the case of the solution being oscillatory, x1 is not the largest root, and one can

directly read the derivative from (31.12). If the solution is rotating, the expression

(31.12) will become indeterminate at ω1. An appropriate expansion of this formula

around ω1 shows that the derivative vanishes in this case. Thus,

∂v̄0

∂ã

∣∣∣∣∣
ã=ω1

=

0, E > µ2,

−
x2+

ζ(ω1)
ω1√

x2−x1
, µ2 > E > −µ2.

(31.14)

In order to study other possible extrema points of the kink velocity, we re-express

its derivative as
∂v̄0

∂ã
=

g(ã)℘′(ã)

2 (℘(ã)− x1)3/2
, (31.15)

where

g(ã) = − 2

℘′(ã)

(
℘(ã) +

ζ(ω1)

ω1

)
(℘(ã)− x1)−

(
ζ(ã)− ζ(ω1)

ω1

ã

)
. (31.16)

The technical advantage of expressing the derivative of the velocity in this form, is

that g′ is an elliptic function of ã and in particular it is a function of ℘(ã). Further

zeros of the derivative of v̄0 for ã ∈ (0, ω1) are solutions of the equation g(ã) = 0.

The expansions of the Weierstrass elliptic functions at ã = 0 imply that

g(0) = 0, (31.17)

while for ã = ω1 it holds that

g(ω1) =

{
0, E > µ2,

+∞, µ2 > E > −µ2.
(31.18)

We are going to study the monotonicity of g in order to specify the number of the

solutions of the equation g(ã) = 0. It is a matter of algebra to show that the equation

g′(ã) = 0 is a quadratic equation for ℘(ã), with solutions

℘(ã) = x1, (31.19)

℘(ã) =
x2x3 − x1

2
ζ(ω1)
ω1

ζ(ω1)
ω1
− x1

2

= −
x2x3 − x1

2
ζ(ω1)
ω1

c2 (E)
. (31.20)
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For E > µ2, the root x1 is the largest root, thus the first solution (31.19) corre-

sponds trivially to ã = ω1, which is not interesting, since we are looking for solutions

in the open interval (0, ω1). The second solution (31.20) assumes the form

℘(ã) = e1 +
−3x1

2
c2 (E) + µ4

4

c2 (E)
. (31.21)

When E > µ2 the function g(ã) is smooth for every ã ∈ [0, ω1] and furthermore one

can show that g(0) = g(ω1) = 0. Rolle’s theorem states that the equation g′(ã) = 0

must have at least one solution for ã ∈ (0, ω1). Our analysis suggests that (31.21) is

the only possible solution. As a result it is the sole solution whenever E > µ2. The

function ℘(ã) is real and larger than e1 for every ã ∈ (0, ω1). The quantity c2 (E)

cannot vanish, since ℘(ã) is finite in (0, ω1). If it were negative, the numerator of

the fraction in equation (31.21) would be positive. As a result ℘(ã) would be smaller

than e1. Therefore, we deduce by contradiction that

c2 (E) > 0, when E > µ2. (31.22)

Since g′ vanishes only once in the interval (0, ω1), it is evident that g, and as a

consequence ∂v̄0

∂ã
, retain their sign. By taking into account (31.22), the expansion

(31.5) implies that ∂v̄0

∂ã
> 0, in the region of ã = 0. Consequently v̄0 is an increasing

function of ã in the whole interval (0, ω1), whenever E ≥ µ2. Taking into account

equation (31.3), this implies that all kinks, which propagate on a translationally

invariant rotating elliptic background, possess superluminal velocity.

We are left with the oscillating case, namely −µ2 < E < µ2. In this case, the

analysis is more complicated. Once again the solution (31.19) is irrelevant. Since

x1 = e2, this solution corresponds to ã = ω3, which does not lie on the segment

connecting the origin and ω1. In the oscillating case, the second solution (31.20)

may be re-expressed as

℘(ã) = e1 +
µ2

2

e1 + ζ(ω1)
ω1

c2 (E)
. (31.23)

Equation (31.9) suggests that the numerator of the fraction appearing in (31.23) is

always positive. Hence the solution (31.20) provides a valid ã (i.e. ℘(ã) is larger

than e1), as long as the denominator c2 (E) is also positive. We already know that

c2 (E) is negative whenever E < 0 and positive whenever E > µ2. We are going to

prove that c2 (E) is a monotonous function of E for −µ2 < E < µ2. As a result there

exists only one critical value of energy Ec, such that

c2 (Ec) = 0. (31.24)

This critical value can be numerically found to be equal to Ec = 0.65223.
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The following formulas are needed:

∂ω1

∂g2

=
18g3ζ(ω1)− g2

2ω1

4 (g3
2 − 27g2

3)
,

∂ω1

∂g3

=
9g3ω1 − 6g2ζ(ω1)

2 (g3
2 − 27g2

3)
, (31.25)

∂ζ(ω1)

∂g2

=
2g2

2ζ(ω1)− 3g2g3ω1

8 (g3
2 − 27g2

3)
,

∂ζ(ω1)

∂g3

=
g2

2ω1 − 18g3ζ(ω1)

4 (g3
2 − 27g2

3)
. (31.26)

Using the expressions (19.10) for the moduli in terms of the constant E and after

some trivial algebra, we obtain:

dω1

dE
= −

E
3
ω1 + ζ(ω1)

E2 − µ4
(31.27)

dζ(ω1)

dE
=

(E2 + 3µ4)ω1 + 12Eζ(ω1)

36 (E2 − µ4)
. (31.28)

Since x1 = E/3, it follows that

d

dE

(
x1

2
− ζ(ω1)

ω1

)
=
dc2 (E)

dE
=

1

4
+

(
ζ(ω1)
ω1

+ E
3

)2

µ4 − E2
> 0, when − µ2 < E < µ2.

(31.29)

In effect, for −µ2 ≤ E < Ec the equation g′(ã) = 0 has no solution, and therefore

g and consequently ∂v̄0

∂ã
retain their sign. Since

c2 (E) < 0, −µ2 < E < Ec (31.30)

it is clear from the expansion (31.5) that v̄0 is a decreasing function of ã in the region

of ã = 0, and, hence it is a decreasing function of ã in the whole segment (0, ω1),

whenever −µ2 < E < Ec. Taking into account equation (31.3), we conclude that

all kinks, which propagate on a translationally invariant oscillating background, are

subluminal for any ã, whenever −µ2 < E < Ec.

On the contrary, whenever Ec < E < µ2, there is exactly one extremum of

the velocity in (0, ω1) at ã = ãmax, which is given by (31.23). The velocity is an

increasing function of ã in the region of ã = 0, therefore this extremum is a maximum

and the corresponding maximum velocity v̄0 (ãmax) is superluminal. The velocity

vanishes at ã = ω1, as follows from equation (31.4). Since it is monotonous in the

interval (ãmax, ω1), it follows that it becomes equal to one exactly once, at a critical

ãc (which depends on the particular E). It follows that, whenever Ec < E < µ2,

the kinks, which propagate on a translationally invariant oscillating background are

superluminal for any 0 < ã < ãc(E) and subluminal for any ãc(E) < ã ≤ ω1.

As a final comment, in the singular case of E = µ2, the use of the degenerate

form of Weierstrass elliptic functions and some trivial algebra yields

v̄0 = cosh (µã) . (31.31)
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The case of static elliptic solutions can be trivially analyzed, since v̄1 = 1/v̄0.

Obviously subluminal kinks in the one case correspond to superluminal in the other

case and vice versa. The mean kink velocity, as function of ã is depicted in figure 26.

Returning to the instability of the closed elliptic strings, we recall that these are

unstable, whenever it is possible to find a kink propagating on the elliptic background

with superluminal mean velocity equal to 1/β, where β is given by (21.22). The form

of the dependence of the kink mean velocity on ã implies the following:

1. Static oscillatory solutions: The kink mean velocity assumes any value between

1 and∞ for exactly one value of ã. Thus, all these solutions are unstable; there

is exactly one unstable perturbation of each solution.

2. Static rotating solutions: The kink mean velocity is always subluminal. Thus,

all these solutions are stable.

3. Translationally invariant oscillatory solutions: In this case there are super-

luminal kinks with velocities ranging from 1 to v̄0 (ãmax). There are exactly

two distinct kinks with the same superluminal velocity. Thus, these solu-

tions are unstable, as long as β ≥ 1/v̄0 (ãmax). Whenever, they are unstable

they have exactly two unstable perturbations (except for the saturating case

β = 1/v̄0 (ãmax), when there is only one). The two distinct modes have in

general different Lyapunov exponents.

4. Translationally invariant rotating solutions: In this case there are superluminal

kinks with velocities ranging from 1 to v̄0 (ω1). There is only one kink for each

velocity. Thus, these solutions are unstable, as long as β ≥ 1/v̄0 (ω1). When,

they are unstable they have exactly one unstable perturbation.

Figure 46 depicts the above in the moduli space of elliptic string solutions, as

parametrized by the moduli E and a. In this figure there are two black curves that

separate the stable from the unstable solutions, in the case of translationally invariant

elliptic strings. In the region E < µ2, the curve is β = 1/v̄0 (ãmax), which has the

line E = Ec as an asymptote. The strings on this curve are unstable, but with only

one unstable mode. In the region E > µ2, the curve is β = 1/v̄0 (ω1).
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32 Energy and Angular Momentum of Dressed El-

liptic Strings

32.1 Approximate Finite and Exact Infinite Strings with

D2 > 0

The dressed string solutions have a conserved energy and angular momentum as a

direct result of the time translation and the rotation symmetries of the NLSM action.

The energy is simple to calculate, since

E0/1 =

∣∣∣∣ δLδ∂0t

∣∣∣∣ = T

∫
string

∂t0/1
∂σ0

dσ1 = Tµ

∫
string

dσ1. (32.1)

The only non-trivial quantity to be specified is the range of the space-like parameter

σ1 that covers the whole closed string. In section 27, apart from the special solutions

related to the instabilities of the elliptic strings, we specified two classes of closed

dressed elliptic strings with D2 > 0: those that have finite length and satisfy approx-

imate periodicity conditions and those that are infinite and satisfy exact periodicity

conditions. Obviously, the energy of the latter is infinite. The former are covered by

n2 patches, of the form

σ1 ∈
[
σ̄ − n1ω1 + sΦã

γβ
, σ̄ +

n1ω1 + sΦã

γβ

)
, (32.2)

σ1 ∈
[
σ̄ − n1ω1 − sΦã

γ
, σ̄ +

n1ω1 − sΦã

γ

)
, (32.3)

where σ̄ is the position of the kink that is induced by the dressing, at any given

time12. Defining as Ehop
0/1 the energy of one hop of the seed elliptic string, it follows

that the energy of these strings is equal to

E0/1 =
2Tn2Rµ

2 (n1ω1 ± sΦã)√
x3/2 − ℘ (a)

= Ehop
0/1

[
n2

(
n1 ± sΦ

ã

ω1

)]
. (32.4)

In a similar manner, the angular momentum can in principle be calculated as

J =
δL

δ∂0φ
= TR2

∫
string

sin2θ0/1

∂φ0/1

∂σ0
dσ1. (32.5)

12In section 27.2 we used as σ̄ the average position of the kink (see equations (27.26) and (27.27)).

One could consider the exact position of the kink, i.e. the σ̄ that obeys Φ̃
(
σ0, σ̄

)
= 0. Either

selection results in the same values for the energy and the angular momentum of the dressed

strings.
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This requires much more complicated algebra than the calculation of the energy.

However, this algebra may be bypassed, since the angular momentum is directly

proportional to the sigma model charge. The sigma model charge of the dressed

solution differs to that of the seed by a finite amount as described by formula (J.16).

Therefore, we can easily calculate the angular momentum of the dressed solution

given the angular momentum of the appropriate segment of the seed solution that

corresponds to the range of σ1 that covers the closed dressed solution. This is an

easy task in the parametrization in terms of the Weierstrass elliptic function.

We will focus on the calculation of the third component of the angular momentum

of the string, which presents a certain interest for holographic applications. Before

that, let us argue on the reasons we expect the other two components to vanish,

when we consider finite closed dressed strings. In the case of elliptic “naked” solutions

obeying appropriate periodicity conditions, J1 and J2 vanish as a result of the discrete

symmetry that these solutions possess. This is also the case when one considers

infinite dressed elliptic strings that obey exact periodicity conditions (see figure 37).

However, naively this is not the case when we consider the approximate closed finite

dressed solutions with n2 = 1, as the extra spike induced by the dressing breaks

this symmetry. Although this symmetry is not present at a given time instant,

one should not forget that the dressed strings change shape periodically, while they

are simultaneously rotating. Therefore, after a time equal to the period of the string

shape, it is expected that the J1 and J2 components will have rotated by an arbitrary

angle. As the angular momentum is conserved, the latter implies that J1 and J2

vanish. In the following J denotes the third component of the angular momentum

and the indices 0 and 1 refer to whether the seed has a translationally invariant or

static Pohlmeyer counterpart.

The angular momentum of the seed solution is given in section 22. In the fol-

lowing, we consider the case of seed solutions with static counterparts. The case of

seeds with translationally invariant counterparts can be treated in a similar manner.

Jseed =
n2γ

`

∫ σ̄+∆Σ

σ̄−∆Σ

(
℘
(
γ
(
σ1 − βσ0

)
+ ω2

)
− x3

)
dσ1, (32.6)

where ∆Σ = (n1ω1 − sΦã) /γ. Simple algebra yields

Jseed = −n2

`
{ζ (σ+)− ζ (σ−) + 2x3 (n1ω1 − sΦã)} , (32.7)

where

σ± = γ
(
σ̄ − βσ0

)
± (n1ω1 − sΦã) + ω2. (32.8)

The difference between the NLSM charge of the dressed and seed solutions is

given by equation (J.16). It follows that the difference of the third component of the
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angular momentum is given by

∆J = −1

2
∆Q12

L . (32.9)

It is a matter of algebra to show that the change of the angular momentum

induced by the dressing is given by the following expression

∆J =
n2

`
[−2n1ζ (ω1) + ζ (σ+)− ζ (σ−) + 2sΦ (ζ (ã)−D cos θ1)] . (32.10)

Thus, the third component of the angular momentum of the dressed solution Jdressed

is equal to

J1 = −2
n2

`
[n1 (ζ (ω1) + x3ω1)− sΦ (ζ (ã) + x3ã−D cos θ1)] . (32.11)

In a similar manner in the case of translationally invariant seeds we find

J0 = 2
n2

`
[n1 (ζ (ω1) + x2ω1) + sΦ (ζ (ã) + x2ã−D cos θ1)] . (32.12)

Defining as Jhop
0/1 the angular momentum of one hop of the seed solution, the above

expressions can be written as

J0/1 = n2J
hop
0/1

(
n1 ± sΦ

ζ (ã) + x2/3ã−D cos θ1

ζ (ω1) + x2/3ω1

)
. (32.13)

We observe that the dressing parameter ã plays in energy and momentum a role

similar to that of ω1. In a similar manner the angle 2∆ϕ plays a similar role to

the angular opening δϕ, which in the case of elliptic strings is associated to the

quasi-momentum in the holographically dual theory. A natural interpretation of

these similarities is that the dressed strings are holographic duals of states of the

boundary CFT that are characterized by more than one quasi-momenta, interacting

with each other in a non-trivial manner. This is not unexpected, since the finite

dressed strings approximate genuine genus two solutions.

The difference of the energy and angular momentum of the dressed solution to

those of the seed solution is

∆E0/1 = ±2sΦn2
TRµ2ã√
x3/2 − ℘ (a)

, (32.14)

∆J0/1 = 2sΦn2
1

`

(
ζ (ã) + x2/3ã−D cos θ1

)
. (32.15)

The exact infinite dressed strings with D2 > 0 have obviously infinite energy and an-

gular momentum. Nevertheless, since they are the n1 →∞ limit of the approximate

solutions, and the above expressions do not depend on n1, the difference of their
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energy and momentum to those of their elliptic seeds is well-defined, finite and given

by (32.14) and (32.15). In other words the finite approximate closed dressed strings

may serve as a regularization scheme for the exact infinite closed dressed strings.

Although the above relations are expressed in terms of transcendental functions,

the properties of the elliptic functions allow the specification of the dispersion relation

in a closed form whenever the quantities a and ã are a rational fraction of ω2 and ω1

respectively. This procedure is applied in section 22 for the simpler case of elliptic

strings and we will not post further details here.

32.2 Exact Finite Strings with D2 > 0 and Strings with D2 <

0

The energy and angular momentum of the dressed strings with D2 < 0 and appro-

priate periodicity conditions, as well as those of the exact finite dressed strings with

D2 > 0, can be trivially derived from those of the seed solutions. The fact that the

solution is periodic in σ1 with a period that is an integer multiple of that of the

seed, implies that the variation of the energy and angular momentum induced by the

dressing is trivially vanishing, as one can read from expressions (32.1) and (J.16).

The energy is trivially equal to

E0/1 =
2TnRµ2ω1√
x3/2 − ℘ (a)

, (32.16)

J0/1 = ±
2TnR2

(
ζ (ω1) + x2/3ω1

)√
x1 − ℘ (a)

, (32.17)

where n is equal to lcm
(
nseed, ndress

)
, in the case of dressed strings with D2 < 0, as

described in section 27.4, and n = nseed in the case of the exact finite elliptic strings

with D2 > 0 (or equivalently ndress = 1), as described in section 27.5.

The change of the difference of the energy and angular momentum that is induced

by the dressing, is plotted versus the dressing parameter θ1 in figure 47. In these

plots, it is assumed that when the seeds have translationally invariant sine-Gordon

counterparts, they also have the instabilities presented in section 29. Had we consid-

ered the opposite, the graphs would be identical apart from the inversion of the curve

between the two instabilities in the case of an oscillating counterpart and between

θ̃+ and the instability in the case of a rotating counterpart, which would be absent.

Furthermore, not all points in the continuous curves of the graphs correspond

to closed strings, but only a dense discrete subset of them. The blue lines here

correspond to the exact infinite closed strings of section 27.3. As the expressions for

the energy and angular momentum of the approximate finite closed strings of section

27.2 are identical, the relevant plots would be similar apart from two differences:
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seed with translationally invariant seed with translationally invariant
oscillating counterpart rotating counterpart

seed with static seed with static
oscillating counterpart rotating counterpart

δ (E − J) δ (E − J)

δ (E − J)
δ (E − J)

(E−J)hop

2

(E−J)hop

2

θ1

θ1

θ1

θ1

θ̃

θ̃

θ̃− θ̃+

θ̃− θ̃+

infinite closed strings with D2 > 0
finite closed strings with D2 > 0
finite closed strings with D2 < 0

Figure 47: The (E − J)dressed − (E − J)seed as function of the angle θ1

• The full continuum of the curves could be set valid, if the parameters of the

seed solution were altered appropriately as one moves on the curve so that ap-

propriate periodicity conditions always apply. Otherwise only a dense discrete

subset would be valid.

• A region around each instability point would be invalid since the approximation

conditions around the instabilities do not hold.

This behaviour implies the existence of an interesting bifurcation in the dispersion

relation of the dressed string solution occurring at E = µ2. The dispersion relation

of dressed strings whose seed solutions have oscillating sine-Gordon counterparts are

a non-trivial function of the angle θ1, which determines the position of the poles

of the dressing factor or equivalently specifies the value of the Bäcklundparameter

a. When considering dressed strings whose seeds have rotating counterparts, the

dispersion relation is a rather peculiar function of the angle θ1; there is a range for

θ1 where the dispersion relation does not depend on the latter.
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The above is an interesting similarity to the properties of the corresponding solu-

tions of the sine-Gordon equation. As we have seen in section 26.6, the mean energy

and momentum density of the dressed solution of the sine-Gordon equation with

D2 < 0 is identical to those of the seed solution. It would be interesting to interpret

this fact on the side of the holographically dual theory. The difference E−J remains

the same after the dressing; however the seed solution is characterised by a single

angular opening, i.e. a single quasi-momentum, whereas this is not the case for the

dressed solution. A naive interpretation of this solutions could be that they corre-

spond to more complicated excitations, which have formed bound states behaving as

a single quasi-momentum state.

There is yet another interesting bifurcation of the form of the dispersion relation

of the dressed strings in the case of translationally invariant seeds that has to do with

the presence of the instabilities. When the seed is unstable, the quantity ∆E −∆J

contains further discontinuities related with the inversion of the sign sΦ. Although

the dispersion relations of the dressed strings are too complicated expressions to be

directly verifiable in a holographically dual theory, the above discontinuities in the

behaviour of the dispersion relation could be in principle detectable.

33 Dressed Static Minimal Surfaces in AdS4

In view of the Ryu-Takayanagi prescription for the calculation of holographic entan-

glement entropy, the construction of a minimal surface for a given entangling surface

presents interest not only from a mathematical point of view, but from a physical

one as well. The main obstacle in finding minimal surfaces in an explicit form is the

high complexity of the non-linear equations that govern them.

In AdS4, co-dimension two minimal surfaces are two-dimensional, and, thus, they

correspond to the special configurations, which extremize the Nambu-Gotto action,

or equivalently a NLSM action, supplemented by the Virasoro constraints. We are

interested in static minimal surfaces in AdS4, which are equivalent to solutions of a

Euclidean NLSM on the hyperbolic space H3.

We consider the embedding of H3 in the enhanced flat space R(1,3), with coordi-

nates Y 0, Y 1, Y 2 and Y 3. The hyperbolic space H3 is defined by the equation

Y TJY ≡ −
(
Y 0
)2

+
(
Y 1
)2

+
(
Y 2
)2

+
(
Y 3
)2

= −Λ2, (33.1)

where J = diag {−1,+1,+1,+1}. In the following we set the scale of the hyperbolic

space Λ equal to one. Two-dimensional surfaces are parametrized by two real space-

like parameters u and v. In conformal gauge, the area of such a two-dimensional
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surface is given by the functional

A =

∫
dzdz̄

(
(∂+Y )T J (∂−Y ) + λ

(
Y TJY + 1

))
, (33.2)

where z = (u+ iv)/2. We denote the associated derivatives as 13

∂+ ≡ ∂z ∂− ≡ ∂z̄. (33.3)

The parameter λ is a Lagrange multiplier, which enforces the geometric constraint

(33.1). The equations of motion assume the form

∂+∂−Y =
(

(∂+Y )T J (∂−Y )
)
Y, (33.4)

while the Virasoro constraint reads

(∂+Y )T J (∂+Y ) = 0. (33.5)

The above equations can be reduced à la Pohlmeyer to the Euclidean cosh-Gordon

equation. Defining the Pohlmeyer field a as

eα := (∂+Y )T J (∂−Y ) , (33.6)

it can be shown that it obeys

∂+∂−α = 2 coshα. (33.7)

The surface element is simply the exponential of the Pohlmeyer field, i.e.

A =

∫
dzdz̄eα. (33.8)

33.1 The Dressing Method

In a nutshell, the dressing method is a technique that enables one to construct a new

solution of a NLSM given a known solution, the seed solution. The seed solution of

the NLSM is mapped to an element g of an appropriate coset, which is isomorphic

to the symmetric target space of the NLSM. Then, instead of solving directly the

second order non-linear equations of motion of the NLSM, one has to solve a pair of

linear first order equations, the so called auxiliary system,

∂±Ψ(λ) =
1

1± λ
(∂±g) g−1Ψ(λ), (33.9)

13We use the notation ∂± instead of the usual ∂ and ∂̄ in order to have more compact expressions

in what follows.
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where Ψ(λ) is the auxiliary field, normalized as Ψ(0) = g, and λ is the spectral

parameter. The equations of motion of the NLSM is the compatibility condition

that must be obeyed, so that the auxiliary system (33.9) has a solution.

A trivial gauge transformation of the auxiliary system Ψ′(λ) = χ(λ)Ψ(λ), is

associated to a new solution of the NLSM. More details on the dressing method are

provided in [298, 300]. As the NLSM that will occupy our interest, is defined with

Euclidean world-sheet signature, there are a few, crucial, alterations with respect to

the usual treatment of Lorentzian string world-sheets.

33.1.1 The Mapping between H3 and SO(1, 3)/SO(3)

In order to proceed with the dressing method, we need to establish the mapping

between points of H3 and elements of some appropriate coset, as was mentioned

earlier. The hyperbolic space H3 is isomorphic with the connected subspace of

SO(1, 3)/SO(3), which contains the identity. The mapping of a vector Y of the

enhanced space of H3, namely R(1,3), to an element g of the coset SO(1, 3)/SO(3),

which we use in the following, is

g =
(
I + 2Y0Y

T
0 J
) (
I + 2Y Y TJ

)
, (33.10)

where I is the identity matrix, J = diag{−1, 1, 1, 1} is the metric of the enhanced

space and Y0 is a constant vector of H3, i.e. Y T
0 JY0 = −1. We denote

θ := I + 2Y0Y
T

0 J. (33.11)

The special choice

Y T
0 =

(
1 0 0 0

)
(33.12)

corresponds to θ = J .

It can be easily shown that the element g, given by (33.10), possesses the following

properties

ḡ = g, (33.13)

θgθg = I, (33.14)

gTJg = J, (33.15)

which state that g is an element of the coset SO(1, 3)/SO(3).

33.1.2 Constraints

In the following, we derive the appropriate constraints, which ensure that the dressed

solution g′ = χ(0)g is also an element of the coset SO(1, 3)/SO(3), as consistency
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conditions of the solution of the auxiliary system. In doing so, we consider a general

constant matrix θ and not the special choice (33.12). The analysis draws heavily

on [299]. Here, we work with a Euclidean NLSM; the main difference to the case of

dressed string solutions is related to the constraint imposed by complex conjugation.

We set λ→ λ̄ in the auxiliarry system (33.9) and consider the complex conjugate

of these equations

∂∓Ψ̄(z, z̄; λ̄) =
1

1± λ
(∂∓g) g−1Ψ̄(z, z̄; λ̄). (33.16)

Clearly, the two pairs of equations (33.9) and (33.16) are compatible only if

Ψ̄(λ̄) = Ψ(−λ)m1(λ), (33.17)

where m1(λ) is an arbitrary constant matrix which obeys m1(λ)m̄1(−λ̄) = I 14. The

constraint (33.17) is general, in the sense, that any auxiliary system, defined on a

real coset, with Euclidean world-sheet coordinates must obey it.

Next, we set λ → 1/λ into (33.9). Furthermore, equation (33.14) implies that

(∂±g)θg + gθ(∂±g) = 0, and, thus,

∂± [gθΨ(1/λ)θ] =
1

1± λ
(∂±g) g−1 [gθΨ(1/λ)θ] . (33.18)

Consequently,

gθΨ(1/λ)θ = Ψ(λ)m2(λ), (33.19)

where m2(λ) is an arbitrary constant matrix which obeys m2(λ)θm2(1/λ)θ = I 15.

Finally, from (33.15), it follows that J [(∂±g) g−1]
T
J = − (∂±g) g−1. Thus,

∂±
[
JΨ(λ)TJ

]−1
=

1

1± λ
(∂±g) g−1

[
JΨ(λ)TJ

]−1
, (33.20)

which implies that [
JΨ(λ)TJ

]−1
= Ψ(λ)m3(λ), (33.21)

where the matrix m3(λ) must obey JmT
3 (λ)J = m3(λ).

To sum up, the fact that the element g belongs to the coset SO(1, 3)/SO(3)

implies the constraints (33.17), (33.19) and (33.21) on the solution of the auxiliary

system.

14This is required, since acting twice with complex conjugation should result in Ψ.
15This constraint ensures that performing the transformation λ→ 1/λ twice results in the initial

matrix Ψ.
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33.1.3 The Dressing Factor

In this section we will construct the simplest dressing factor χ (λ), following [298].

More general ones can be constructed using the results of [287]. We will discuss them

subsequently.

Demanding that the dressed auxiliary field solution, Ψ′, obeys the constraints

(33.17), (33.19) and (33.21), as Ψ does, so that the dressed element g′ belongs to

the coset SO(1, 3)/SO(3), implies that the dressing factor must obey the following

constraints:

χ̄
(
λ̄
)

= χ (−λ) , (33.22)

χ (1/λ) = g′Jχ (λ) gJ, (33.23)

χ−1(λ) = JχT (λ)J. (33.24)

We have assumed that the matrices m1, m2 and m3 are the same for the seed and

dressed solutions. Without loss of generality, we choose m1 = I, m2 = −J and

m3 = I in what follows.

In general, the dressing factor is a meromorphic function of λ, and, thus, it has

an expansion of the form

χ (λ) = I +
∑
i

Qi

λ− λi
. (33.25)

The constraints (33.22), (33.23) and (33.24) enforce the poles in this expression to

come in quadruplets of the form
{
λi,−λ̄i, λ−1

i ,−λ̄−1
i

}
. Naively, it follows that the

simplest dressing factor has the following structure

χ (λ) = I +
Q

λ− λ1

− Q̄

λ+ λ̄1

+
Q̃

λ− λ−1
1

−
¯̃Q

λ+ λ̄1
−1 , (33.26)

while the inverse of the dressing factor can be obtained by (33.24). In addition, this

form of χ ensures that the constraint (33.22) is satisfied. Then, equating the residues

of the left-hand-side and the right-hand-side of (33.23) we obtain

Q̃ = − 1

λ2
1

g′JQgJ, (33.27)

while the analytic part of (33.23) implies that

χ(0)gJχ(0) = gJ. (33.28)

Finally, the equations of motion of the dressing factor read

(1± λ) (∂±χ)χ−1 + χ (∂±g) g−1χ−1 = (∂±g
′) g′−1. (33.29)
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For λ = 0 these equations are satisfied trivially, thus one needs only to ensure that

the residues of the various poles cancel.

The most economical way to satisfy the constraints is by choosing the poles to

lie on the imaginary axis, i.e. demanding

λ1 = iµ1, (33.30)

where µ1 ∈ R. This implies that the locations of the poles at λ1 and −λ̄1 coincide.

After appropriate redefinitions, the dressing factor is expressed as

χ = I + i
µ1 + µ−1

1

λ− iµ1

Q− iµ1 + µ−1
1

λ+ iµ−1
1

Q̃, (33.31)

where Q̄ = Q and ¯̃Q = Q̃. The inverse of the dressing factor can be obtained

using (33.24). Moreover, the above expression satisfies the constraint (33.22). For

convenience, we will specify the appropriate relation between Q and Q̃, which is

necessary for the satisfaction of the constraint (33.23), later. Next, we impose the

relation χχ−1 = I. The cancellation of the residues of the first order poles at iµ1 and

−iµ−1
1 implies that

Q
(
I − JQ̃TJ

)
+
(
I − Q̃

)
JQTJ = 0, (33.32)

Q̃
(
I − JQTJ

)
+ (I −Q) JQ̃TJ = 0. (33.33)

Clearly, both relations are satisfied if

Q̃ = JQTJ (33.34)

and Q is a projection matrix, i.e. it satisfies Q2 = Q. The cancellation of the residues

of the second order poles at the same locations requires that

QTJQ = QJQT = 0, (33.35)

Q̃TJQ̃ = Q̃JQ̃T = 0. (33.36)

Equation (33.36) is redundant, as it follows from equations (33.34) and (33.35).

Furthermore, these two equations imply that

QQ̃ = Q̃Q = 0. (33.37)

We parametrize the matrix Q as

Q =
JHF T

F TJH
, (33.38)
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where F and H are real vectors. Then, equation (33.34) implies that

Q̃ =
JFHT

F TJH
. (33.39)

The constraints (33.35) suggest that

HTJH = F TJF = 0. (33.40)

Returning now to the equations of motion, the right-hand-side of (33.29) does

not depend on λ, thus, the same must hold for the left-hand-side. The cancellation

of the residues of the second order poles at iµ1 and −iµ−1
1 suggests

(1± iµ1)∂±F
T + F T (∂±g) g−1 = 0, (33.41)(

1∓ iµ−1
1

)
∂±H

T +HT (∂±g) g−1 = 0. (33.42)

These equations imply that

F T = pTJΨ−1(iµ1), (33.43)

HT = pTJΨ−1(−iµ−1
1 ), (33.44)

where p is a constant vector. We remind the reader that Ψ(λ) is real whenever λ is

purely imaginary as a consequence of equation (33.17). Moreover, the vectors F and

H obey

gH = −JF, (33.45)

in virtue of (33.19). This relation implies

Q̃ = gJQgJ. (33.46)

We have not yet enforced that the dressing factor with only two poles (33.31)

satisfies the constraint (33.23). For the generic four-pole dressing factor, this con-

straint results in equations (33.27) and (33.28). In the case of the two-pole dressing

factor (33.31), the first one reads

Q̃ = − 1

µ2
1

g′JQgJ, (33.47)

It is simple to show that this relation, as well as (33.28), are indeed satisfied, as a

consequence of equations (33.37), (33.46) and the fact that Q is a projective operator.

Equation (33.35) holds if the vector p obeys

pTJp = 0. (33.48)
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In addition, both Q and Q̃ are real, as required, provided that p = p̄. Finally, it is a

matter of algebra to show that the residues of the first order poles of the equations

of motion cancel as long as (33.43) and (33.44) hold. This concludes the proof that

the equations of motion are satisfied.

To sum up, the simplest dressing factor reads

χ(λ) = I + i
µ1 + µ−1

1

λ− iµ1

g
JWW TJ

W Tg−1W
− iµ1 + µ−1

1

λ+ iµ−1
1

WW T

W Tg−1W
g−1, (33.49)

where

W = Ψ(iµ1)p. (33.50)

The vector W is null, i.e. W TJW = 0.

Using (33.10), it is straightforward to show that the dressed element of the coset

reads

g′ = J − 2J

(
Y

µ1

+
µ1 + µ−1

1

2

JW

W TY

)(
Y

µ1

+
µ1 + µ−1

1

2

JW

W TY

)T
J, (33.51)

which implies that the dressed solution of the NLSM, expressed as a vector in the

enhanced space of H3, is

Y ′ = i

(
Y

µ1

+
µ1 + µ−1

1

2

JW

W TY

)
. (33.52)

The vector Y ′ satisfies the equations of motion and the Virasoro constraints, never-

theless it is purely imaginary. The imaginary part of this vector satisfies the equations

of motion of the Euclidean NLSM defined on dS3 and not on H3. Expecting that the

converse is also true, we apply an arbitrary number of dressing transformations in

an iterative fashion in order to obtain new real solutions, whenever this number is

even.

33.2 Multiple Dressing Transformations

Let g0 be the original seed solution. Via a single dressing transformation we construct

a dressed solution g1. This in turn may play the role of the seed solution for another

transformation. Pictorially,

g0
χ1(0)−−−→ g1

χ2(0)−−−→ g2 . . . gk−1
χk(0)−−−→ gk. (33.53)

Let Ψk(λ) denote the solution of the auxiliary system which incorporates the solution

gk−1 as the seed solution, namely

∂±Ψk(λ) =
1

1± λ
(∂±gk−1) g−1

k−1Ψk(λ), gk−1 = Ψk (0) . (33.54)
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Then, in an obvious manner,

Ψk(λ) = χk−1(λ)Ψk−1(λ). (33.55)

In this section, we always consider the simplest dressing factor, which contains only

a pair of poles on the imaginary axis, i.e.

χk(λ) = I + i
µk + µ−1

k

λ− iµk
gk−1

JWkW
T
k J

W T
k g
−1
k−1Wk

− iµk + µ−1
k

λ+ iµ−1
k

WkW
T
k

W T
k g
−1
k−1Wk

g−1
k−1, (33.56)

where

Wk = Ψk(iµk)pk. (33.57)

This expression generalizes the dressing factor (33.49). The subscript k is used as

index for the location of the poles, as well as the corresponding constant vector p,

which appear in the dressing factor χk. We remind the reader that these constant

vectors should be real and null, i.e. pTk Jpk = 0. The element of the coset that

corresponds to the new NLSM solution is

gk = Ψk+1(0) = χk(0)gk−1. (33.58)

Putting everything together, the new element of the coset is

gk = gk−1 −
µk + µ−1

k

µk
gk−1

JWkW
T
k J

W T
k g
−1
k−1Wk

gk−1 −
µk + µ−1

k

µ−1
k

WkW
T
k

W T
k g
−1
k−1Wk

. (33.59)

This new element of the coset corresponds to a vector in the enhanced space of H3

through the relation

gk = J + 2JYkY
T
k J. (33.60)

Using this mapping, combined with the fact that W T
k JWk = 0, it is trivial to show

that

gk = J − 2J

(
Yk−1

µk
+
µk + µ−1

k

2

JWk

W T
k Yk−1

)(
Yk−1

µk
+
µk + µ−1

k

2

JWk

W T
k Yk−1

)T
J. (33.61)

Finally, in view of (33.60), the new solution of the NLSM is

Yk = i

(
Yk−1

µk
+
µk + µ−1

k

2

JWk

W T
k Yk−1

)
, (33.62)

where Wk = Ψk(iµk)pk. It is evident that successive dressing transformations indeed

lead to an interchange of real and imaginary solutions of the NLSM.

The imaginary vector Yk, normalized as Y T
k JYk = −1 is a solution of the equations

of motion

∂+∂−Yk −
(
∂+Y

T
k J∂−Yk

)
Yk = 0, (33.63)
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which in addition satisfies the Virasoro constraints

∂±Y
T
k J∂±Yk = 0. (33.64)

Its imaginary part Ỹk is normalized as Ỹ T
k JỸk = 1, solves the equations of motion

∂+∂−Ỹk +
(
∂+Ỹ

T
k J∂−Ỹk

)
Ỹk = 0 (33.65)

and it satisfies the Virasoro constraints

∂±Ỹ
T
k J∂±Ỹk = 0. (33.66)

Clearly, the imaginary part of the solution is a bona fide real solution of the NLSM

defined on de Sitter space. The above analysis does not rely on the dimensionality of

the enhanced space. Thus, a single dressing transformation with the simplest dressing

factor in the coset SO(1, d)/SO(d) interrelates solutions of the Euclidean NLSM

on Hyperbolic space Hd and solutions of the Euclidean NLSM on de Sitter space

dSd. This calculation reveals that in the case of Euclidean world-sheet coordinates,

the dressing method may interrelate real solutions of different equations in general.

This is analogous to Bäcklund transformations that connect solutions of different

equations.

By decomposing to the temporal and spatial components of the vectors Yk and

Wk, we obtain

Y 0
k = i

(
Y 0
k−1

µk
− µk + µ−1

k

2

1

Y 0
k−1 + ~nk · ~Yk−1

)
, (33.67)

~Yk = i

(
~Yk−1

µk
+
µk + µ−1

k

2

~nk

Y 0
k−1 + ~nk · ~Yk−1

)
, (33.68)

where

~nk =
~Wk

W 0
k

. (33.69)

is a unit norm 3-vector. It is worth noticing that the solutions depend only on this

vector and Yk−1. Using equations (33.67) and (33.68), along with (33.55) and (33.56),

one can construct iteratively a whole tower of solutions without solving any equation

or imposing any constraint.

It can be verified that the dressed solution (33.62) obeys the equations of motion,

as well as the Virassoro constraints, see appendix O.
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33.3 The Tower of Real Solutions

As already discussed, an even number of dressing transformations is required, in

order to obtain real solutions of the NLSM out of a real seed solution. Using (33.62)

twice it is straightforward to show that the vector Yk reads

Yk =

(
1−

1 + µ−1
k−1µ

−1
k

X

)
Yk−2

+
1

2X

1 + µk−1µk
µk − µk−1

[(
µk + µ−1

k

) JVk
V T
k Yk−2

−
(
µk−1 + µ−1

k−1

) JVk−1

V T
k−1Yk−2

]
, (33.70)

where

X = 1 +
1

2

(1 + µ2
k)
(
1 + µ2

k−1

)
(µk − µk−1)2

V T
k JVk−1

(V T
k Yk−2)

(
V T
k−1Yk−2

) (33.71)

and

Vk = Ψk−1(iµk)pk, Vk−1 = Ψk−1(iµk−1)pk−1. (33.72)

The null vectors V are expressed in terms of Ψk−1 solely16. They should not be

confused with the vectors W , but they are related to them via

Wk−1 = Vk−1, Wk = χk−1 (iµk)Vk. (33.73)

Equation (33.70) is symmetric under the transformation (µk−1, pk−1) ↔ (µk, pk) in

accordance with the expected permutability of the dressing transformations.

34 Properties of the Dressed Static Minimal Sur-

faces

In this section, we study some basic properties of the dressed minimal surfaces. For

this purpose, we follow the approach introduced in section 24, expressing the vector

Y as a matrix acting on a constant vector. Furthermore, in order to facilitate the

solution of the auxiliary system for the specific example of the elliptic solutions, it

is advantageous to write the equations of the auxiliary system in terms of the real

coordinates u and v, instead of the complex coordinates z and z̄.

The auxiliary system assumes the form

∂iΨ(λ) =
(
∂̃ig
)
g−1Ψ(λ), (34.1)

where i = u, v and

∂̃u =
1

1− λ2
∂u + i

λ

1− λ2
∂v, ∂̃v = −i λ

1− λ2
∂u +

1

1− λ2
∂v. (34.2)

16The indices of the vectors V are associated to the indices of the poles and the constant vectors.
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We express the seed solution Y as a matrix U(u, v) acting on a constant vector Ŷ ,

i.e.

Y := UŶ . (34.3)

The seed solution can be expressed as

g = θUθĝJUTJ, (34.4)

where the matrix U must obey the property U−1 = JUTJ so that

ĝ = θ
(
I + 2Ŷ Ŷ TJ

)
(34.5)

is an element of the coset SO(1, 3)/SO(3). This also implies that Ŷ belongs in H3.

In a similar manner, we define Ψ̂ as

Ψ := θUθΨ̂. (34.6)

The auxiliary system assumes the form

∂iΨ̂ =
{
θJUTJ

[(
∂̃i − ∂i

)
U
]
θ − ĝJUTJ

[
∂̃iU
]
ĝ−1 +

[
∂̃iĝ
]
ĝ−1
}

Ψ̂ (34.7)

in terms of the hatted quantities. Notice that, as JUTJ = U−1, the form of the

equations is identical to the ones derived in section 24. As we already discussed, the

choice (33.12) for Y0 implies that θ = J . In addition, one can select the matrix U so

that Ŷ = Y0. These choices set ĝ = I. Then, the equation of the auxiliary system

simplifies to

∂iΨ̂ =
{
UTJ

[(
∂̃i − ∂i

)
U
]
J − JUTJ

[
∂̃iU
]}

Ψ̂, (34.8)

while the condition Ψ(0) = g, reduces to

Ψ̂(0) = JUTJ. (34.9)

34.1 Geometric Depiction of the Dressing

Expressing the solution (33.62) in terms of hatted quantities yields

Ŷk = i

(
Ŷk−1

µk
+
µk + µ−1

k

2

JŴk

Ŵ T
k Ŷk−1

)
, Ŵk = Ψ̂k (iµk) pk. (34.10)

In order to shed some light on the effect of the dressing transformation on the seed

solution, we consider a single dressing transformation. For k = 1, decomposing this

vector to it’s temporal and spatial components yields

Ŷ 0
1 = −iµ1 − µ−1

1

2
, (34.11)

~̂
Y1 = i

µ1 + µ−1
1

2
n̂1, (34.12)
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where n̂1 =
~̂
W1/Ŵ

0
1 is a unit vector. Without loss of generality, we assume that µ1

is positive and we identify the quantity

~ζ (u, v) = −
(

lnµ1 − i
π

2

)
n̂1 (u, v) , (34.13)

as the rapidity of the Lorentz transformation

Λ(~ζ) =

(
cosh ζ sinh ζn̂T1

sinh ζn̂1 I + (cosh ζ − 1) n̂1n̂
T
1

)
, (34.14)

which relates Ŷ0 with Ŷ1.

The physical reason for the interrelation between solutions of the NLSM in Hd

and solutions of the NLSM in dSd is the fact that the particular dressing factor

(33.49) acts as a boost on Y0 along the direction −n̂1 with superluminal velocity of

constant magnitude equal to

vboost = tanh ζ = coth (lnµ1) . (34.15)

This also implies that the dressed solution Y1 is connected to the seed solution Y0 via

a Lorentz transformation, which depends on the world-sheet coordinates, however its

trace is constant. The hatted “frame” is a frame, where this Lorentz transformation

can be expressed as a boost solely, and, thus, its constant trace can be identified as

2 (1 + cosh ζ), where ζ is the rapidity of the boost.

The fact that the magnitude of the boost velocity does not depend on the world-

sheet coordinates is the analogue of a similar property that appears in dressed classi-

cal string solutions on R×S2. In this case the dressed solution is connected to its seed

via a rotation, whose direction depends on the world-sheet coordinates, nevertheless

the angle of the rotation is constant.

34.2 On the Entangling Curve of the Dressed Minimal Sur-

face

The most basic property of the dressed minimal surface in the context of entangle-

ment, is the form of the corresponding entangling surface and the relation of the latter

with the one of the seed. In order to specify the entangling surface that corresponds

to the dressed minimal surface, one needs to specify where the dressed solution Yk
(33.70) diverges. According to (33.70), a naive guess is that Yk may diverge due to

a divergence of Yk−2. The specific example of the dressed elliptic minimal surfaces,

which is presented in section 35.4, indicates that the divergences of Yk−2 are not in-

herited to Yk. It is unclear whether this is always the case. This behavior is similar to

the action of the dressing transformation on the elliptic strings. The dressed strings
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have spikes, as their precursors, but the spikes do not appear at the same locations

as in the seeds.

A divergence of Yk may emerge where X vanishes. Since Yk−2 is timelike, one

can always select a matrix U ∈ SO(1, 3), so that Yk−2 = UY0, where Y0 is given by

(33.12). Similarly we define

Ṽk = JUTJVk. (34.16)

Then, equation (33.71) assumes the form

X = 1 +
1

2

(1 + µ2
k)
(
1 + µ2

k−1

)
(µk − µk−1)2 (−1 + n̂k · n̂k−1) , (34.17)

where

n̂k =
~̃Vk

Ṽ 0
k

, n̂k−1 =
~̃Vk−1

Ṽ 0
k−1

(34.18)

are unit vectors since Vk and Vk−1 are null. Furthermore, because

(1 + µ2
k)
(
1 + µ2

k−1

)
(µk − µk−1)2 ≥ 1, (34.19)

it is possible for X to vanish, thus (at least part of) the boundary region may be

specified by the equation X = 0.

Finally, Yk could diverge when the term Vk/
(
V T
k Yk−2

)
or the similar term with

Vk−1 diverges. Since Vk is null we obtain

Vk
V T
k Yk−2

=
1

−Y 0
k−2 +

~Vk
V 0
k
· ~Yk−2

(
1
~Vk
V 0
k

)
, (34.20)

where ~Vk/V
0
k is a unit vector. As Yk−2 is timelike |Y 0

k−2| ≥ |~Yk−2|, this term is

regular unless Yk−2 diverges. Thus, the boundary of the dressed minimal surface

Yk is potentially obtained for the same subset of the world-sheet coordinates that

correspond to the boundary of Yk−2 or to the solutions of the equation X = 0.

34.3 The Surface Element of the Dressed Minimal Surface

In view of the Ryu and Takayanagi prescription for the computation of the holo-

graphic entanglement entropy, the calculation of the area of the dressed minimal

surface presents a certain interest. The surface element of the dressed minimal sur-

face, which is provided by equation (O.7), can be re-expressed through the use of

(O.8) along with the identity

∂+f∂−f

f 2
=
∂+∂−f

f
− ∂+∂− ln f, (34.21)
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in the form

(∂+Yk)
T J (∂−Yk) = (∂+Yk−1)T J (∂−Yk−1)− ∂+∂− ln

[(
W T
k Yk−1

)2
]
. (34.22)

The latter provides an algebraic addition formula that relates the surface element

of the dressed minimal surface with the surface element of its seed. Since we are

interested in a relation between real solutions of the NLSM, we can express this

addition formula as

(∂+Yk)
T J∂−Yk = (∂+Yk−2)T J∂−Yk−2 − ∂+∂− ln

[((
V T
k Yk−2

) (
V T
k−1Yk−2

)
X
)2
]
,

(34.23)

where X is given by (33.71). As already discussed, unless Yk−2 diverges, V T
k−1Yk−2 and

V T
k Yk−2 do not vanish, since these terms are the inner product of a null vector with

a timelike one. Let us denote Dk the domain of the world-sheet coordinates of the

dressed minimal surface Yk. Assuming that the boundary of this surface corresponds

only to the solutions of the equations X = 0 and Dk does not contain divergences of

Yk−2. Then, the area of the dressed minimal surface is

Ak =

∫
Dk
dudv (∂+Yk−2)T J∂−Yk−2 −

∫
Dk
dudv∇2 ln

[((
V T
k Yk−2

) (
V T
k−1Yk−2

)
X
)2
]

(34.24)

or using Green’s identity

Ak =

∫
Dk
dudv (∂+Yk−2)T J∂−Yk−2 −

∫
∂Dk

d`n̂ · ~∇ ln
[((

V T
k Yk−2

) (
V T
k−1Yk−2

)
X
)2
]
.

(34.25)

35 Dressed Static Elliptic Minimal Surfaces in AdS4

In this section, we apply the dressing method, considering the elliptic minimal sur-

faces [190] as the seed solution, in order to construct new static minimal surfaces in

AdS4.

35.1 Elliptic Minimal Surfaces

Very few minimal surfaces are known in a form that can be used for the computation

of their area. This picture changes drastically in the case of static minimal surfaces in

AdS4, where the whole class of elliptic minimal surfaces has been constructed in [190].

Therein, the author exploits the fact that co-dimension two minimal surfaces in

AdS4 extremize a NLSM action, to relate the static minimal surfaces via Pohlmeyer
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reduction to solutions of the Euclidean cosh-Gordon equation. In particular, the

author considers the elliptic solutions of the cosh-Gordon equation. These possess

the property that they depend solely on one out of the two isothermal, world-sheet

coordinates, which parametrize the surface. Subsequently, the Pohlmeyer mapping

is inverted, which leads to the construction of the static elliptic minimal surfaces

in a simple handy form. The aforementioned inversion is in general non-trivial due

to the fact that Pohlmeyer reduction constitutes a many-to-one, non-local mapping.

Moreover, it is shown that the Pohlmeyer field is related to the area of the minimal

surface, which renders the computation of the area straightforward.

The solutions of the Euclidean cosh-Gordon equation that depend only on u read

α = ln [2 (℘ (u; g2, g3)− e2)] , (35.1)

where ℘ (u; g2, g3) is the Weierstrass elliptic function with moduli g2 and g3. The

moduli are expressed in terms of a real integration constant E through the relations.

g2 =
E2

3
+ 1 and g3 = −E

3

(
E2

9
+

1

2

)
. (35.2)

The roots of the associated cubic polynomial assume the form

e1 = −E
12

+

√(
E

4

)2

+
1

4
, e2 =

E

6
, e3 = −E

12
−

√(
E

4

)2

+
1

4
(35.3)

and they obey e1 > e2 > e3.

The static minimal surfaces in AdS4, that correspond to the above solutions of

the Euclidean cosh-Gordon equation, are parametrized as follows:

Y =


F1(u) cosh (ϕ1(u, v))

F1(u) sinh (ϕ1(u, v))

F2(u) cos (ϕ2(u, v))

F2(u) sin (ϕ2(u, v))

 , (35.4)

where

F1(u) =

√
℘(u)− ℘(a1)√
℘(a2)− ℘(a1)

, F2(u) =

√
℘(u)− ℘(a2)√
℘(a2)− ℘(a1)

(35.5)

and

ϕ1(u, v) = `1v + φ1(u), ϕ2(u, v) = `2v − φ2(u), (35.6)

where

`1 =
√
℘(a2)− e2, φ1(u) =

1

2
ln

(
−σ(u+ a1)

σ(u− a1)

)
− ζ (a1)u, (35.7)

`2 =
√
e2 − ℘(a1), φ2(u) = − i

2
ln

(
−σ(u+ a2)

σ(u− a2)

)
+ iζ (a2)u. (35.8)
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The functions ζ(u) and σ(u) are the Weierstrass zeta and sigma functions.

The parameters ℘(a1) and ℘(a2) are not both free, but they are subject to the

constraint

℘(a1) + ℘(a2) = −e2, (35.9)

whereas their relative sign is determined by the equation

℘′(a1)`1 + i℘′(a2)`2 = 0. (35.10)

Their range obeys the inequalities

e1 > ℘(a2) > e2, e2 > ℘(a1) > e3. (35.11)

The range of the coordinates u and v, which corresponds to a single minimal

surface with a connected boundary, is

u ∈ (2nω1, 2(n+ 1)ω1) , v ∈ R, where n ∈ Z (35.12)

and ω1 is the real half-period of the Weierstrass elliptic function, given the moduli

(35.2). The boundary region of the minimal surface (35.4) lies at u = 2nω1, with

n ∈ Z, while the area of the minimal surface, which is of great interest for the

computation of the holographic entanglement entropy, is given by the expression

A =

∫ +∞

−∞
dv

∫ 2(n+1)ω1

2nω1

du (℘(u)− e2) . (35.13)

Some interesting limits of the minimal surface (35.4) are the helicoid, the catenoid

and the cusp limit. The helicoid minimal surface is obtained when the quantities

℘(α1) and ℘(α2) assume the values e3 and e1 respectively, independently of the sign

of E. When ℘(α1) = e2 and E > 0 the minimal surface reduces to the catenoid.

Finally, the cusp limit corresponds to ℘(α1) = e2 and E < 0. For further details on

the construction of the static elliptic minimal surfaces in AdS4, the reader is referred

to [190].

35.2 The Auxiliary System

The elliptic minimal surfaces have a particular dependence on the real world-sheet

coordinates u and v. Their Pohlmeyer counterpart can be expressed so that it does

not depend on v at all. As a result, the dependence of the embedding functions on v

is very simple. Therefore, it is advantageous to express the auxiliary system in terms

of the real coordinates u and v in the form (34.8), instead of the original formulation

in terms of the complex coordinates z and z̄ (33.9).
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The form of the static elliptic minimal surfaces (35.4) implies that the matrix U ,

which connects Y to Ŷ , through the equation (34.3) can be written as

U = U2U1, (35.14)

where

U1 =


F1 0 F2 0

0 1 0 0

F2 0 F1 0

0 0 0 1

 , (35.15)

U2 =


cosh (ϕ1(u, v)) sinh (ϕ1(u, v)) 0 0

sinh (ϕ1(u, v)) cosh (ϕ1(u, v)) 0 0

0 0 cos (ϕ2(u, v)) − sin (ϕ2(u, v))

0 0 sin (ϕ2(u, v)) cos (ϕ2(u, v))

 . (35.16)

In order to proceed we must obtain specific expressions for the derivatives that

appear in (34.8) using the explicit form of the static elliptic minimal surfaces (35.4).

Following equations (35.5) and (35.6), the derivatives of the various functions that

appear in (35.4) obey the following relations

∂vFi = 0, ∂uFi =
F3

Fi
, where F3 =

℘′(u)

2 (℘(a2)− ℘(a1))
(35.17)

and

∂vϕi = `i, ∂uϕ1 = φ′1 = −1

2

℘′(a1)

℘(u)− ℘(a1)
, ∂uϕ2 = −φ′2 = − i

2

℘′(a2)

℘(u)− ℘(a2)
.

(35.18)

We introduce the generators of the SO(1, 3) group

K1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , K2 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , K3 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 , (35.19)

T1 =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , T2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , T3 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , (35.20)

in order to express the auxiliary system in the form

∂iΨ̂ =
(
κjiKj + τ ji Tj

)
Ψ̂. (35.21)
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Using equations (35.17) and (35.18), it is a matter of algebra to show that

κ1
u = −F1

(
1 + λ2

1− λ2
φ′1 + i

2λ

1− λ2
`1

)
, (35.22)

κ2
u = −1 + λ2

1− λ2

F3

F1F2

, (35.23)

κ3
u = −F2

(
−1 + λ2

1− λ2
φ′2 + i

2λ

1− λ2
`2

)
(35.24)

and

τ 1
u = F1φ

′
2, τ 2

u = 0, τ 3
u = F2φ

′
1, (35.25)

as well as,

κ1
v = −F1

(
1 + λ2

1− λ2
`1 − i

2λ

1− λ2
φ′1

)
, (35.26)

κ2
v = i

2λ

1− λ2

F3

F1F2

, (35.27)

κ3
v = −F2

(
1 + λ2

1− λ2
`2 + i

2λ

1− λ2
φ′2

)
(35.28)

and

τ 1
v = −`2F1, τ 2

v = 0, τ 3
v = `1F2. (35.29)

The vectors ~κu, ~κv, ~τu and ~τv do not depend on the coordinate v. Under the inversion

of λ these quantities have the following parity properties

κji (1/λ) = −κji (λ), τ ji (1/λ) = τ ji (λ). (35.30)

Under complex conjugation, they obey

κ̄ij(λ̄) = κij(−λ), τ̄ ji (λ̄) = τ ji (−λ). (35.31)

The vectors ~κu, ~κv, ~τu and ~τv obey a set of properties that will be handy in what

follows. The first one is the fact that the inner product δ1 := ~κv ·~τv does not depend

on the world-sheet coordinates. Using equations (35.5), (35.18) and equations (35.22)

to (35.29), as well as the property F 2
1 − F 2

2 = 1, it is straightforward to find that

δ1 =
1 + λ2

1− λ2
`1`2 +

2iλ

1− λ2

℘′(a1)

2`2

. (35.32)

Similarly, the quantity δ2 := |~κv|2 − |~τv|2 is also constant. It is a matter of tedious

algebra to show that

δ2 = −3e2. (35.33)
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In a similar manner, the inner product δ3 := ~κv ·~τv does not depend on the world-sheet

coordinates,

δ3 =
2iλ

1− λ2
`1`2 −

1 + λ2

1− λ2

℘′(a1)

2`2

. (35.34)

Finally, the vectors ~κu and ~κv obey,

~κu · ~κv = 0. (35.35)

The fact that ~κv and ~κu are perpendicular is not accidental: it can be shown that

the above inner product vanishes as a direct consequence of the Virasoro constraints.

The constants δ1 and δ3 also satisfy

δ2
1 + δ2

3 = (e1 − e2)(e2 − e3) =
1

4
. (35.36)

This relation will become important in what follows.

35.3 The Solution of the Auxiliary System

The auxiliary system (34.8) for the matrix Ψ̂ can be decomposed into four indepen-

dent, identical equations for its columns Ψ̂i. Since κiv and τ iv do not depend on the

variable v, one can solve the set of equations

∂vΨ̂i =
(
κjvKj + τ jvTj

)
Ψ̂i, (35.37)

as a system of ordinary differential equations with constant coefficients and promote

the integration constants to arbitrary functions of the variable u. These functions

will be specified using the remaining equations of the auxiliary system, i.e. those

that involve κiu and τ iu.

The matrix on the right-hand-side of (35.37), i.e. (κjvKj + τ jvTj), has four distinct

eigenvalues, namely the solutions of the equation

Λ4 − Λ2δ2 − δ2
1 = 0. (35.38)

We will denote these eigenvalues as Λ±1 and Λ±2. They are equal to

Λ±1 = ±L1, where L1(λ) =
1√
2

√√
4δ2

1 + δ2
2 + δ2, (35.39)

Λ±2 = ±iL2, where L2(λ) =
1√
2

√√
4δ2

1 + δ2
2 − δ2. (35.40)

The quantities δ1 and δ2 are given by (35.32) and (35.33) respectively. We should

mention that (
4δ2

1 + δ2
2

)∣∣
λ=0

= (℘(a2) + 2e2)2 , (35.41)
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and furthermore the quantity ℘(a2) + 2e2 is always positive17. Since

Li(0) = `i, (35.42)

these quantities are a natural generalization of the parameters `1 and `2 for the

dressed solutions. In addition, under the inversion λ→ λ−1, the eigenvalues obey

Li(1/λ) = Li(λ). (35.43)

The solution of the system of equations (35.37) assumes the form

Ψ̂i =
∑
k

Ck
i (u)Vke

Λkv, (35.44)

where k takes the values ±1 and ±2. The vector Vk is the eigenvector of the matrix

(κjvKj + τ jvTj) corresponding to the eigenvalue Λk; it is given by

Vk =


Λk (|~τv|2 + Λ2

k)

τ 1
v δ1 + (τ 2

vκ
3
v − τ 3

vκ
2
v) Λk + κ1

vΛ
2
k

τ 2
v δ1 + (τ 3

vκ
1
v − τ 1

vκ
3
v) Λk + κ2

vΛ
2
k

τ 3
v δ1 + (τ 1

vκ
2
v − τ 2

vκ
1
v) Λk + κ3

vΛ
2
k

 . (35.45)

It is convenient to express the spatial components of Vk as

~Vk = ~τvδ1 + ~τv × ~κvΛk + ~κvΛ
2
k, (35.46)

in order to keep a more compact notation. Doing so, the eigenvectors read

Vk ≡

(
V 0
k

~Vk

)
=

(
Λk (|~τv|2 + Λ2

k)

δ1~τv + Λk~τv × ~κv + Λ2
k~κv

)
. (35.47)

With the aid of (35.38), it is easy to verify that the eigenvectors obey the properties,

V T
±iJV±j = 0, V T

±iJV∓j ∝ δij. (35.48)

These relations imply that the four eigenvectors Vk are linearly independent.

Substituting equation (35.44) into the yet unsolved equations of the auxiliary

system

∂uΨ̂i =
(
κjuKj + τ juTj

)
Ψ̂i (35.49)

yields

∂u

[
Ck
i

(
V 0
k

~Vk

)]
=
(
κjuKj + τ juTj

) [
Ck
i

(
V 0
k

~Vk

)]
, (35.50)

17For positive E the range of ℘(a2) is e1 > ℘(a2) > e2, while for negative E the range is

e1 > ℘(a2) > −2e2. Thus, in any case 2℘(a2) + e2 > 3|e2|.
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since the four eigenvectors are linearly independent. In the following, we omit the

subscripts k and i on V 0, ~V , C and Λ for simplicity. It is straightforward that this

system of equations is equivalent to

[∂u lnC]

(
V 0

~V

)
+

(
∂uV

0 − ~κu · ~V
(∂u − ~τu×) ~V − ~κuV 0

)
= 0. (35.51)

In order to solve the above, the derivatives of the coefficients κiv and τ iv with

respect to the coordinate u, are required. It can be shown that they obey the

following relations

∂u~κv = ~κu × ~τv − ~κv × ~τu, (35.52)

∂u~τv = ~κv × ~κu − ~τv × ~τu, (35.53)

∂u~κu = −~κu × ~τu − ~κv × ~τv. (35.54)

These relations demonstrate why the quantities δi are constants, as well as the fact

that the vectors ~κu and ~κv are perpendicular.

The temporal component of equation (35.51) assumes the form

∂u lnC = − 2~τv · ∂u~τv
|~τv|2 + Λ2

+
δ1
Λ
~κu · ~τv + ~κu · (~τv × ~κv)

|~τv|2 + Λ2
. (35.55)

Taking into account (35.53), which implies that ~κu · (~τv × ~κv) = ~τv · ∂u~τv, along with

(35.34), we obtain that

∂u lnC = − ~τv · ∂u~τv
|~τv|2 + Λ2

+
δ1δ3

Λ

1

|~τv|2 + Λ2
. (35.56)

Before solving this equation, we will show that the spatial components of equation

(35.51) are redundant. Equations (35.52) and (35.53) imply that

∂u~V = δ1 [~κv × ~κu − ~τv × ~τu] + Λ2 [~κu × ~τv − ~κv × ~τu]
+ Λ [(~κv × ~κu)× ~κv − (~τv × ~τu)× ~κv + ~τv × (~κu × ~τv)− ~τv × (~κv × ~τu)] . (35.57)

Using the Jacobi identity on the triple cross products involving ~τu, it is straightfor-

ward to obtain that

(∂u − ~τu×) ~V = δ1~κv×~κu+Λ [(~κv × ~κu)× ~κv + ~τv × (~κu × ~τv)]+Λ2~κu×~τv. (35.58)

Then, its a matter of algebra to show that

(∂u − ~τu×) ~V − V 0~κu = Λ
(
|~κu|2 − Λ2

)
~κu −Λδ3~τv + δ1~κv × ~κu + Λ2~κu × ~τv. (35.59)
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We decompose the vectors ~κu, ~κv × ~κu and ~κu × ~τv into the basis formed out of the

vectors ~κv, ~τv and ~τv × ~κv as follows:

~κu =
δ3

|~τv|2|~κv|2 − δ2
1

(
|~κv|2~τv − δ1~κv

)
+
~τv · (~κv × ~κu)
|~τv|2|~κv|2 − δ2

1

~τv × ~κv, (35.60)

~κv × ~κu =
~τv · (~κv × ~κu)
|~τv|2|~κv|2 − δ2

1

(
|~κv|2~τv − δ1~κv

)
− δ3|~κv|2

|~τv|2|~κv|2 − δ2
1

~τv × ~κv, (35.61)

~κu × ~τv =
~τv · (~κv × ~κu)
|~τv|2|~κv|2 − δ2

1

(
|~τv|2~κv − δ1~τv

)
+

δ1δ3

|~τv|2|~κv|2 − δ2
1

~τv × ~κv. (35.62)

By substituting equation (35.56), as well as (35.59), alongside with equations (35.60),

(35.61) and (35.62), into the spatial component of equation (35.51), it is a matter of

algebra to show that it is indeed satisfied.

We return to the solution of equation (35.56). Upon substituting (35.29), we

obtain

∂u lnC = −1

2
∂u ln

(
|~τv|2 + Λ2

)
+
δ1δ3

Λ

1

℘(u) + 2e2 + Λ2
. (35.63)

We define the quantities A1/2 so that

℘ (A1) = −2e2 − Λ2
1, ℘ (A2) = −2e2 − Λ2

2, (35.64)

℘′(A1) = −2
δ1δ3

Λ1

, ℘′(A2) = 2
δ1δ3

Λ2

. (35.65)

These equations are compatible, since

4

(
δ1δ3

Λ1/2

)2

= 4℘
(
A1/2

)3 − g2℘
(
A1/2

)
− g3, (35.66)

which is the usual form of the Weierstrass equation, where the moduli g2 and g3 are

given by (35.2). Using (35.64) and (35.65), equation (35.63) assumes the form

∂u lnC±1 = −1

2
∂u ln (℘(u)− ℘(A1))∓ 1

2

℘′(A1)

℘(u)− ℘(A1)
, (35.67)

∂u lnC±2 = −1

2
∂u ln (℘(u)− ℘(A2))± 1

2

℘′(A2)

℘(u)− ℘(A2)
. (35.68)

Thus, the second equation of the auxiliary system is solved by

C±1
i (u) = c±1

i (℘(u)− ℘(A1))−
1
2 exp (±Φ1(u)) , (35.69)

C±2
i (u) = c±2

i (℘(u)− ℘(A2))−
1
2 exp (∓iΦ2(u)) , (35.70)

where c±1
i and c±2

i are constants and

Φ′1(u) = −1

2

℘′(A1)

℘(u)− ℘(A1)
, (35.71)

Φ′2(u) =
i

2

℘′(A2)

℘(u)− ℘(A2)
. (35.72)
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Equations (35.64) and (35.65) are defined so that A1/2 possess the property

A1/2|λ=0 = a1/2 (35.73)

which implies that

Φ1/2(u)|λ=0 = φ1/2(u). (35.74)

The above state that the quantities A1/2 are a natural generalization of the quantities

a1/2 for the dressed solution, as well as the functions Φ1/2 that appear in the dressed

solution are a natural generalization of the functions φ1/2 that appear in the seed

solution. Moreover, Φi obey

Φ̄′1/2
(
u; λ̄
)

= Φ′1/2 (u;−λ) , (35.75)

upon complex conjugation.

In order to write the solution in a manifestly real form, we introduce the vectors

E1 =
1

2

1√
L2

1 + L2
2

(
V +1 − V −1

)
, E2 =

1

2

1√
L2

1 + L2
2

(
V +1 + V −1

)
, (35.76)

E3 =
1

2i

1√
L2

1 + L2
2

(
V +2 − V −2

)
, E4 =

1

2

1√
L2

1 + L2
2

(
V +2 + V −2

)
. (35.77)

Their explicit expressions are

E1 =
1√

L2
1 + L2

2

(√
℘(u)− ℘(A1)

~τv×~κv√
℘(u)−℘(A1)

)
, E2 =

1√
L2

1 + L2
2

 0
δ1
L1
~τv+L1~κv√

℘(u)−℘(A1)

 ,

(35.78)

E3 =
1√

L2
1 + L2

2

(√
℘(u)− ℘(A2)

~τv×~κv√
℘(u)−℘(A2)

)
, E4 =

1√
L2

1 + L2
2

 0
δ1
L2
~τv−L2~κv√

℘(u)−℘(A2)

 .

(35.79)

Then, defining

V1 = E1 cosh (L1v + Φ1(u)) + E2 sinh (L1v + Φ1(u)) , (35.80)

V2 = E1 sinh (L1v + Φ1(u)) + E2 cosh (L1v + Φ1(u)) , (35.81)

V3 = E3 cos (L2v − Φ2(u)) + E4 sin (L2v − Φ2(u)) , (35.82)

V4 = E3 sin (L2v − Φ2(u))− E4 cos (L2v − Φ2(u)) , (35.83)

the solution of the auxiliary system reads

Ψ̂ = VC, (35.84)
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where V is a matrix, whose columns are Vi and C is a constant matrix.

The relation (34.6) implies that the constraints (33.17), (33.19) and (33.21) for

the matrix Ψ translate to

¯̂
Ψ(λ̄) = Ψ̂(−λ), (35.85)

JΨ̂T (λ)J = Ψ̂−1(λ), (35.86)

JΨ̂(1/λ)J = Ψ̂(λ)m2(λ), (35.87)

for the matrix Ψ̂18. Moreover, we remind the reader that the matrix Ψ̂ must obey

the normalization condition (34.9). We recall that for the special choice of Y0 that

we have made, m2 should satisfy

m2(λ)Jm2(1/λ)J = I. (35.88)

We let the matrix m2 in the constraints unspecified, since this freedom will be re-

quired in order to satisfy them. The matrix V obeys the following relations:

V(0) = −JUT , (35.89)

V̄(λ̄) = V(−λ), (35.90)

V−1(λ) = JVT (λ)J, (35.91)

V(λ) = −JV(1/λ). (35.92)

The last one implies that (35.87) is satisfied for any C(λ), since we can always select

m2(λ) = −C−1(λ)C(1/λ)J, (35.93)

so that both (35.87) and (35.88) hold true. This means that the non-trivial con-

straints for the constant matrix C are

C(0) = −J, (35.94)

C̄(λ̄) = C(−λ), (35.95)

C−1(λ) = JCT (λ)J. (35.96)

These are trivially satisfied by choosing

C(λ) = C(0) = −J. (35.97)

This choice implies that m2(λ) = −J . Putting everything together, the solution of

the auxiliary system, that satisfies all appropriate constraints, reads

Ψ̂ = −VJ. (35.98)
18In general two more constant matrices m1 and m3 should appear in the constraints (35.85) and

(35.86) (see section 33.1.2). For simplicity, we set them equal to the identity matrix, without loss

of generality.
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35.4 Doubly Dressed Elliptic Minimal Surfaces

In this section we construct the simplest real dressed elliptic minimal surfaces, using

the machinery developed in sections 33 and 21. These are obviously the doubly

dressed elliptic minimal surfaces, dressed with the simplest dressing factor, i.e. the

one with just a pair of poles lying on the imaginary axis. In everything that follows

we drop the indices on Ψ̂ that were introduced in the section 33.2. In this section,

the symbol Ψ̂ always refers to the solution of the auxiliary system that corresponds

to the elliptic minimal surfaces, which was derived in section 35.3. In this case the

matrix U of (34.16) coincides with U , thus

Ṽk = V̂k = Ψ̂ (iµk) pk (35.99)

Equation (33.70) implies that the temporal and spatial components of Ŷ2 are

Ŷ 0
2 =

(
1−

(
1 + µ−1

1 µ−1
2

)
(1 + µ1µ2)

2X

)
(35.100)

~̂
Y2 =

1

2X

1 + µ1µ2

µ2 − µ1

[(
µ2 + µ−1

2

)
n̂2 −

(
µ1 + µ−1

1

)
n̂1

]
, (35.101)

where n̂1 and n̂2 are unit norm vectors, which are given by (34.18) and X is given

by (34.17).

The constant vectors pk can be parametrized as

pk =


cosh θ0

k

sinh θ0
k

cosφ0
k

sinφ0
k

 , (35.102)

so that they are manifestly null19. Then, the temporal component of Vk is

V̂ 0
k =

1√
L2

1,k + L2
2,k

(√
℘(u)− ℘(A1,k) cosh (Ω1,k)−

√
℘(u)− ℘(A2,k) cos (Ω2,k)

)
,

(35.103)

19Since pk is null, it follows that it can be parametrized as pTk = a (1, cos θ, sin θ cosφ, sin θ sinφ),

or pTk = a sin θ
(

1
sin θ , tan θ, cosφ, sinφ

)
. Taking into account the fact that equation (33.70) is homo-

geneous in pk, we can drop the overall factor and define coshu = 1/ sin θ and sinhu = tan θ. Thus,

(35.102) is the most general form of pk.
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while the spatial components are

~̂
Vk =

1√
L2

1,k + L2
2,k

[
~τv × ~κv,k

(
cosh (Ω1,k)√
℘(u)− ℘(A1,k)

− cos (Ω2,k)√
℘(u)− ℘(A2,k)

)

+

(
δ1,k

L1,k

~τv + L1,k~κv,k

)
sinh (Ω1,k)√
℘(u)− ℘(A1,k)

−
(
δ1,k

L2,k

~τv − L2,k~κv,k

)
sin (Ω2,k)√

℘(u)− ℘(A2,k)

]
. (35.104)

We use the shorthand notation

Ω1,k = L1,kv + Φ1(u;A1,k)− θ0
k, (35.105)

Ω2,k = L2,kv − Φ2(u;A2,k)− φ0
k. (35.106)

The parameters of the solution of the auxiliary system satisfy the equations

℘(A1,k) = − 1

12
E − 1

4

√
E2 + 16 (δ1,k)

2, (35.107)

℘(A2,k) = − 1

12
E +

1

4

√
E2 + 16 (δ1,k)

2. (35.108)

Since (δ1,k)
2 ≤ 1/4, in view of (35.36), we obtain e3 ≤ ℘(A1,k) ≤ e2 and e2 ≤

℘(A2,k) ≤ e1, similarly to the inequalities (35.11) obeyed by the analogous quantities

a1,2 of the seed solution. This is expected from the band structure of the n = 1

Lamé potential. These constraints ensure that the Lamé phases defined in (35.71)

and (35.72) are real.

Finally, we rotate the vector Ŷ2 back to the unhatted coordinate system of the

enhanced space Y , through equation (35.14), and we obtain the following expression

for the dressed solution

Y =



(
F1Ŷ

0
2 + F2Ŷ

2
2

)
cosh (`1v + φ1(u)) + Ŷ 1

2 sinh (`1v + φ1(u))(
F1Ŷ

0
2 + F2Ŷ

2
2

)
sinh (`1v + φ1(u)) + Ŷ 1

2 cosh (`1v + φ1(u))(
F2Ŷ

0
2 + F1Ŷ

2
2

)
cos (`2v − φ2(u))− Ŷ 3

2 sin (`2v − φ2(u))(
F2Ŷ

0
2 + F1Ŷ

2
2

)
sin (`2v − φ2(u)) + Ŷ 3

2 cos (`2v − φ2(u))

 . (35.109)

After a tedious calculation, one can show that the locations u = 2nω1, where n ∈ N,
do not correspond to the AdS boundary, unlike the elliptic precursor of the dressed

solution. The boundary of the dressed minimal surface is determined completely by

the equation

X = 0. (35.110)
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In order to visualize the effect of the dressing transformation on an elliptic mini-

mal surface, we present two indicative examples in figure 48. These examples employ

a catenoid and a cusp as seed minimal surfaces.

Catenoid Dressed Catenoid

Cusp Dressed Cusp

Figure 48: Two representative dressed elliptic minimal surfaces and their seeds in

global coordinates. In the plot the radial coordinate corresponds to the tortoise

coordinate r∗ = arctan r, so that the surface r∗ = π/2 is the AdS boundary.

It is evident that the boundary of the minimal surface, which is the correspond-

ing entangling curve, is altered in a non-trivial manner. The effect of the dressing

transformation on the minimal surfaces is similar to the one on string solutions. The

deformation of the surfaces is localized in a specific region, whereas asymptotically

the dressed solution recovers the form of its seed. Intuitively, the deformed region

corresponds to the location of the solitons inserted by the dressing transformation

in the Pohlmeyer counterpart. It appears that the dressed elliptic minimal surfaces

have self-intersections in the aforementioned region, which are analogous to the loops
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that appear in dressed elliptic strings. The self-intersections imply that these sur-

faces are not the globally preferred ones that correspond to the specific boundary

conditions. Nevertheless, one can restrict the world-sheet parameters in appropriate

regions, so that the surface is still anchored at the boundary and does not have any

self-intersections, see figure 49.

Dressed Catenoid Dressed Cusp

Figure 49: The dressed catenoid and cusp, plotted in an appropriate subset of the

world-sheet parameters of their seeds, so that they are anchored at the boundary,

yet they do not possess self-intersections.

36 Dressed Strings on R× S2 for Arbitrary Seed

36.1 Strings on R× S2

In order to apply the dressing method to an arbitrary string, which propagates on

R× S2, let us present some results of section 18 in terms of coordinates. We will use

the usual spherical coordinates: the polar angle θ and the azimuthal angle φ, where

θ = 0 corresponds to the z-axis. Then, the equations of motion read

∂0

[
sin2 θ∂0φ

]
= ∂1

[
sin2 θ∂1φ

]
, (36.1)

∂2
0θ − cos θ sin θ (∂0φ)2 = ∂2

1θ − cos θ sin θ (∂1φ)2 , (36.2)

while the Virasoro constraints assume the form

(∂1θ ± ∂0θ)
2 + sin2 θ (∂1φ± ∂0φ)2 = m2

±. (36.3)
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Finally, the coordinates of the string are related to the Pohlmeyer field by

(∂1θ)
2 − (∂0θ)

2 + sin2 θ
[
(∂1φ)2 − (∂0φ)2] = m+m− cosϕ. (36.4)

This relation does not determine the sign of the Pohlmeyer field. We fix it by

demanding

~X ·
(
∂+

~X × ∂− ~X
)

= 2 sin θ [∂0θ∂1φ− ∂1θ∂0φ] = m+m− sinϕ. (36.5)

Combining the above, we obtain the following expressions:

(∂0θ)
2 + sin2 θ (∂0φ)2 =

m2
+

4
+
m2
−

4
− m+m−

2
cosϕ, (36.6)

(∂1θ)
2 + sin2 θ (∂1φ)2 =

m2
+

4
+
m2
−

4
+
m+m−

2
cosϕ, (36.7)

∂0θ∂1θ + sin2 θ∂0φ∂1φ =
m2

+

4
−
m2
−

4
. (36.8)

It is important to point out that the Pohlmeyer reduced theory depends only on

the product m+m−. As discussed, the Pohlmeyer reduction is a many-to-one map-

ping. For each solution of the Pohlmeyer reduced theory, there is a whole family of

NLSM solutions20, which corresponds to the same product m+m−. Its members are

parametrized by the ratio m+/m−.

36.2 The Auxiliary System

Having set the framework, we are ready to implement the dressing method. We

follow the approach introduced in 24.1, parametrizing the seed as a rotation of a

constant reference vector, i.e X = UX0 etc. The auxiliary system can by expressed

as

∂iΨ̂ =
(
tjiTj

)
Ψ̂, (36.9)

where Tj are the generators of the group SO(3), given by (24.34). It is a matter of

algebra to show that

t10/1 = sin θ

(
1 + λ2

1− λ2
∂0/1φ−

2λ

1− λ2
∂1/0φ

)
, (36.10)

t20/1 = −1 + λ2

1− λ2
∂0/1θ +

2λ

1− λ2
∂1/0θ, (36.11)

t30/1 = − cos θ∂0/1φ. (36.12)

20This family is an associate (Bonnet) family of world-sheets.
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For later convenience we define

~ti :=

t1it2i
t3i

 , ~τi := ~ti −
(
~X0 · ~ti

)
~X0 =

t1it2i
0

 . (36.13)

Notice that
d

dλ
~t0 = − 2λ

1− λ2
~τ1,

d

dλ
~t1 = − 2λ

1− λ2
~τ0. (36.14)

Under the inversion of λ → 1/λ the quantities ~τi and t3i have the following parity

properties

~τi(1/λ) = −~τi(λ), t3i (1/λ) = t3i (λ). (36.15)

In addition, all quantities are real functions of the complex spectral parameter, i.e.

~̄ti(λ̄) = ~t(λ). (36.16)

The derivatives of ~ti and ~τi obey the following algebra

∂1
~t0 − ∂0

~t1 = ~t1 × ~t0, (36.17)

∂1~τ1 − ∂0~τ0 = ~τ0 × ~t0 + ~t1 × ~τ1. (36.18)

Notice that (36.18) can be obtained from (36.17) using (36.14).

Moreover, it is straightforward to show that:

|~τ0|2 =
m2

+

4

(
1− λ
1 + λ

)2

+
m2
−

4

(
1 + λ

1− λ

)2

− m+m−
2

cosϕ, (36.19)

|~τ1|2 =
m2

+

4

(
1− λ
1 + λ

)2

+
m2
−

4

(
1 + λ

1− λ

)2

+
m+m−

2
cosϕ, (36.20)

~τ0 · ~τ1 =
m2

+

4

(
1− λ
1 + λ

)2

−
m2
−

4

(
1 + λ

1− λ

)2

. (36.21)

The careful reader will recognize that these relations are identical to (36.6), (36.7)

and (36.8) upon the substitutions ∂i ~X → ~τi and

m2
± → m2

±

(
1∓ λ
1± λ

)2

. (36.22)

This fact will be crucial in what follows. In addition, one may obtain

~τ0 × ~τ1 =
1

2
m+m− sinϕ ~X0, (36.23)

which is analogous to (36.5).

Finally, the expressions of U1 and U2, which are given by (24.16), imply that the

condition (24.12) assumes the form

Ψ̂(0) =

cos θ cosφ cos θ sinφ − sinφ

− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ

 . (36.24)
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36.3 The Solution of the Auxiliary System

The auxiliary system (36.9) comprises of three independent, identical, pairs of equa-

tions, one for each column of Ψ̂, which we denote as21 ~̂Ψj. In particular, each column

obeys the equations

∂i
~̂
Ψj = ~ti × ~̂

Ψj, (36.25)

where j = 1, 2, 3. Let us consider the inner product of two arbitrary solutions of this

system of equations. It is straightforward to show that

∂i

[
~̂
Ψj · ~̂Ψk

]
=
(
~ti × ~̂

Ψj

)
· ~̂Ψk +

~̂
Ψj ·

(
~ti × ~̂

Ψk

)
= 0. (36.26)

This proves that the constraint (24.13), which implies
~̂
Ψj · ~̂Ψk =

(
m−1

1 (λ)
)
jk

, is

compatible with the equations of the auxiliary system22. The system (36.25) has

three linearly independent solutions. For some given ξ0 and ξ1 we may specify linear

combinations of these solutions, which we denote as
~̂
Vj that form an orthonormal

basis. Due to the linearity of equations (36.25),
~̂
Vj satisfy

∂i
~̂
Vj = ~ti × ~̂

Vj. (36.27)

Then, equation (36.26) implies that these vectors form an orthonormal basis for any

ξ0 and ξ1, i.e.
~̂
Vj · ~̂Vk = δjk. (36.28)

We will solve (36.27) by projecting it on linear independent directions, namely
~̂
Vj,

~X0 and ~X0×~τi. Obviously, the equations obtained by the projection of (36.27) along
~̂
Vj, are redundant, since they are equivalent to the constraint (36.28).

Recognizing that the third components of
~̂
Vj are special will enable us to solve

the rest of the equations of the auxiliary system, as well as the constraints. This

is due to the fact that ~X0 is parallel to the third axis. These components obey the

same equations of motion as the embedding functions of the string solution (20.1),

i.e

∂2
1 V̂

3
j − ∂2

0 V̂
3
j = −m+m− cosϕV̂ 3

j . (36.29)

Let us prove this statement. The auxiliary system (36.27) implies that

∂2
1 V̂

3
j − ∂2

0 V̂
3
j =[

~X0 × (∂1~τ1 − ∂0~τ0)
]
· ~̂Vj +

[
~t1 ×

[
~t1 × ~̂

Vj

]]
· ~X0 −

[
~t0 ×

[
~t0 × ~̂

Vj

]]
· ~X0. (36.30)

21In this notation Ψ̂ =
(
~̂
Ψ1

~̂
Ψ2

~̂
Ψ3

)
.

22We remind the reader that the matrix m1(λ), is symmetric due to (23.14).
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Taking equation (36.18), as well as (36.13), into account, it is easy to show that

∂2
1 V̂

3
j − ∂2

0 V̂
3
j = −

(
|~τ1|2 − |~τ0|2

)
V̂ 3
j . (36.31)

It is important that the component of
~̂
Vj, which is parallel to ~X0, namely V̂ 3

j , obeys a

second order equation that is decoupled, i.e. it does not contain the other components.

Moreover, equations (36.19) and (36.20) trivially imply that this relation assumes the

form of (36.29).

It is evident that we have to single out V̂ 3
j and use the auxiliary system in order to

express the other two components V̂ 1
j and V̂ 2

j in terms of the former. The projection

of the auxiliary system (36.27) on the direction of ~X0 reads

∂iV̂
3
j =

[
~X0 × ~τi

]
· ~̂Vj, (36.32)

since ~X0 × ~ti = ~X0 × ~τi. This implies that the column
~̂
Vj has the following form:

~̂
Vj =

~τ1

(~τ0 × ~τ1) · ~X0

∂0V̂
3
j −

~τ0

(~τ0 × ~τ1) · ~X0

∂1V̂
3
j + V̂ 3

j
~X0. (36.33)

Thus, the components V̂ 3
j completely specify the solution

~̂
Vj.

Finally, we may obtain another pair of independent equations by projecting the

auxiliary system (36.27) on ~X0×~τi. After some simple algebraic manipulations, this

yields

∂2
i V̂

3
j =

(
∂i~τi − ~ti × ~τi

)
·
[
~̂
Vj × ~X0

]
− |~τi|2V̂ 3

j . (36.34)

In virtue of (36.18), the difference of this equation for i = 0 and i = 1 is trivially

equation (36.29). Thus, the vector
~̂
Vj has the form of equation (36.33), where V̂ 3

j

obeys equations (36.29) and (36.34) for either values of i. In addition one has to

impose the constraints (36.28).

We continue the discussion inspired by the latter. As a direct consequence of

equation (36.28) it is true that
∑

j

(
V̂ 3
j

)2

= 1. Therefore, having at the back of our

mind equation (36.24) we may define

V̂ 3
1 = sin Θ cos Φ, (36.35)

V̂ 3
2 = sin Θ sin Φ, (36.36)

V̂ 3
3 = cos Θ, (36.37)

where Θ = Θ (ξ0, ξ1;λ) and Φ = Φ (ξ0, ξ1;λ) will be specified by the various equations

and constraints. It is obvious that the condition (36.24) is equivalent to the fact that

for λ = 0 these functions should reduce to the coordinates of the seed solution, i.e.

Θ|λ=0 = θ, Φ|λ=0 = φ. (36.38)
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So far, we know that the functions Θ and Φ could decribe a solution of the NLSM,

which has the same Pohlmeyer counterpart as the seed solution. We turn to the

condition that
~̂
Vj should form an orthonormal basis as suggested by (36.28). This

condition allows us to obtain the analogous of the Virasoro constraints, which are

obeyed by Θ and Φ. We derive them in appendix P. They read

(∂0Θ)2 + sin2 Θ (∂0Φ)2 = |~τ0|2 =
m2

+

4

(1− λ)2

(1 + λ)2 +
m2
−

4

(1 + λ)2

(1− λ)2 −
m+m−

2
cosϕ,

(36.39)

(∂1Θ)2 + sin2 Θ (∂1Φ)2 = |~τ1|2 =
m2

+

4

(1− λ)2

(1 + λ)2 +
m2
−

4

(1 + λ)2

(1− λ)2 +
m+m−

2
cosϕ,

(36.40)

∂0Θ∂1Θ + sin2 Θ∂0Φ∂1Φ = ~τ0 · ~τ1 =
m2

+

4

(1− λ)2

(1 + λ)2 −
m2
−

4

(1 + λ)2

(1− λ)2 . (36.41)

In appendix Q, we show that equation (36.34) is satisfied without any further con-

straints on Θ and Φ.

Therefore, the triplet which is composed by the third components of the vectors
~̂
Vj obeys:

1. The normalization
∑

j

(
V̂ 3
j

)2

= 1, which is analogous to the geometric con-

straint | ~X|2 = 1 that defines the S2. This justifies the definition of Θ and Φ in

the same fashion as θ and φ in the original NLSM.

2. Equations (36.39), (36.40) and (36.41) which are identical to equations (36.6),

(36.7) and (36.8), upon the substitution (36.22). It is important that this

transformation leaves the productm+m− invariant. This implies that triplet V̂ 3
j

obeys the same “Virasoro” constraints as the seed but with different constants

m± and it has the same “Pohlmeyer counterpart” as the seed solution.

3. Equation (36.29) which is identical to the equations of motion (20.1) obeyed by

the components of the original seed solution with given Pohlmeyer counterpart.

Thus, following the discussion at the end of section 36.1, the triplet V̂ 3
j is given

by the member of the family of the seed which corresponds to the ratio

m+

m−
(λ) =

(
1 + λ

1− λ

)2
m+

m−
. (36.42)

However, since λ is in general complex, one is not restricted to the real solutions of

the family of the seed, but rather to its analytic continuation.
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Obviously, for λ = 0, equations (36.39), (36.40) and (36.41) reduce to the relevant

equations of the seed solution. One may be tempted to regard this as the fact that

this “virtual” solution of the NLSM reduces to the seed one, yet this is true up to

global rotations. To ensure that no such global rotation is involved, so that the

condition (36.38) is satisfied, one has to employ (36.22) directly to the coordinates

of the seed solution.

Let V̂ (λ) be the matrix, whose columns are the three orthonormal solutions
~̂
Vj

of the system (36.27) that we constructed above. Taking into account the freedom

of the right multiplication of a solution of (36.9) with a constant matrix C(λ), we

consider the whole class of solutions of the auxiliary system

Ψ̂(λ) = V̂ (λ)C(λ). (36.43)

Obviously, equation (36.28) implies

V̂ T (λ) = V̂ −1(λ). (36.44)

Equation (36.15), implies that the matrix V̂ transforms under the inversion of λ as

V̂ (1/λ) = −JV̂ (λ)M (λ) , (36.45)

where the matrix M represents the transformation of V̂ 3
j under λ → 1/λ. Since

V̂ 3
j (λ) satisfy the equations of motion (36.29), it implies that V̂ 3

j (1/λ) belongs to the

set of solutions of this equation. In addition V̂ 3
j (1/λ) obeys equations (36.39), (36.40)

and (36.41). Thus, it is related to V̂ 3
j (λ) with a global rotation. The corresponding

rotation matrix M obeys

M (λ)M (1/λ) = I, (36.46)

MT (λ)M (λ) = I, (36.47)

M̄
(
λ̄
)

= M (λ) . (36.48)

In any case, given a specific seed solution, one will be able to specify the matrix M23.

Similarly, equation (36.16) and the fact that the seed solution is a real function of

m+ and m− implies that
¯̂
V
(
λ̄
)

= V̂ (λ) . (36.49)

It is trivial to show that the above imply

m1(λ) =
[
CT (λ)C(λ)

]−1
, (36.50)

m2(λ) = −C−1(λ)M(λ)C(1/λ)J, (36.51)

m3(λ) = C−1(λ)C̄(λ̄), (36.52)

23In the case of the BMN particle and the elliptic strings M = −J .
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These matrices satisfy identically (23.14), (23.15) and (23.16). Furthermore, as for

λ = 0, the matrix V̂ (λ) satisfies

V̂ (0) = UT , (36.53)

it is evident that

C(0) = I. (36.54)

The latter implies that equations (23.17) are satisfied too.

The aftermath of this analysis is an unexpected statement. If one knows not

only the seed solution, but also the whole family of solutions that correspond to

the same Pohlmeyer counterpart as the seed, then one can construct algebraically

the corresponding solution of the auxiliary system. For real values of the spectral

parameter, the elements of the auxiliary field are constructed via an interpolation

between different members of this family of solutions. In general they are determined

by the analytic continuation of the family.

In appendix K.1 the simplest dressing factor is constructed. This contains a pair

of poles on the unit circle at e±iθ1 . In appendix K.2 we derive the corresponding

dressed solution for a general seed. We show that this obeys the equations of motion

and the same Virasoro constraints as the seed. The cosine of the Pohlmeyer field of

the dressed solution is given by

m+m− cosϕ′ = m+m− cosϕ+ ∂+∂− ln

[(
pT V̂ T (eiθ1)X0

)2
]
, (36.55)

where p is a constant complex column, which obeys appropriate conditions (see

appendix K.1). The argument of the logarithm is simply a linear combination of V̂ 3
j ,

i.e. the analytic continuation of the the family of the seed string solution.

Notice that the proof of the fact that the dressing transformation with the sim-

plest dressing factor preserves the Virasoro constraints and that the dressed solution

obeys the equation of motion, is valid for any number of dimensions. Similarly, the

structure of the addition formula (36.55) is the same for any NLSM defined on R×Sd.

Obviously, if d ≥ 3, one has to appropriately generalize the presented solution of the

auxiliary system V̂ (λ).

37 Conclusions

We applied a systematic method for the construction of classical string solutions

propagating on R×S2. Using a specific class of solutions of the Pohlmeyer reduced

theory, i.e. the sine-Gordon equation, which are expressed in terms of elliptic func-

tions, we were able to develop a unified description of all known genus one string
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solutions on R×S2. Our approach is based on a convenient choice of the world-sheet

parametrization that leads to equations of motion for the classical string, which are

solvable via separation of variables.

The fact that our method can be applied successfully, reproducing all known

genus one solutions and providing a unified framework is not accidental. The NLSM

is integrable, and, thus, it can be solved using finite gap integration. It is known

that any smooth one-gap potential is equivalent to an appropriate n = 1 Lamé

potential [328]. Thus, in the case of elliptic solutions, the equations of motion are in

principle reducible to the n = 1 Lamé problem. This is precisely what it is achieved

via the application of the Pohlmeyer reduction inversion technique. Since the spiky

strings and their various special limits are the most general genus one classical string

solutions [329, 330], our approach achieves the inversion of the Pohlmeyer reduction

and it is equivalent to the finite gap integration in the case of genus one.

An advantage of our unified description is the convenience in studying and com-

paring the properties of the string solutions to those of their Pohlmeyer counterparts.

For example, rigidly rotating strings have counterparts which can be set static af-

ter an appropriate worldsheet boost. On the other hand, wave propagating solutions

have counterparts that can be set translationally invariant after an appropriate world-

sheet boost. Spikes occur at points where the Pohlmeyer field assumes a value equal

to an integer multiple of 2π. These points are always moving at the speed of light.

Finally, the topological charge in the sine-Gordon theory is mapped to the number

of spikes of the string. This mapping of properties provides a nice geometric picture

to the Pohlmeyer reduction and enhances our intuition on the dynamics of string

propagation on R×S2. Table 6 summarizes the mapping of the properties of the

strings to those of their Pohlmeyer counterparts.

The Weierstrass elliptic function is the natural parametrization for the study of

genus one solutions, since it uniformizes the torus. The manifestation of the latter is

the simple unified description of this class of classical string solutions in terms of the

“effective energy” E of the sine-Gordon reduced system and the purely imaginary

parameter a. Adopting this parametrization significantly simplifies the expressions

for the conserved charges of the string and facilitates the study of the corresponding

dispersion relation. In particular, we identify a set of one-dimensional trajectories in

the moduli space, where it is possible to express the moduli as an algebraic function

of the ratio of the energy and the angular opening, allowing the expression of the

dispersion relation in a closed form, arbitrarily far away from the infinite size limit.

These trajectories compose a dense subset of the moduli space.

Another interesting feature that emerges from the properties of the sine-Gordon

equation has to do with its well known duality with the Thirring model. The duality

maps the topological charge of the sine-Gordon theory to the fermion number in
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NLSM sine-Gordon

two-parameter family of solutions only one of the two parameters af-

fects the solution

angular frequency — extremal al-

titudes

gauge in which the solution is ei-

ther static or translationally in-

variant

degenerate one-dimensional

worldsheet

(BMN particle, hoops)

vacuum solution

strings asymptotically reaching

the equator

(giant magnons, single spikes)

kink or instanton solutions

rigid rotation/wave propagation static/translationally invariant

solutions (at some frame)

spike ϕ = 2nπ, n ∈ Z
number of spikes topological charge

spiky strings/non-spiky strings or

strings with equal number of

spikes and anti-spikes

rotating/oscillating solutions

— multi-fermion states/bosonic

condensate states in the dual

Thirring model

Table 6: A dictionary between the NLSM and the sine-Gordon model

the Thirring model. Therefore, the number of spikes has a naive interpretation as a

fermion number. In this picture, the strings with rotating Pohlmeyer counterparts

have the natural interpretation of fermionic objects of the theory, whereas the strings

with oscillating counterparts have the interpretation of bosonic condensates of the

latter. The study of elliptic strings in this context would have an enhanced interest in

view of the S-duality of the type IIB superstring theory in AdSn×Sn spaces. In this

case, such elliptic solutions could provide a quantitative tool to understand the role

of the sine-Gordon/Thirring duality as S-duality in the Pohlmeyer reduced theory.

The presented techniques can be directly generalized to higher dimensional spheres

and to AdSn×Sn spaces. As long as Sn is concerned, when n is even, the eigenvalues

of the problem will have the same structure as in the presented S2 case: there will

be an odd number of enhanced space embedding functions, which will be organised

in several pairs, each being associated to a positive eigenvalue connected to a Bloch

wave eigenstate of the associated n = 1 Lamé problem and a single one that will be

associated with a vanishing eigenvalue, and, thus, connected to an eigenstate of the

n = 1 Lamé problem lying at the margin of a band. When n is odd, there will be an
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even number of enhanced space coordinates, which will be simply organised in pairs

each associated with a positive eigenvalue. Such solutions have been constructed

with other methods in the literature [296]. Further extending to AdSn×Sn, which

is of particular interest towards holographic applications, requires the combination

of the presented results with those of [258]. The elliptic strings on AdS spaces form

some qualitatively distinct classes due to the form of the metric in the enhanced

space (which is R(2,n−1)). It would be interesting to study how these classes get

combined with the elliptic strings on the sphere and how they differ in terms of their

dispersion relation or other geometric characteristics.

We also presented the construction of dressed elliptic strings propagating on R×S2

and studied thoroutly their properties in juxtaposition to those of their Pohlmeyer

counterparts. These solutions correspond to genus two solutions of the sine-Gordon

equation with one of the two holes of the relevant torus being degenerate. Arbitrary

genus solutions of both the sine-Gordon and the non-linear sigma model equations are

known in an abstract form [304–306]. Our approach adds to the relevant literature,

because the solutions are expressed in terms of simple trigonometric/hyperbolic and

elliptic functions, whose properties and qualitative behaviour are much easier to

study and understand. Alternatively, specific non-degenerate genus two solutions can

be constructed via a completely different approach [331]; the Pohlmeyer counterparts

of the latter are genus-two solutions of the sine-Gordon equation [324] that can be

constructed via separation of variables after the application of the Lamb ansatz.

The dressing of the elliptic string solutions is presented in both the NLSM and

the Pohlmeyer reduced theory. In the first case it corresponds to the application of

the simplest possible dressing factor, whereas in the second case to a single Bäcklund-

transformation. Especially the latter calculation is an original non-trivial application

of the dressing method, since the seed solution [292,295] is neither a solution whose

Pohlmeyer counterpart is the vacuum, nor connected to this via a finite number

of Bäcklundtransformations, as in most cases presented in the literature [299–303].

The similarities between the two pictures, even at technical level, reveal the deep

connection between the dressing method and the Bäcklundtransformations [298].

Independently of the choice of the seed solution, the special case where the dress-

ing factor has the minimal number of poles, namely two poles lying on the unit circle,

the effect of the dressing transformation on the seed solution results in a nice geomet-

rical picture. The dressed string is drawn by an epicycle of given radius, whose center

runs over the seed solution. This picture adds to the conceptual understanding of the

action of the dressing transformation on a given solution. It would be interesting to

find the equivalent geometrical picture in other systems, such as strings propagating

on AdS or dS spaces [258, 292, 307], as well as in the case of more general dressing

factors.
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As we obtained the general solution to the auxiliary system for an elliptic seed

solution (24.92), it is straightforward to construct more complicated dressing fac-

tor. These would correspond to performing multiple Bäcklundtransformations to

the seed solution of the sine-Gordon equation. The above fact is connected to the

existence of the addition theorem (25.3), which allows the performance of multiple

Bäcklundtransformations algebraically.

The dressed elliptic solutions have been identified to belong to two large classes

depending on the sign of the parameter D2. The ones with D2 > 0 have Pohlmeyer

counterparts which describe localised kinks propagating on top of an elliptic back-

ground, whereas those with D2 < 0 possess Pohlmeyer counterparts which are pe-

riodic disturbances on top of an elliptic background. The latter emerge only in the

case the seed solution has a rotating Pohlmeyer counterpart.

At first we focused on the necessary conditions that must be obeyed, so that

the dressed elliptic strings are closed. We arrived at four specific classes of closed

string solutions. One of those is not exact, but these solutions approximate genuine

genus two ones, with one of the two genera being almost singular. The other three

classes are exact solutions and can be considered as the analytic continuation of

one another as D2 changes sign. One of the latter contains only infinite strings;

the approximate class of solutions can serve as a regularization scheme in order to

calculate the conserved charges of the infinite ones.

The study of dressed solutions emerging from a dressing factor with four poles

presents a certain interest, as an extension of our results. In the standard analysis,

where the seed is the vacuum, such solutions correspond to the non-trivial scattering

of two kinks or even bound states of the latter, the so called breathers. However,

since in our case the seed solution already contains a train of kinks (or kink-antikinks)

such phenomena appear in the dressed solutions we have studied, without the need of

a second Bäcklundtransformation. The non-trivial interaction of the kink induced by

the dressing with the kinks forming the background can be studied in the solutions

with D2 > 0, whereas a qualitatively different picture is expected whenever D2 < 0.

The study of more complicated dressed solutions however, will contain the extra

feature of the non-trivial interaction of the two kinks that are both induced by the

dressing in the presence of the non-trivial background.

An interesting feature of the elliptic string solutions is the fact that they have

several singular points, which are spikes. As they cannot change velocity, no matter

what the forces are which are exerted on them, they continue to exist indefinitely,

as long as they do not interact with each other. Interacting spikes emerge in higher

genus solutions. The simplest possible examples of this kind, which allow the study

of spike interactions, are those obtained here.

In the case of elliptic strings, the number of spikes is identical to the conserved
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topological charge on the sine-Gordon equation counterpart. In the case of the

dressed elliptic strings, the form of the allowed interactions between the spikes suggest

that the topological charge should not be connected to the number of spikes. It

should rather be connected to a more complicated quantity, which receives a ±1

contribution from each spike and a ±2 contribution from each loop. This quantity is

an appropriately defined turning number, which is the homotopy class of the mapping

from each point of the string to the unoriented direction of the tangent at this point.

The elliptic strings, are also characterized by a constant angular opening between

consecutive spikes. The latter is holographically mapped to a quasi-momentum in the

spin chain of the boundary theory. The dressed elliptic strings are not characterized

by a single period, and, thus, their dispersion relations will depend on more than one

quasi-momenta. Thus, these solutions may provide a tool for a further non-trivial

check of the connection between the string dispersion relation and the anomalous

dimensions of gauge theory operators in the strong coupling limit.

The special class of finite exact solutions with D2 > 0 relates in an interesting

way to the stability of the seed elliptic strings. Since these solutions asymptotically

interpolate in their dynamical evolution between two versions of the seed elliptic

string solution, they reveal that the latter is unstable. It is interesting that such so-

lutions emerge only for the classes of elliptic strings whose sine-Gordon counterparts

are unstable [308]. However, the opposite is not true; it is not possible to find such a

solution for any elliptic string whose Pohlmeyer counterpart is considered unstable.

This may be attributed to the fact that the stability analysis for finite closed string

should incorporate only the perturbations that preserve the appropriate periodic

conditions.

On a complementary approach, we studied the stability of elliptic strings in R×S2

by introducing linear perturbations of their Pohlmeyer counterparts. Our analysis

indicates that the study of linear perturbations leads to the same conclusions as the

ones obtained by the application of the dressing method.

This conclusion should not be surprising. A single Bäcklundtransformation adds

a degenerate genus to the solution, i.e. a genus which corresponds to a divergent

period. Whenever one is able to align this divergent period to the temporal direction

one obtains a string solution, which tends to an elliptic string in the asymptotic past

and future. As a result, the existence of this kind of solutions reveals the instability

of the particular seed. This reasoning can be turned on its head. If we assume

the existence of an unstable seed solution, it is then the case that the solution that

realizes the instability asymptotically tends to it. This implies that it should have

the same genus as the seed, plus a degenerate one, whose infinite period is aligned

with the time direction. It is thus natural to expect that such a solution should

emerge after a single Bäcklundtransformation or equivalently via dressing with the
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simplest dressing factor.

Furthermore, one should note that the dressing method not only allows the iden-

tification of the unstable strings, but it also provides the exact solution that realizes

this instability. In more general setups, this is important, since one obtains the fate

of the perturbations at full non-linear level. For example, in the case of the existence

of metastable configurations one could probe the global stability properties, which

are not accessible via the study of stability properties under small perturbations.

A key aspect of our analysis is the importance of boundary conditions. Since one

should consider closed strings, the perturbations must obey appropriate periodicity

conditions. The general treatment of the stability of solutions of the sine-Gordon

equation [308] is not appropriate when one studies strings with specific topological

characteristics, such as closed strings. It is interesting that the unstable closed string

solutions have a very limited number of unstable modes, in our case one or two. The

existence of two modes is interesting and could imply the existence of a multitude

of configurations, which are either stable under small perturbations or saddle points,

and act as attractors leading the system away from the unstable configuration.

The very limited number of unstable perturbations is also a characteristic of the

helicoid and catenoid minimal surfaces in the hyperboloid H3 [332,333]. Since these

minimal surfaces can also be studied with the help of their Pohlmeyer counterparts

[190], a similar twofold (linear and dressing method) analysis would be interesting.

Our approach could be implemented to the study of the stability of strings which

propagate in diverse background symmetric spacetimes as well (such as dS or AdS),

and obviously in higher dimensions. One need not constrain the focus on string solu-

tions of Pohlmeyer reducible systems. Whenever the dressing method is applicable,

the stability of seeds can be studied in the same fashion.

The conserved charges of the infinite dressed strings are divergent, yet one can de-

fine a finite difference with respect to the charges of the elliptic seed. This divergence

is not surprising, since these string solutions are a long string limit, similar to that

of the giant magnons; the latter correspond to genus one solutions with diverging

real period, whereas the former are the genus two generalization. As a consequence,

they have a dispersion relation that resembles the one of the giant magnons, with

an additional free parameter. The two exact finite classes of solutions have identical

energy and angular momenta as their seeds.

The dependence of the conserved charges on the moduli of the dressed string

solutions exhibits some discontinuities. One of these is related to the qualitative

behaviour of the seed solution, whereas the other one is related to the instabilities of

the seeds. Since the dispersion relation is connected to the anomalous dimensions of

operators of the boundary theory, it would be interesting to identify these kinds of

bifurcations in the spectrum of the dual theory. The same holds true for the sets of
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operators, which correspond to the exact finite dressed strings and share the same

charges with their seeds.

The techniques that were used for the construction of the dressed elliptic strings

on R×S2 have obvious generalizations to other symmetric spaces, such as the AdS, dS,

spheres of higher dimensions or tensor products of the latter. Especially the AdSn×Sn

spaces have obvious interest in the framework of the holographic correspondence.

Our findings suggest that similar phenomena exist in these more interesting cases

and deserve further investigation.

In addition, we presented the construction of the dressed static elliptic minimal

surfaces in AdS4. The auxiliary system for a general elliptic seed solution was solved,

and, subsequently, an arbitrary number of dressing transformations was applied.

This led to a recursive construction of NLSM solutions out of the initial elliptic ones.

For this purpose, the simplest possible dressing factor was used, namely, the one

containing two poles on the imaginary axis. We showed, that this particular type of

dressing factor acts as a boost with superluminal velocity on the seed solution.

It turns out that only an even number of dressing transformations with the sim-

plest dressing factor results in new real solutions of the NLSM in H3, that correspond

to static minimal surfaces in AdS4. The application of an odd number of such dress-

ing transformations leads to purely imaginary solutions on H3, which correspond to

real solutions of the NLSM on dS3. The fact that the dressing method connects

solutions of the Euclidean NLSM on H3 to solutions of the Euclidean NLSM on dS3

and vice versa is analogous to Bäcklund transformations, which connect solutions of

different differential equations.

Furthermore, we obtained a recursive relation between the surface element on

the seed minimal surface and the one on the dressed minimal surface, which emerges

after a double dressing transformation. Unfortunately, we could not do more than

that in the direction of computing the area of the dressed minimal surface. Since we

were not able to analytically determine the boundary region of the minimal surface,

we do not know the domain of integration of the surface element. These difficulties

originate from the inherent complexity of the static elliptic minimal surfaces. Clearly,

in view of the AdS/CFT correspondence, it would be interesting to overcome the

aforementioned difficulties and to compute the area of the dressed minimal surfaces

and how this is altered by the dressing.

Naively, it seems that the existence of self-intersections is an inherent characteris-

tic of the dressed elliptic minimal surfaces. The strong sub-additivity of holographic

entanglement entropy suggests that these minimal surfaces do not correspond to the

globally minimal ones. However, by restricting the world-sheet parameters in ap-

propriate regions, this problem can be resolved. Therefore, the presented minimal

surfaces can find applications in the context of holographic entanglement entropy.
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The alteration of the entangling curve impossed by the dressing transformation is

complicated. It would be interesting to investigate whether one could perform a

dressing transformation that leaves the boundary region intact. In such a case the

dressing transformation could probe directly the stability of the seed minimal surface

in the same fashion as it does for elliptic string solutions.

A possible future extension of this analysis is to find the Pohlmeyer counterpart

of the dressed solution and relate it to that of the seed solution. The NLSM on H3

can be mapped via Pohlmeyer reduction to the cosh-Gordon equation. A parallel

construction of the elliptic solutions on both sides of this mapping was presented

in [190]. The establishment of an analogous correspondence for the dressed min-

imal surfaces presents a certain interest. According to the analogous analysis for

the NLSM on R × S2, it is expected that the Pohlmeyer counterpart of the dressed

solution is connected through a finite number of Bäcklund transformations with the

Pohlmeyer counterpart of the seed solution. The cosh-Gordon equation lacks a vac-

uum, and, thus, the simplest solutions to be used as seed for the application of

Bäcklund transformations, are the elliptic ones. Consequently, the Pohlmeyer coun-

terparts of the dressed solutions should be some of the simplest kink-like solutions

of the cosh-Gordon equation.

An alternative approach for the construction of dressed minimal surfaces is the

application of a single dressing transformation with the simplest dressing factor on

imaginary seeds corresponding to elliptic solutions of the Euclidean NLSM defined

on dS3. For this purpose, the latter should be first constructed via methods similar

to those in [190].

Finally, we presented the systematic solution of the auxiliary system of the O(3)

NLSM. Integrability of NLSMs on symmetric spaces stems from the existence of the

Lax connection, which is flat and leads to an infinite tower of conserved charges.

Yet, there are more aspects of integrability related to NLSMs. Given a seed solution

of the NLSM, the dressing method enables the construction of new solutions of the

NLSM through a pair of first order differential equations, the auxiliary system. Once

this system is solved, multiple dressing transformations can be performed systemat-

ically. The Pohlmeyer reduction reveals that the embedding of the world-sheet into

the target space, which is in turn embedded into a flat enhanced space is described

by integrable models. Given a solution of the Pohlmeyer reduced theory, Bäcklund-

transformations can be employed in order to construct new solutions. Moreover, by

substituting a solution of the Pohlmeyer reduced theory in the equations of motion of

the NLSM, these become linear, since the Lagrange multiplier acts as a self-consistent

potential. The dressing method and the Bäcklundtransformations are interrelated,

as the application of the dressing method on the NLSM automatically performs a

Bäcklundtransformation on the Pohlmeyer reduced theory.
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We discussed strings, which, as time flows, propagate on a two-dimentional

sphere. Their motion is described by the NLSM on S2. It is well known that the

Pohlmeyer reduced theory of this NLSM is the sine-Gordon equation. We applied

the dressing method on this NLSM using a mapping of S2 to the coset SO(3)/SO(2).

Taking advantage of the parametrization introduced in [3], we obtained the solution

of the auxiliary system for an arbitrary seed solution. This solution is built by com-

bining appropriately the seed solution with a virtual one. The latter has the same

Pohlmeyer counterpart as the seed solution, it solves the NLSM equations of motion,

yet, in general it is complex and obeys altered Virasoro constraints, which do not

correspond to a valid string solution in R × S2. This virtual solution can be con-

structed trivially as long as one knows the whole class of solutions of the NLSM that

corresponds to a given solution of the Pohlmeyer reduced theory. Subsequently, we

constructed the solution of the NLSM that corresponds to the simplest dressing fac-

tor, namely the one that has a pair of poles on the unit circle. The dressed solution

of the NLSM is a non-linear superposition of the seed solution of the NLSM and the

virtual one. This is a completely novel aspect of integrability of NLSMs.

Furthermore, we derived an addition formula for the on-shell Lagrangian den-

sity. This addition formula encapsulates the pair of the first order equations that

constitutes the Bäcklundtransformation of the sine-Gordon equation. We specify

the relation between the location of the poles of the dressing factor and the spec-

tral parameter of the Bäcklundtransformations. Our construction proves that the

knowledge of the whole class of solutions of the NLSM that corresponds to a given

solution of the sine-Gordon equation, enables the insertion of solitons in this solution

of the sine-Gordon equation without solving the equations of the Bäcklundtransfor-

mation. As we obtained the general solution of the auxiliary system, our analysis

implies that the dressing method is actually implementing the non-linear superposi-

tion that we presented. At the level of the sine-Gordon equation, since solitons are

inserted through Bäcklundtransformations, we showed that they are the Pohlmeyer

counterpart of the non-linear superposition at the level of NLSM. It is worth noticing

that this non-linear superposition does not rely on finite gap integration and explicit

construction of solutions of the NLSM; it is a fundamental property.

Non-linear equations are characterized by the fact that one can not construct new

solutions of them by forming linear combinations of known solutions. Yet, the fact

that the solutions of the Pohlmeyer reduced theory render the equations of motion of

the NLSM linear seems to be a key element in our construction. Two solutions of the

same equations of motion, which are effectively linear for the given solution of the

sine-Gordon equation, are the ones that are superimposed in order to obtain a new

solution. This operation constructs a dressed solution that does not correspond to

the same Pohlmeyer field, thus the dressed solution belongs to a different “effectively
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linearised” sector. It is interesting that starting from an arbitrary seed, the whole

tower of sectors that are reached through the non-linear superposition is built by

inserting solitons in the Pohlmeyer counterpart of the seed solution.

On the converse route, let us consider our construction from the point of view

of the sine-Gordon equation. In order to perform a Bäcklundtransformation on a

given seed solution, one needs to solve a pair of first order non-linear differential

equations. The presented analysis shows that this is equivalent to the construction

of the family of the NLSM solutions, which corresponds to the specific Pohlmeyer

field. This requires the general solution of a linear second order differential equation

(20.1), whereas the non-linear part of the calculation has become purely algebraic.

The latter is the enforcement of the geometric and Virasoro constraints. Once the

family has been constructed, the application of the dressing transformation using our

construction and equation (36.55) effectively linearizes the Bäcklundtransformations.

The generalization of this calculation in symmetric spaces such as Sd, AdSd, dSd
and CPd, as well as direct products of them, which are relevant for the gauge/gravity

duality, is highly interesting. The same is true for euclidean NLSMs on Hd that are

relevant for the holographic calculation of Wilson Loops. In a similar manner one may

study the implications of the choice of the coset that is used in order to implement

the dressing method. It is known that the mapping of a symmetric space to different

cosets may lead to different solutions [301].

The implications of this construction to the physics of the NLSMs deserves a

thorough study. Our previous works [4,5] revealed that dressed elliptic strings have

interesting physical properties. A compelling finding is the fact that there is a special

class of dressed string solutions, which consists of the strings that correspond to the

unstable modes of their precursors. These instabilities are related to the propagation

of superluminal solitons on the background of the Pohlmeyer counterpart of the seed.

It would be interesting to investigate whether one can discuss similar properties for

arbitrary seed solutions in the context of the presented construction.

Another potential implication of this construction regards the spectral problem of

AdS/CFT. It has been shown that the dressing transformations of NLSM solutions

are a strong enough tool for the calculation of the infinite tower of conserved charges.

This was done explicitly for elliptic solutions in [334], where it was also shown that

these match the conserved charges of the boundary holographic theory. It was further

shown that they are the same as the ones calculated by the monodromy method [335].

Our construction could be used to extend this non-trivial check of the holographic

duality beyond the elliptic solutions to arbitrary ones. The spectral problem was

solved in [35] in the thermodynamic limit, which is associated with long strings,

taking advantage of the spectral curve. Long strings can naturally be constructed via

the application of the dressing method. Since they propagate on an infinite size world-
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sheet, the Pohlmeyer counterpart has a diverging period. The latter corresponds

precisely to the existence of a soliton. As a result, long strings can be described as

the non-linear superposition of a short string with a virtual one. It is interesting to

study applications of our construction in this context, as it can be used for a general

short string seed.

As a last comment, the presented construction, in particular the addition formula

for the cosine of the Pohlmeyer field, describes the instanton contributions to the ac-

tion of the O(3) sigma model over any zero-instanton classical configuration. Maybe

this could be incorporated for investigations along the lines of [336].
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38 Introduction

This part of the dissertation is devoted to Holographic Entanglement entropy. As

described in the introductory Part 1, the holographic duality [20–22] is a broad frame-

work that connects gravitational theories in asymptotically with AdS spacetimes to

conformal field theories on the AdS boundary. As a weak to strong duality it has

opened up many new directions for the study of strongly coupled conformal field

theories through their weakly coupled gravitational duals.

An important entry in the holographic dictionary was introduced by Ryu and

Takayanagi [37,38]. This establishes a connection between the entanglement entropy

of the boundary theory and the area of minimal surfaces in the bulk. More specifi-

cally, assuming that the boundary is divided into two subsystems A and AC by the

entangling surface ∂A, the entanglement entropy corresponding to this separation

of the degrees of freedom is proportional to the area of the open co-dimension two

minimal surface in the bulk, which is anchored at the entangling surface, namely

SEE =
1

4GN

Area
(
Aextr

)
. (38.1)

As discussed in previous parts, the entanglement entropy is a widely used mea-

sure of quantum entanglement. It has been shown that it plays an important role

in various quantum phenomena (e.g. it is an order parameter in quantum phase

transitions [76]). In field theory, the calculation of the entanglement entropy is a

task that presents many difficulties. Most calculations (see e.g. [45]) incorporate the

so called “replica trick” [43]. The Ryu-Takayanagi formula has provided the tools

for the study of such phenomena through the machinery of the holographic duality,

thus in strongly coupled conformal field theories, which are extremely difficult to be

studied directly.

In general, the holographic entanglement entropy is divergent. Considering the

case of AdSd+1 spacetime and introducing a UV radial cutoff Λ, it has an expansion

of the form [37,38,174]

SEE =

{
ad−2Λd−2 + ad−4Λd−4 + · · ·+ a0 ln Λ/R + regular terms, d even,

ad−2Λd−2 + ad−4Λd−4 + · · ·+ a0 + regular terms, d odd.
(38.2)

The most divergent term is proportional to the area of the entangling surface. This

is in agreement with older studies that indicate that the entanglement entropy in

(not necessarily conformal) field theory is dominated by an “area law” term [42,81].

This is an intriguing similarity to the black hole entropy, which has initiated a large

discussion in the literature about whether the black hole entropy can be attributed,

totally or partially, to entanglement entropy [337] and about whether gravity itself

can be described as an entropic force due to quantum entanglement statistics [62,63].
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The study of the holographic entanglement entropy for arbitrary entangling sur-

faces is motivated by the underlying relation of the latter to the central charges of the

dual CFT. The coefficient of the logarithmic term for even d is universal (i.e. it does

not depend on the regularization scheme). This coefficient depends on the values

of the central charges of the dual CFT. Since these are related to the holographic

Weyl anomaly [103], they can be calculated independently. The consistency of all

the relevant calculations is a highly non-trivial check of the holographic duality.

In general the divergent terms of the holographic entanglement entropy, includ-

ing the universal logarithmic terms, depend on the geometric characteristics of the

entangling surface, such as its curvature. In [157], the logarithmic term in the case

d = 4 was connected to the extrinsic geometry of the entangling surface. It was

shown to be proportional to the integral of the square of the mean curvature over

the whole entangling surface.

A great difficulty that appears in the study of the holographic entanglement en-

tropy is the lack of explicitly known, non-trivial minimal surfaces. Most of the liter-

ature focuses on simple cases, like the minimal surfaces that correspond to spherical

entangling surfaces. To overcome this obstacle, we use a systematic perturbative

approach for the study of minimal surfaces for arbitrary boundary conditions [338].

We incorporate a description of the minimal surface as the world-hypersurface that

the entangling surface traces, as it evolves from the boundary to the interior of the

bulk under an appropriate geometric flow, whose parameter is the holographic co-

ordinate. We cast this geometric flow in the form of a simple equation and study

in detail its perturbative solution. This is a second order equation, thus its solution

depends on both Dirichlet and Neumann boundary conditions. The divergent terms

of the holographic entanglement entropy (including the universal logarithmic terms

for even d) can be specified by this perturbative solution and they depend solely on

the Dirichlet boundary data.

In recent years there has been a tremendous progress in studying quantum gravity

through AdS/CFT correspondence and particularly using tools related to quantum

information theory. Generalizations of the Ryu - Takayanagi which capture quantum

correction have been proposed, initially to order G0
N [203, 339] and subsequntly to

all orders in the Newton constant, introducing the concept of Quantum Extremal

Surface [204]. These lead to a significant progress towards the resolution of Black Hole

Information Paradox in AdS/CFT [209,210,340], by calculating the Page Curve [341]

holographically. Since this is a vast subject, we refer the reader to [57,58]. A different

field of research, which will occupy our interest, regards the very nature of quantum

gravity and whether gravity is a fundamental force or it is an emergent one, related

to quantum entanglement.

As discussed in section 6.5, for spherical entangling surfaces the First Law of
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Entanglement Thermodynamics is equivalent to the linearized Einstein equations

[66, 67]. The corresponding minimal surfaces are very special, since they are Killing

horizons and all their extrinsic curvatures vanish. Thus, it is quite interesting to

extend this result to less special surfaces. In [229] a similar calculation was performed

using the explicit form of solutions of the linearized Einstein equations in AdS4

in global coordinates. The effect of gravitational perturbations obeying Neumann

boundary conditions is also studied. As the modular Hamiltonian was known in

all these cases it was possible to perform the calculation. Especially in the spiril

of [229] it is straightforward to calculate separately the variation of the entanglement

entropy and the variation of the modular Hamiltonian using solutions of the linearized

Einstein equations and check whether the results coincide.

Here we generalize this approach in the Poincare patch of AdS for arbitrary di-

mensionality. Initially building on [212] we solve the linearized Einstein equations in

momentum space and subsequently we construct the bulk to boundary propagator

in the Fefferman Graham gauge. Originally the bulk to boundary graviton propa-

gator was constructed in [342, 343]. This kind of propagator relates the bulk metric

to insertion on the CFT, which alter the boundary geometry. We work with nor-

malizable modes in the sense of the HKLL construction of operators [344,345]. The

gravitational perturbations that correspond to the holographic energy momentum

tensor Tµν(x
0, ~x) read

H(d)
µν (xµ; z) =

16πGN

d

1

Vd

∫
Bd
dduTµν

(
x0 + zu0, ~x+ iz~u

)
, (38.3)

where the integration over u spans a unit ball in d dimensions. We remind the reader

that the volume of a d−dimensionsal unit ball is Vd = π
d
2

Γ( d+2
2 )

. Thus, the value of

the perturbation at the space-time point (xµ, z) is the average value of the energy

momentum tensor within a ball of radius z, which includes complexified boundary

points! This complexification is known to appear in precursors [344, 345], as well

as the calculation of flat space CFT correlation function using the AdS radius as a

regulator [346].

This part of the dissertation is based on the publication [8], as well as on unpub-

lished work. Its structure is as follows: In section 39 we derive the equations that

describe the minimal surface in a space with boundary as a flow of the entangling

surface towards the interior of the space. In section 40 we solve perturbatively the

flow equation around the boundary in the case of pure AdS. In section 41, based on

the perturbative solution of the previous section, we calculate the divergent terms of

the area of the minimal surface. In section 42 we discuss gravitational perturbations

in AdSd+1 and focus on the case of AdS4 giving a proof of the equivalence of the

first law of entanglement thermodynamics with the linearized Einstein equations for
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spherical entangling surfaces. In 43 we calculate the bulk to boundary propagator

in the Fefferman-Graham gauge [213] for AdSd+1, which involves an analytic contin-

uation of the spatial coordinates. In section 44 we present a manifestly conserved

form of the energy momentum tensor. In section 45 we discuss the equivalence of the

First Law of Entanglement Thermodynamics and the linearized Einstein equation

for spherical entangling surfaces using the bulk to boundary propagator. Finally, in

section 46 we discuss our results and possible extensions.

Finally, there are some appendices; in appendix R, we provide some more tech-

nical details on the derivation of the flow equation, in appendix S, we show that

an explicitly known non-trivial minimal surface in pure AdS4, namely the helicoid,

satisfies the flow equation and in appendix T we calculate all divergent terms of the

minimal surface area in the case of a spherical entangling surface in order to be used

as a verification check for the results of section 41.

39 Geometric Flow Description for Minimal Sur-

faces

We desire to describe the minimal surface as a geometric flow, whose parameter is

the holographic coordinate. As we move from the boundary towards the interior

of the bulk, the entangling surface must evolve under this flow in such a way that

it traces the minimal surface. For this purpose, we need to parametrize the min-

imal surface appropriately; one of the parameters should be identical to the value

of the holographic coordinate. Furthermore, we need to study the intersections of

the minimal surface with the planes where the holographic coordinate is constant.

Subsequently, we will specify, how these intersections must evolve as the holographic

coordinate changes, so that their union is the minimal surface.

39.1 Background Geometry

We herein focus our attention on static, asymptotically AdSd+1 spacetimes, although

our analysis applies to any static spacetime with a boundary. We further demand

that the entangling surface is time-independent. It follows that the co-dimension

two minimal surface that is involved in the Ryu-Takayanagi formula is also time-

independent. Therefore, the problem of its specification can be reduced to one of

finding a co-dimension one minimal surface in an asymptotically hyperboloid Rie-

mannian space, which is a time-slice of the original spacetime.

In the following, r denotes the holographic coordinate and xi, i = 1, · · · , d − 1,

denote the rest of the coordinates. Furthermore, we select a coordinate system so
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that the metric of the asymptotically hyperboloid Riemannian space assumes the

form

ds2 = f (r) dr2 + hij
(
r, xk

)
dxidxj. (39.1)

The metric can always be written in such a form via an appropriate redefinition of the

holographic coordinate r. The space boundary in these coordinates is described by

an equation of the form r = r0 (e.g. in the case of pure AdS, in Poincaré coordinates

r0 = 0, whereas in global coordinates r0 =∞).

We also consider the constant-r slices of this space. On the slice r = ρ, the

induced metric is given by

ds2 = hij
(
ρ;xk

)
dxidxj. (39.2)

Using the form of the metric (39.1), we can calculate the Christoffel symbols

Γrrr =
1

2

f ′ (r)

f (r)
, Γrri = 0, Γrij = −1

2

∂rhij
f (r)

Γirr = 0, Γirj =
1

2
hik∂rhkj, Γijk = γijk,

(39.3)

where γijk are the Christoffel symbols with respect to the induced metric on the

constant-r slices (39.2). In the following, the capital letters refer to quantities defined

in the bulk and the corresponding lowercase ones refer to the corresponding quantities

defined in the constant-r slices.

39.2 Two Embedding Problems

We consider two embedding problems. The first one is the embedding of the minimal

surface in the asymptotically hyperboloid space, which is depicted in figure 50. The

minimal surface is parametrized by ρ and ua, where a = 1, · · · , d− 2, so that

r = ρ,

xi = X i (ρ, ua) ,
(39.4)

i.e., one of the parameters equals the value of the holographic coordinate r. In the

following, the indices i, j and so on, refer to the coordinates on a constant-r plane

and take values from 1 to d − 1, whereas the indices a, b and so on, refer to the

parameters ua and take values from 1 to d− 2.

Similarly, we consider the embedding of the intersection of the minimal surface

with a constant-r plane in this constant-r plane, as shown in figure 51. Assuming

that the latter is described by the equation r = ρ, we parametrize the aforementioned

intersection as

xi = xi (ρ;ua) , (39.5)
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Figure 50: The embedding of the minimal surface in the asymptotically hyperbolic

space

where xi (ρ;ua) = X i (ρ, ua). The functions X i (ρ, ua) should be considered as func-

tions of d − 1 coordinates, whereas the functions xi (ρ;ua) should be considered as

functions of d − 2 coordinates and a parameter ρ, identifying the constant-r plane.

Obviously, at the limit ρ→ r0 the intersection of the minimal surface with a constant-

r plane tends to the intersection of the minimal surface with the boundary, i.e. the

entangling surface. Since the functions X i (ρ, ua) and xi (ρ;ua) are identical, we will

avoid using both symbols in the following. Our goal is to express the minimal surface

as a flow of the entangling surface towards the interior of the bulk. For this reason,

we choose to use the lowercase notation xi (ρ;ua) and we will drop its arguments in

what follows. Similarly, we will drop the arguments of the induced metric h, keeping

in mind that it depends on the parameter ρ both explicitly and implicitly, as it takes

values on the intersection with the minimal surface. The explicit derivative will be

denoted by ∂rhij, whereas the total derivative with respect to parameter ρ will be

denoted by ∂ρhij, i.e. ∂ρhij = ∂rhij + ∂xk

∂ρ
∂khij.

We adopt the notation Aµ = (Ar, Ai) for vectors in the bulk. We define the

following d− 1 vectors, which are tangent to the minimal surface

T µρ =

(
1,
∂xi

∂ρ

)
, T µa =

(
0,
∂xi

∂ua

)
. (39.6)

We also have d− 2 vectors in the r = ρ plane, which are tangent to the intersection

of the minimal surface with the plane. These are

tia (ρ) =
∂xi

∂ua
. (39.7)

Both embedding problems are co-dimension one problems, thus, in both cases

there is a single normal vector. Let the normal vector of the bulk problem be N .
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Figure 51: On the left, the intersection of the minimal surface with a constant-r

plane. On the right, the embedding of the intersection in the constant-r plane.

Then, it obeys

N rf (ρ) +N i∂x
j

∂ρ
hij = 0, (39.8)

N i ∂x
j

∂ua
hij = 0. (39.9)

Furthermore, demanding that the normal vector is normalized implies that

(N r)2f (ρ) +N iN jhij = 1. (39.10)

Similarly, the normal vector n in the constant-r plane must obey

ni
∂xj

∂ua
hij = 0, (39.11)

so that it is perpendicular to the tangent vectors ta and

ninjhij = 1, (39.12)

so that it is normalized.

Equations (39.9) and (39.11) imply that at a given r = ρ plane, the normal vector

n and the projection of the normal vector N on this plane are parallel, i.e.

N i = c (ρ;ua)ni. (39.13)

Furthermore, equation (39.8) implies that

N r = − 1

f (ρ)
N i∂x

j

∂ρ
hij = −c (ρ;ua)

f (ρ)
ni
∂xj

∂ρ
hij. (39.14)
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Finally, the normalization of N (39.10) restricts c (ρ;ua) to be equal to

c (ρ;ua) =

[
1

f (ρ)

(
ni
∂xj

∂ρ
hij

)2

+ 1

]− 1
2

. (39.15)

In the following, we will adopt a specific parametrization of the minimal surface,

which simplifies the algebra significantly. As the holographic coordinate r runs, the

trace of the minimal surface varies. At a given r = ρ plane, this variation is described

by the vector ∂xi

∂ρ
. However, any component of this vector that is parallel to the

intersection of the minimal surface with the plane corresponds to a reparametrization

of the intersection and not to a physical alteration of the latter. As a clarifying

example, let us consider the special case where the vector ∂xi

∂ρ
is parallel to the

intersection everywhere; then, as ρ varies, the intersection is invariant. It follows

that an appropriate choice of the parameters ua at each r = ρ plane (obviously this

is a redefinition of ua that involves ρ) can set ∂xi

∂ρ
parallel to ni, i.e.

∂xi

∂ρ
= a (ρ;ua)ni. (39.16)

This is always possible through an appropriate Penrose-Brown-Henneaux transfor-

mation [180, 347]. This selection partially fixes the diffeomorphisms of the minimal

surface parametrizations. There are remaining diffeomorphisms corresponding to re-

definitions of the parameters ua that do not involve the parameter ρ. In the following,

we will always use such a parametrization for the minimal surface.

As follows from equation (39.15), for this specific parametrization, the normal-

ization factor c (ρ;ua) assumes the form

c (ρ;ua) =

(
a(ρ;ua)2

f (ρ)
+ 1

)− 1
2

(39.17)

and the r component of the normal vector N is written as

N r = −c (ρ;ua) a (ρ;ua)

f (ρ)
. (39.18)

Finally, the elements of the induced metric for the embedding of the minimal

surface in the asymptotically hyperboloid space are given by,

Γρρ = f (ρ) + a(ρ;ua)2,

Γρa = 0,

Γab = γab,

(39.19)
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where γab are the elements of the induced metric for the embedding of the intersection

of the minimal surface with the r = ρ plane, in the latter, namely

γab =
∂xi

∂ua
∂xj

∂ub
hij. (39.20)

In this parametrization, the elements of the inverse induced metric assume the form

Γρρ =
1

f (ρ) + a(ρ;ua)2 =
c(ρ;ua)2

f (ρ)
,

Γaρ = 0,

Γab = γab.

(39.21)

Notice that the symbols γ and Γ denote the induced metric elements when they have

two indices, whereas they denote the Christoffel symbols (39.3), whenever they have

three indices.

We proceed to calculate the corresponding second fundamental forms for the two

embeddings under consideration. By definition, the second fundamental form for the

intersection of the minimal surface with the r = ρ plane is

kab = −∇kn
i∂x

k

∂ua
∂xj

∂ub
hij = −∂ani

∂xj

∂ub
hij − γiklnl

∂xk

∂ua
∂xj

∂ub
hij. (39.22)

It is a matter of algebra, which is included in the appendix R, to show that the

elements of the second fundamental form for the embedding of the minimal surface

in the bulk are given by

Kρρ =
√
fc∂ρ

(
a√
f

)
+

a

2c
ninj∂rhij,

Kρa = c∂aa+
1

2c
ni
∂xj

∂ua
∂rhij,

Kab = ckab +
ca

2f

∂xk

∂ua
∂xj

∂ub
∂rhkj.

(39.23)

Finally, the mean curvature equals

K = ck +
c3

√
f
∂ρ

(
a√
f

)
+
ca

2f
hij∂rhij. (39.24)

39.3 The Minimal Surface as a Flow of the Entangling Sur-

face Towards the Interior of the Bulk

Having studied the two embedding problems in section 39.2, it is simple to find an

equation that describes the minimal surface as a surface being traced by the entan-

gling surface, which evolves under an appropriate geometric flow, whose parameter is
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the holographic coordinate. By definition, the minimal surface satisfies the equation

K = 0. (39.25)

This combined with equation (39.24) implies

1√
f
∂ρ

(
a√
f

)
+
k

c2
+

a

2c2f
hij∂rhij = 0. (39.26)

Finally, using equation (39.17) to eliminate c, we arrive at

1

2a
∂ρ

(
a2

f
+ 1

)
+

(
a2

f
+ 1

)(
k +

a

2f
hij∂rhij

)
= 0. (39.27)

Let us now focus our attention on pure AdSd+1 or actually on a time slice of it,

the hyperboloid Hd. In Poincaré coordinates f (r) = 1/r2 and hij (r;xi) = δij/r
2.

These imply that hij∂rhij = −2 (d− 1) /r. Thus, equation (39.27) assumes a much

simpler form,

ρ∂ρ (ρa) +
(
ρ2a2 + 1

)
(k − (d− 1) ρa) = 0 (39.28)

or

ρ∂ρ arctan (ρa) + k − (d− 1) ρa = 0. (39.29)

It can be easily verified that all known minimal surfaces in Hd, such as the minimal

surfaces that correspond to a spherical or strip region in the boundary, as well as the

catenoid and helicoid minimal surfaces in H3, satisfy equation (39.28). The proof for

the non-trivial case of the helicoid is included in the appendix S.

In an isotropic background, such as a time slice of the pure AdS spacetime, the

bulk coordinates in a local patch can be selected so that hij = g (r) δij. For such

backgrounds and for this selection of the bulk coordinates, all Christoffel symbols γijk
vanish and thus the second fundamental form for the embedding of the intersection

in the constant-r plane assumes the form

kab = −1

a

∂2xi

∂ua∂ρ

∂xj

∂ub
hij. (39.30)

This further implies that the mean curvature can be written as

− 2ak = γab∂ργab −
∂ρg

g
γabγab =

1

2

∂ρ det γ

det γ
− (d− 2)

∂ρg

g
. (39.31)

This formula allows the re-expression of equation (39.27) as

∂ρ

(
c
√
g det γ

)
− (d− 1)

√
det γ

c
∂ρ
√
g = 0. (39.32)

In the case of the Hd space, g (r) = 1/r2, and thus equation (39.32) assumes the form

ρ∂ρ

(
c
√

det γ

ρ

)
+

(d− 1)
√

det γ

cρ
= 0, (39.33)

which will become handy in next section.
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39.4 A Comment on the Boundary Conditions

The flow equation (39.27) contains second derivatives of the embedding functions

with respect to the holographic coordinate. Therefore, the specification of a con-

nected entangling surface (i.e. a Dirichlet boundary condition), does not uniquely

determine the solution of the minimal surface. This is due to the fact that such an

entangling surface may be part of a more complex disconnected entangling surface,

(see figure 52). The additional Neumann-type boundary condition, which is required

for the specification of a unique solution, is equivalent to the specification of the

other components of the disconnected entangling surface. Would we desire to find

a minimal surface that corresponds to a connected entangling surface, we should

specify the additional initial condition in an appropriate fashion. Two clarifying ex-

amples that correspond to disconnected entangling surfaces are the minimal surface

corresponding to a strip region in Hd and the catenoid surface in H3.

A1

A2

A3

C1

C2
C3

Figure 52: Three minimal surfaces. The minimal surface A1 corresponds to the

connected entangling surface C1. The minimal surfaces A2 and A3 correspond to the

disconnected entangling surfaces C1 ∪ C2 and C1 ∪ C3, respectively.

39.5 A Comment on the Parametrization of the Minimal

Surface

In the case the minimal surface has a single local maximum of the holographic co-

ordinate, the parametrization (39.16) can be applied for the whole minimal surface.

This parametrization will have a single singular point, the maximum itself, where

the embedding functions will map the whole range of the parameters ua to the same

point. However, if more than one local maxima exist, there is a constant-r plane for a

value of the holographic coordinate rsaddle, smaller than the value of the holographic
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coordinate at the maxima, which contains a saddle point, as shown in figure 53. At

Figure 53: The intersection of the minimal surface with the constant-r planes around

a saddle point

this constant-r slice, the intersection of the minimal surface is not smooth. At the

non-smooth point, the normal vector ceases being well-defined and the definition of

the parametrization (39.16) becomes problematic. When a saddle point is met, the

problem must be split to two new problems whose boundary conditions are defined

at r = rsaddle in an appropriate fashion, so that the surface is smooth.

The inverse situation occurs in the case of solenoid-like minimal surfaces that

correspond to disconnected entangling surfaces in the boundary. In such cases there

appear saddle points where two distinct problems merge. At such a saddle point, the

demand for the smoothness of the minimal surface will result in constraints to the

Neumann conditions that were applied in each of the two separate problems, which

in effect will transform each of the two problems, from boundary value problems with

one Dirichlet and one Neumann condition to a problem with two Dirichlet conditions.

40 The Perturbative Solution to the Flow Equa-

tion in Pure AdSd+1

In this section we will present a perturbative approach for the solution of equation

(39.33), which describes the minimal surface as a geometric flow of the entangling

surface into the interior of pure AdS space. This approach incorporates elements

of earlier work of Graham and Witten [348], which calculate conformal anomalies

of measurables defined on submanifolds of spaces with boundary, using the typical

Fefferman-Graham expansion of the bulk metric in such spaces [213]. More recently
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this technique has been used for the calculation of the holographic entanglement

entropy in particular [338]. It has to be noted that a similar approach can be devel-

oped for other asymptotically AdS static and isotropic backgrounds on the basis of

equation (39.32), or more general static backgrounds on the basis of (39.27).

40.1 Set-up of the Perturbative Calculation

We assume an expansion for the embedding functions of the minimal surface around

ρ = 0 of the form

xi (ρ;ua) =
∞∑
m=0

xi(m) (ua) ρm. (40.1)

Obviously, the first term in this expansion is determined by the Dirichlet boundary

condition, i.e. the entangling surface, which is parametrized by

xi = X i (ua) = xi(0) (ua) . (40.2)

In the following, we will refer to the induced metric and the extrinsic curvature

emerging from the embedding functions (40.2) and with respect to the metric δij, as

the induced metric G and the extrinsic curvature K of the entangling surface,

Gab = ∂aX i∂bX i, (40.3)

Kab = −∂aN i∂bX i, (40.4)

where N i is the normal vector of the entangling surface, normalized with respect to

the metric δij, i.e. N i = lim
ρ→0

ni

ρ
. Here and in the following, the presence of a repeated

upper index implies summation over all its values.

It follows that the induced metric γ has a similar expansion of the form

γab =
1

ρ2

∞∑
m=0

γ
(m)
ab ρ

m, where γ
(m)
ab =

m∑
n=0

∂ax
i
(n)∂bx

i
(m−n). (40.5)

Obviously γ
(0)
ab = Gab. We also assume an expansion for the determinant of the

induced metric of the form√
det γ =

√
detG
ρd−2

∞∑
m=0

γ(m)ρ
m. (40.6)

Equation (39.33) implies that the function c is regular at ρ = 0. Therefore, we

also assume an expansion for c of the form

c =
∞∑
m=0

c(m)ρ
m. (40.7)
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We recall that we have selected a particular parametrization of the minimal sur-

face, so that the vector ∂ρx
i is perpendicular to the vectors ∂ax

i, i.e. ∂ρx
i∂ax

i = 0.

Substituting the expansion (40.1) into this relation yields
∞∑
m=0

m∑
n=0

(n+ 1)xi(n+1)∂ax
i
(m−n)ρ

m = 0, (40.8)

implying that
m∑
n=0

(n+ 1)xi(n+1)∂ax
i
(m−n) = 0, (40.9)

for any m. In what follows, we will refer to the constraints (40.9) as “orthogonality

conditions”.

Finally, equation (39.17), allows the connection between the expansion of c and

the expansion of the embedding functions. This equation assumes the form

1

c2
= 1 +

∞∑
m=0

m∑
n=0

(m− n+ 1) (n+ 1)xi(n+1)x
i
(m−n+1)ρ

m. (40.10)

We may proceed to solve perturbatively equation (39.33). The expansions for c

and γ are provided by equations (40.5) and (40.10). The parametrization freedom

that could prohibit a unique solution to equation is removed through the specific

parametrization selection (39.16), which is perturbatively expressed as (40.9). Thus,

it is a matter of algebra to solve the problem order by order.

40.2 The Perturbative Solution

Order O (ρ0)

At leading order, the induced metric reads

γab =
γ

(0)
ab

ρ2
+O

(
1

ρ

)
=
Gab
ρ2

+O
(

1

ρ

)
, (40.11)

which means that √
det γ =

√
detG
ρd−2

+O
(

1

ρd−3

)
. (40.12)

Substituting this to the flow equation (39.33) yields

ρ∂ρ

(
c(0)

ρd−1

)
+O

(
1

ρd−2

)
= − d− 1

c(0)ρd−1
+O

(
1

ρd−2

)
, (40.13)

which obviously implies that c(0) = 1. Equation (40.10) at leading order yields

c(0) = 1 + xi(1)x
i
(1), (40.14)

which implies that

xi(1) = 0. (40.15)
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Order O (ρ1)

The next order is rather trivial due to the fact that xi(1) = 0. The orthogonality

condition (40.9) at leading order yields

xi(1)∂ax
i
(0) = 0, (40.16)

which is trivially satisfied.

Equation (40.5) at this order reads

γ
(1)
ab = ∂ax

i
(0)∂bx

i
(1) + ∂ax

i
(1)∂bx

i
(0) = 0. (40.17)

Similarly, equation (40.10) implies that

c(1) = −2xi(2)x
i
(1) = 0, (40.18)

and, thus, the flow equation (39.33) is trivially satisfied to this order.

Order O (ρ2)

At next order, we receive new information from the orthogonality condition (40.9),

which reads,

xi(2)∂ax
i
(0) = 0, (40.19)

stating that the vector x(2) is perpendicular to the entangling surface, and thus,

parallel to the normal vector N .

At order O(ρ2), the induced metric (40.5) reads

γ
(2)
ab = ∂ax

i
(0)∂bx

i
(2) + ∂ax

i
(2)∂bx

i
(0), (40.20)

due to the fact that xi(1) = 0. This implies that the determinant of the induced

metric is given by√
det γ =

√
detG
ρd−2

(
1 + γ(2)ρ

2 +O
(
ρ3
))
, where γ(2) =

1

2
Gabγ(2)

ab . (40.21)

Using the expansion of the induced metric (40.20), together with (40.19) yields

γ(2) = −Gabxi(2)∂a∂bx
i
(0). (40.22)

The expansion (40.10) at this order yields

c(2) = −2xi(2)x
i
(2). (40.23)

Plugging the expressions (40.21) and (40.23) into the flow equation (39.33) yields the

relation

γ(2) = (d− 2) c(2), (40.24)
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and, thus,

2 (d− 2)xi(2)x
i
(2) = Gabxi(2)∂a∂bx

i
(0). (40.25)

Notice that this equation is satisfied for any x(2) when d = 2. In this case, the right

hand side of the above equation vanishes, due to the fact that the entangling surface

is zero-dimensional.

As we have already stated, the vector x(2) is parallel to the normal vector N , i.e.

xi(2) =
√
xi(2)x

i
(2)N . Substituting this to (40.4) and using the orthogonality relation

(40.19) yields

Kab =
xi(2)∂a∂bx

i
(0)√

xj(2)x
j
(2)

. (40.26)

The mean curvature K equals

K = GabKab =
Gabxi(2)∂a∂bx

i
(0)√

xj(2)x
j
(2)

= 2 (d− 2)
√
xi(2)x

i
(2), (40.27)

due to the flow equation (40.25). It follows directly from equations (40.23) and

(40.24) that whenever d > 2,

xi(2) = − K
2 (d− 2)

N i (40.28)

and

c(2) = − K2

2 (d− 2)2 , γ(2) = − K2

2 (d− 2)
. (40.29)

Order O (ρ3)

The orthogonality condition at this order yields

xi(3)∂ax
i
(0) = 0. (40.30)

At order O (ρ3), the induced metric (40.5) reads

γ
(3)
ab = ∂ax

i
(0)∂bx

i
(3) + ∂ax

i
(3)∂bx

i
(0), (40.31)

due to the fact that xi(1) = 0. The determinant of the induced metric is given by

√
det γ =

√
detG
ρd−2

(
1 + γ(2)ρ

2 + γ(3)ρ
3 +O

(
ρ4
))
, with γ(3) =

1

2
Gabγ(3)

ab . (40.32)

The relation (40.30), implies that the vector x(3) is perpendicular to the entangling

surface. We recall that the same holds for x(2) due to (40.19). Therefore both
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x(2) and x(3) are parallel to the normal vector N , and, thus, to each other, i.e.,

xi(3) =
√
xj(3)x

j
(3)x

i
(2)/
√
xk(2)x

k
(2). This equation combined with (40.30), (40.31) and

(40.25) implies that

γ(3) = −

√√√√xj(3)x
j
(3)

xk(2)x
k
(2)

Gabxi(2)∂a∂bx(0) = −2 (d− 2)
√
xi(2)x

i
(2)x

j
(3)x

j
(3). (40.33)

Furthermore, equation (40.23) implies that

c(3) = −6xi(2)x
i
(3) = −6

√
xi(2)x

i
(2)x

j
(3)x

j
(3). (40.34)

To this order the flow equation (39.33) yields

(2d− 5) c(3) = 3γ(3) or (d− 3)
√
xi(3)x

i
(3) = 0. (40.35)

This means that the flow equation is satisfied automatically to this order if d = 3

for any x(3) parallel to N . On the contrary for any d ≥ 4 the above equation implies

that.

xi(3) = 0, (40.36)

which further implies that c(3) = 0 and γ(3) = 0.

Order O (ρ4)

The orthogonality relation (40.9) at this order reads

2xi(4)∂ax
i
(0) + xi(2)∂ax

i
(2) = 0. (40.37)

The induced metric (40.5) reads

γ
(4)
ab = ∂ax

i
(0)∂bx

i
(4) + ∂ax

i
(2)∂bx

i
(2) + ∂ax

i
(4)∂bx

i
(0), (40.38)

due to the fact that xi(1) = 0. The determinant of the induced metric is given by

√
det γ =

√
detG
ρd−2

(
1 + γ(2)ρ

2 + γ(3)ρ
3 + γ(4)ρ

4 +O
(
ρ5
))
, (40.39)

where

2γ(4) = γ2
(2) − 2GabGcd∂axi(0)∂cx

i
(2)∂bx

j
(0)∂dx

j
(2)

+ Gab
(
∂ax

k
(2)∂bx

k
(2) + 2∂ax

l
(0)∂bx

l
(4)

)
. (40.40)
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Using equations (40.26) and (40.27), the second term in (40.40) assumes the form

GabGcd∂axi(0)∂cx
i
(2)∂bx

j
(0)∂dx

j
(2) =

K2KabKab

4 (d− 2)2 . (40.41)

Using equations (40.37) and (40.27), the third term in (40.40) assumes the form

Gab
(
∂ax

k
(2)∂bx

k
(2) + 2∂ax

l
(0)∂bx

l
(4)

)
= −Gab

(
xk(2)∂a∂bx

k
(2) + 2xl(4)∂a∂bx

l
(0)

)
= −Gab

(
1

2
∂a∂b

(
xi(2)x

i
(2)

)
− ∂axk(2)∂bx

k
(2) + 2xl(4)∂a∂bx

l
(0)

)
= −Gab

(
∂a∂bK2

8 (d− 2)2 − ∂ax
k
(2)∂bx

k
(2) + 2xl(4)∂a∂bx

l
(0)

)
.

(40.42)

The vector x(2) is parallel to the normal vector. Thus, the vectors
{
x(2), ∂ax(0)

}
form a basis. We decompose the vectors x(4) and ∂ax(2) into this basis,

∂ax
i
(2) = Aax

i
(2) + Aca∂cx

i
(0), (40.43)

xi(4) = fxi(2) + f c∂cx
i
(0). (40.44)

Taking the inner product of (40.43) with x(2) and utilizing (40.19), together with

(40.27) leads to Aa = ∂aK
K . Similarly multiplying (40.43) with ∂bx

i
(0) and utilizing

(40.19), (40.26) and (40.27) yields Aca = −GceKKae
2(d−2)

, and, thus,

∂ax
i
(2) =

∂aK
K

xi(2) −
GceKKae
2 (d− 2)

∂cx
i
(0). (40.45)

In the same spirit, we plug the decomposition (40.44) into the orthogonality relation

(40.37) and after some algebra we arrive at f c = −GcbK∂bK
8(d−2)2 , and, thus,

xi(4) = fxi(2) −
GcbK∂bK
8 (d− 2)2∂cx

i
(0). (40.46)

Now we can compute the quantities that appear in (40.42). Equation (40.46)

implies that

Gabxi(4)∂a∂bx
i
(0) =

K2f

2 (d− 2)
− G

abGceK∂eK
8 (d− 2)2 ∂cx

i
(0)∂a∂bx

i
(0). (40.47)

It can be easily shown that ∂cx
i
(0)∂a∂bx

i
(0) = GcdΓ d

ab, where Γ d
ab are the Christoffel

symbols with respect to the induced metric G of the entangling surface, namely,

Γ d
ab = 1

2
Gde (∂aGbe + ∂bGae − ∂eGab). Thus,

Gabxi(4)∂a∂bx
i
(0) =

fK2

2 (d− 2)
− KG

abΓ d
ab∂dK

8 (d− 2)2 . (40.48)
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Similarly, equation (40.45) implies

∂ax
i
(2)∂bx

i
(2) =

∂aK∂bK
4 (d− 2)2 +

K2GcdKadKbc
4 (d− 2)2 . (40.49)

Putting everything together, the third term in (40.40) is written as

Gab
(
∂ax

k
(2)∂bx

k
(2) + 2∂ax

l
(0)∂bx

l
(4)

)
= − fK2

d− 2
+
K2KabKab

4 (d− 2)2 −
K2K

4 (d− 2)2 , (40.50)

where 2 = Gab∇a∇b, while the covariant derivatives are taken with respect to the

induced metric of the entangling surface. Summing up, equation (40.40) assumes the

form

γ(4) =
K4

8 (d− 2)2 −
fK2

2 (d− 2)
− K

2KabKab

8 (d− 2)2 −
K2K

8 (d− 2)2 . (40.51)

Equation (40.10) implies that

c(4) = 6
(
xi(2)x

i
(2)

)2 − 8xi(4)x
i
(2) −

9xi(3)x
i
(3)

2
. (40.52)

Using (40.27), together with (40.46) leads to

c(4) =
3K4

8 (d− 2)4 −
2fK2

(d− 2)2 −
9xi(3)x

i
(3)

2
. (40.53)

Expanding the flow equation (39.33) to this order yields

(d− 5)
(
c(4) + c(2)γ(2) + γ(4)

)
= (d− 1)

(
γ(4) − c(2)γ(2) + (c(2))

2 − c(4)

)
, (40.54)

or

K4

2 (d− 2)4 +
(d− 4) fK2

(d− 2)2 − K
2KabKab

4 (d− 2)2 −
K2K

4 (d− 2)2 +
9 (d− 3)xi(3)x

i
(3)

2
= 0. (40.55)

We recall that xi(3) = 0 for any d 6= 3. It follows that the last term is always vanishing,

allowing the re-expression of the last equation as

4 (d− 4) f = − 2K2

(d− 2)2 +KabKab +
2K
K
, (40.56)

This implies that in any number of dimensions except for the case d = 4, the quantity

f , and, thus x(4) is completely determined by the local characteristics of the part of

the entangling surface that we are expanding around. When, d 6= 4, the above

equation directly determines f and it implies that

xi(4) =
K

8 (d− 2) (d− 4)

(
− 2K2

(d− 2)2 +KabKab +
2K
K

)
N i− G

cbK∂bK
8 (d− 2)2∂cX

i, (40.57)

337



γ(4) =
(d− 3)K2

4 (d− 2)2 (d− 4)

(
(d− 3)2 + 1

2 (d− 2) (d− 3)
K2 −KabKab −

2K
K

)
. (40.58)

and

c(4) =


K2

2(d−2)2(d−4)

(
3d−4

4(d−2)2K2 −KabKab − 2K
K

)
, d ≥ 5,

−K4

8
+ K2K

2
−

9xi
(3)
xi

(3)

2
, d = 3.

(40.59)

When d = 4, we have shown that the component of x(4) that is perpendicular to the

entangling surface is undetermined. In this case, the flow equation (40.56) reduces

to

− K
2

2
+KabKab +

2K
K

= 0, (40.60)

which is a constraint for the entangling surface. When the entangling surface does

not satisfy this constraint, there are implications for the form of the expansion of the

embedding functions. We will return to this issue in section 40.3.

40.3 The Neumann Boundary Condition in the Perturbative

Expansion

At all orders higher than the first one, we found that at order d the equations cannot

completely determine the solution. This is due to the fact that at this order the

Neumann boundary condition enters into the solution. Let us first analyse this

behaviour at the orders that have already been studied in section 40.2, using some

clarifying examples, before we proceed to make some more general comments.

d = 2

When d = 2, i.e. in the case of AdS3, we found that the flow equation (40.25)

is satisfied for any x(2) parallel to N . At this number of dimensions, it is easy to

show that this behaviour is due to the fact that the Neumann boundary condition

for the differential equation (39.33), which is determined by the existence of other

disconnected boundaries, enters into the solution at the second order. In pure AdS3,

all static minimal surfaces are either semicircles of the form (x− x0)2 = R2 − ρ2,

or semi-infinite straight lines x = x0, if there is no other boundary. Expanding the

semi-circle solution around one of the two boundary points, e.g. x = x0 + R ≡ x1,

yields

x = x1 −
1

2R
ρ2 +O

(
ρ3
)
. (40.61)

Thus, indeed, the second order term depends on the parameter R, i.e. on the ex-

istence of a part of the entangling surface (in this case entangling points), which is
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disconnected from the part of the entangling surface around which we expand our so-

lution (in this case x = x1). Notice also that this term vanishes at the limit R→∞,

i.e in the case that there is no other disconnected segment of the entangling surface.

d = 3

When d = 3, we found that the flow equation (40.35) is satisfied for any vector

x(3) parallel to N . This property is similar to what occurred at the previous order

for d = 2. Again, at this order, the Neumann boundary condition enters into the

solution. A nice clarifying example for this behaviour is the case of catenoid minimal

surfaces in H3, since they correspond to a disconnected entangling surface, which

comprises of two concentric circles. These surfaces are parametrized by [190]

ρ =

√
3e2

℘ (u) + 2e2

e−ϕ1(u;a1), |~x| =

√
℘ (u)− e2

℘ (u) + 2e2

e−ϕ1(u;a1), (40.62)

where

ϕ1 (u; a) =
1

2
ln

(
−σ (u+ a1)

σ (u− a1)

)
− ζ (a1)u. (40.63)

The functions ℘, ζ and σ are the Weierstrass elliptic function and the related quasi-

periodic functions, respectively, with moduli g2 = E2

3
+ 1 and g3 = −E

3

(
E2

9
+ 1

2

)
.

The quantity e2 is the intermediate root of the related cubic polynomial, namely

e2 = E
6

. The parameter a1 assumes a specific value so that ℘ (a1) = −2e2 and

finally the parameter E may assume any positive value. The catenoid is covered

for a full real period 2ω1 of the Weierstrass elliptic function. Considering the seg-

ment u ∈ [0, 2ω1] or u ∈ [−2ω1, 0], the catenoid is anchored at the boundary at

two concentric circles, one with radius R and another one, whose radius equals

R exp [∓Re (ζ (ω1)α1 − ζ (a1)ω1)], hence it depends on the value of the parameter

E. Figure 54 shows two catenoid minimal surfaces whose entangling curves do not

coincide. However they comprise of two concentric circles, one of whom is common.

Expanding the catenoid solution around the part of the entangling surface, which

is the circle of radius R, is equivalent to expanding the embedding functions around

u = 0. This yields

ρ = ±R
√
E

2

(
u− E

6
u3 +O

(
u4
))

,

|~x| = R

(
1− E

4
u2 +

1

6

√
E

2
u3 +O

(
u4
))

,

(40.64)

implying

|~x| = R− 1

2R
ρ2 ± 1

3ER2
ρ3 +O

(
ρ4
)
. (40.65)
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Figure 54: Two catenoids whose corresponding entangling curves do not coincide but

they share a common part, which is plotted as the black curve.

It is evident that the coefficient of the ρ2 term depends solely on the geometry of the

part of the entangling curve around which we are expanding, i.e. on the radius R.

Actually it has exactly the right value as described by the formula (40.27), namely∣∣x(2)

∣∣ = 1
2R

= K
2(d−2)

. On the other hand, the coefficient of the ρ3 depends on the

parameter E, i.e. on the position of the other circle that constitutes the entangling

surface. Notice again that at the limit where the other circle disappears, i.e. E →∞,

this term vanishes. Although they look quite different, the two catenoids plotted in

figure 54 have the same expansion up to order ρ2.

The catenoids do not exhaust the freedom of the selection of the Neumann bound-

ary condition. They are just the solutions that preserve the rotational symmetry,

which at this expansion is equivalent to the selection of a x(3) with constant magni-

tude. Keeping the same Dirichlet boundary conditions and selecting a more general

Neumann boundary condition would lead to a minimal surface corresponding to a

disconnected entangling curve comprised of a circle and another curve, which would

not be a circle.

d = 4

When d = 4, we have shown that the component of x(4) that is perpendicular to the

entangling surface is undetermined. This is the expected freedom due to the potential

existence of other disconnected parts of the entangling surface. However, in this case,

the flow equation reduces to (40.60), which is a constraint for the entangling surface.

This constraint may hold (e.g. in the case of a spherical entangling surface where the

two principal curvatures are κ1 = κ2 = 1/R) in which case, the expansion we have
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performed is valid. On the contrary, the expansion (40.1) is inconsistent when this

constraint does not hold (e.g. in the case of a cylindrical entangling surface where

the two principal curvatures are κ1 = 1/R, κ2 = 0). In the following we will show

that in such a case this problem is resolved via the introduction of a ρ4 ln ρ term

in the expansion of the embedding functions, which does not alter the perturbation

theory at lower orders. As expected, the component of x(4) that is perpendicular to

the entangling surface remains undetermined by the flow equation, and, thus, it is

determined by the Neumann boundary condition.

Arbitrary Number of Dimensions

Let us investigate the general structure of the flow equation (39.33) in the perturba-

tion theory that we developed, in order to understand how the equation determines

the embedding functions of the minimal surface order by order. Using the notation

(40.6) and (40.7) and introducing a similar notation for 1/c, the flow equation at

order n reads

(n− d+ 1)
n∑
k=0

c(k)γ(n−k) + (d− 1)
n∑
k=0

(
1

c

)
(k)

γ(n−k) = 0. (40.66)

First, we need to understand what is the highest order term of the embedding

functions that appears in c(n) and γ(n). Trivially, equation (40.5) implies that in

γ(n), this is xi(n). Equation (40.10) naively suggests that the highest order term

that appears in c(n) is xi(n+1); however this is multiplied with xi(1), which vanishes.

Therefore, the highest order term that appears in c(n) is also xi(n). It follows that

naturally, the n-th order of the perturbation theory determines the xi(n) term of the

embedding functions.

Equation (40.10) implies that(
1

c2

)
(n)

=
n∑
k=0

(n− k + 1) (k + 1)xi(k+1)x
i
(n−k+1) = 4nxi(2)x

i
(n)+F

(
xi(m<n)

)
, (40.67)

where F
(
xi(m<n)

)
denotes a function of the terms, which are of order lower than

n. We use this notation without implying that F is some specific function, but in

the same fashion that we use the symbol O (ρn) to denote the terms of order ρn and

higher in an expansion. The above equation implies that(
1

c

)
(n)

= 2nxi(2)x
i
(n) + F

(
xi(m<n)

)
, c(n) = −2nxi(2)x

i
(n) + F

(
xi(m<n)

)
. (40.68)

In a similar manner

γ
(n)
ab = ∂ax

i
(n)∂bx

i
(0) + ∂ax

i
(0)∂bx

i
(n) + Fab

(
xi(m<n)

)
, (40.69)
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which implies that

γ(n) =
1

2
Gabγ(n)

ab + F
(
xi(m<n)

)
= Gab∂axi(n)∂bx

i
(0) + F

(
xi(m<n)

)
. (40.70)

The orthogonality condition (40.9) implies that

xi(n)∂ax
i
(0) = Fa

(
xi(m<n)

)
, (40.71)

which allows the re-expression of (40.70) as

γ(n) = −Gabxi(n)∂a∂bx
i
(0) + F

(
xi(m<n)

)
. (40.72)

We use the fact that the vector x(2) is perpendicular to the entangling surface,

and thus, the vectors
{
x(2), ∂ax(0)

}
form a base. We decompose x(n) in this base as

xi(n) = X(n)x
i
(2) +Xa

(n)∂ax
i
(0). (40.73)

Notice that actually, only the perpendicular component X(n) is a new degree of free-

dom that appears at this order. All other components are completely determined by

the solution at lower orders through the orthogonality condition (40.71). Indeed, sub-

stituting (40.73) in (40.71) yields Xa
(n)∂ax

i
(0)∂bx

i
(0) = Xa

(n)Gab = Fb
(
xi(m<n)

)
, which

directly implies that Xa
(n) = GabFb

(
xi(m<n)

)
= Fa

(
xi(m<n)

)
.

Substituting (40.73) in (40.68) and (40.70) and taking advantage of equation

(40.25) yields

γ(n) = −2 (d− 2)X(n)x
i
(2)x

i
(2) −Xc

(n)G
ab∂a∂bx

i
(0)∂cx

i
(0) + F

(
xi(m<n)

)
, (40.74)(

1

c

)
(n)

= 2nX(n)x
i
(2)x

i
(2) + F

(
xi(m<n)

)
, c(n) = −2nX(n)x

i
(2)x

i
(2) + F

(
xi(m<n)

)
.

(40.75)

We isolate the terms k = 0 and k = n of equation (40.66), which are the only ones

that contain xi(n), bearing in mind that c(0) = 1 and γ(0) = 1. Then, this equation

assumes the form

(n− d+ 1) c(n) + (d− 1)

(
1

c

)
(n)

+ nγ(n)

= − (n− d+ 1)
n−1∑
k=1

c(k)γ(n−k) − (d− 1)
n−1∑
k=1

(
1

c

)
(k)

γ(n−k) = F
(
xi(m<n)

)
. (40.76)

Finally, substituting (40.74) and (40.75) in the above equation yields

2 (d− n)X(n)x
i
(2)x

i
(2) −Xc

(n)G
ab∂a∂bx

i
(0)∂cx

i
(0) = F

(
xi(m<n)

)
. (40.77)
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This clearly implies that at order d, the flow equation does not determine the com-

ponent of xi(n) that is perpendicular to the entangling surface. This component is

determined by the Neumann boundary condition. As we already commented above,

the components of x(n) that are parallel to the entangling surface, i.e. the coefficients

Xc
(n), are completely determined by the lower order terms of the solution through the

orthogonality condition. Therefore, at n = d, the solution reduces to a constraint for

the solution at lower orders than d. We have already seen this as equation (40.60)

in the case d = 4.

An indicative example of this behaviour is the minimal surface that corresponds

to a strip region. It is well-known that this minimal surface satisfies the equation

dx (ρ)

dρ
=

ρd−1√
R2(d−1) − ρ2(d−1)

, (40.78)

where R is the maximum value of the holographic coordinate on the minimal surface,

which is related to the width of the strip region. It follows that the expansion of this

minimal surface reads

x = x1 +
ρd

dRd−1
+O

(
ρd+1

)
. (40.79)

This means that all strip minimal surfaces that share one edge of the strip region,

such as those plotted in figure 55, have an identical expansion up to order O
(
ρd−1

)
.

Of course in this special case, all these terms vanish, as a consequence of the fact

that the curvature of the entangling surface vanishes.

Figure 55: Two minimal surfaces corresponding to strip regions. The entangling

curves do not coincide but they share a common part.

The above imply that all terms of the solution of odd order smaller than d vanish.
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Actually, this holds for all odd orders, whenever d is even. We can show this itera-

tively. Assuming that n is odd and all odd orders up to n are vanishing, then, all the

functions F
(
xi(m<n)

)
that appeared in the above derivation are actually vanishing,

since they constitute of a sum of products of odd and even lower ordered terms. Since

we have already showed that the first order vanishes, all terms of odd order vanish

when d is even, whereas when d is odd, all terms of odd order smaller than d are

vanishing. Furthermore, the consistency condition that emerges at order d, where

d is odd is trivially satisfied, as both the left hand side and the right hand side are

vanishing.

Logarithmic Terms in the Expansion of the Embedding Functions

We have seen that at order d, the flow equation cannot determine the component

of xd that is perpendicular to the entangling surface, which is determined by the

Neumann boundary condition, but it rather reduces to a constraint for the terms

of the solution of order smaller than d. These terms have already been determined

by the perturbation theory at lower orders and can be expressed in terms of the

extrinsic geometry of the entangling surface. Thus, at order d the flow equation

reduces to a constraint for the geometry of the entangling surface. When d is odd,

this constraint is trivially satisfied, as a consequence of the fact that all lower order

odd terms vanish. In this case or when d is even and the entangling surface satisfies

the constraint, no consistency problem occurs in our expansion. The question that

remains to be answered is what happens when d is even and the constraint is not

satisfied. In such a case, the regular Taylor expansion of the embedding functions

that we used is incomplete and one has to include logarithmic terms at orders d and

higher.

Let us introduce a logarithmic term at order d. Then, the expansion of the

embedding functions of the minimal surface will read

xi (ρ;ua) =
d∑

m=0

xi(m) (ua) ρm + x̃i(d) (ua) ρd ln ρ+O
(
ρd+1

)
. (40.80)

The orthogonality condition (40.9) up to this order reads

d−1∑
m=0

m∑
n=0

(n+ 1)xi(n+1)∂ax
i
(m−n)ρ

m + dx̃i(d)∂ax
i
(0)ρ

d−1

+ x̃i(d)∂ax
i
(0)ρ

d−1 ln ρ+O
(
ρd
)

= 0. (40.81)

This clearly implies that

x̃i(d)∂ax
i
(0) = 0, (40.82)
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meaning that the vector x̃(d) is perpendicular to the entangling surface, i.e.

x̃i(d) = X̃(d)x
i
(2). (40.83)

Equation (40.82) implies that the second term of equation (40.81) vanishes. Thus,

the rest of the orthogonality conditions remain unaltered by the introduction of the

logarithmic term.

Using the expansion (40.80) to find the expansion of the determinant of the

induced metric yields

√
det γ =

√
detG

ρd−2

(
d∑

m=0

γ(m)ρ
m + γ̃(d)ρ

d ln ρ+O
(
ρd+1

))
, (40.84)

where

γ̃(d) = Gab∂axi(0)∂bx̃
i
(d) (40.85)

and γ(d) are given by the same expressions as in the expansion without the logarithmic

term.

Substituting the expansion (40.80) into (40.10), we find that 1/c2 has an expan-

sion of the form

1

c2
=

d∑
m=0

(
1

c2

)
(m)

ρm +

(
1

c2

)′
(d)

ρd ln ρ+O
(
ρd+1

)
, (40.86)

where(
1

c2

)
(d)

= 4xi(2)

(
dxi(d) + x̃i(d)

)
+ F

(
xi(m<d)

)
,

(
1

c2

)′
(d)

= 4dxi(2)x̃
i
(d) (40.87)

and all other coefficients
(

1
c2

)
(m)

, with m < d remain unaltered by the introduction

of the logarithmic term. Adopting a similar notation for the expansions of c and 1/c,

the above implies that(
1

c

)
(d)

= 2xi(2)

(
dxi(d) + x̃i(d)

)
+ F

(
xi(m<d)

)
,

(
1

c

)′
(d)

= 2dxi(2)x̃
i
(d), (40.88)

c(d) = −2xi(2)

(
dxi(d) + x̃i(d)

)
+ F

(
xi(m<d)

)
, c′(d) = −2dxi(2)x̃

i
(d). (40.89)

We may now substitute the expansions of the determinant of the induced metric

and c into the flow equation (39.33). All equations at orders smaller than d remain

unaltered, whereas at order d we will get two equations: one from the coefficient of

ρd and one from the coefficient of ρd ln ρ. The latter reads

γ̃(d) + c̃(d) + (d− 1)

(
γ̃(d) +

(
1

c

)′
(d)

)
= 0. (40.90)
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Using equations (40.85), (40.88) and (40.89), the above equation assumes the form

Gab∂ax
i
(0)∂bx̃

i
(d) = −2 (d− 2)xi(2)x̃

i
(d). (40.91)

This equation is always true as a result of (40.82) and (40.25).

The equation obtained from the coefficient of ρd is

c(d) + (d− 1)

(
1

c

)
(d)

+ dγ(d) = F
(
xi(m<d)

)
. (40.92)

Implementing (40.85), (40.88) and (40.89), the above equation assumes the form

2 (d− 2) X̃(d)x
i
(2)x

i
(2) = F

(
xi(m<d)

)
. (40.93)

As before introducing the logarithmic term, the component X(d) does not appear and

remains undetermined by the flow equation. This component is determined by the

Neumann boundary condition. However, this equation ceases being a constraint for

the lower order terms, but it determines the component X̃(d). For example at d = 4,

we get

X̃(4) =
K2

8
− KabK

ab

4
− 2K

4K
. (40.94)

The introduction of the logarithmic term solved the consistency problem. With-

out that term, we had one free parameter and one equation that did not contain this

free parameter and could be inconsistent. After the introduction of the logarithmic

term, we have two free parameters and two equations. One of the parameters still

does not appear in the equations, but one of the latter is always satisfied, no matter

what the value of the other parameter is.

In a straightforward manner, at orders higher than d, one has to include logarith-

mic terms. As the order increases higher powers of logarithms may be necessary. The

equations though are going to be always as many as the free parameters, allowing

the perturbative determination of the embedding functions at arbitrary order.

41 The Divergent Terms of Entanglement Entropy

in Pure AdS

When Einstein gravity is considered in the bulk, the entanglement entropy is given

by the original Ryu-Takayanagi formula, i.e.

SEE =
A

4G
, (41.1)

where A is the area of the minimal surface in the bulk, which is anchored at the

entangling surface.
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We cutoff the minimal surface at ρ = 1/Λ. Then, in the specific parametrization

(39.16) that we have used, the area of the minimal surface is given by the expression

A (Λ) =

∫ ρmax

1/Λ

dρ

∫
dd−2u

√
det Γ =

∫ ρmax

1/Λ

dρ

∫
dd−2u

√
f(ρ) det γ

c
, (41.2)

where ρmax is the maximum value of the holographic coordinate on the minimal

surface. When we consider minimal surfaces that correspond to connected entangling

surfaces, this ρmax indeed assumes a given value24, e.g. in the case of a spherical

entangling surface of radius R, ρmax = R. When we consider minimal surfaces that

correspond to non-connected entangling surfaces, the situation is more complicated,

since one has to run the flow from each disconnected part and arrange a smooth

matching of the initially disconnected parts of the minimal surface. In any case,

the details of ρmax affect only the term which is constant in the cutoff expansion.

Although this constant term is of great physical significance, here we focus on the

divergent terms. It is evident that the expansion we developed in the previous section

can be used to systematically derive these terms.

In pure AdSd+1 in Poincaré coordinates, f (ρ) = 1/ρ2, thus equation (41.2) as-

sumes the form

A (Λ) =

∫ ρmax

1/Λ

dρ

∫
dd−2u

√
det γ

ρc
. (41.3)

Using the flow equation (39.33), we obtain

A (Λ) = − 1

d− 1

[∫
dd−2u

(
c
√

det γ
)∣∣∣∣ρ=ρmax

ρ=1/Λ

−
∫ ρmax

1/Λ

dρ

∫
dd−2u

c
√

det γ

ρ

]
.

(41.4)

Finally, incorporating the expansions (40.6) and (40.7) the above equation as-

sumes the form

A (Λ) = − 1

d− 1

∞∑
n=0

[(
n∑

m=0

∫
dd−2u

√
detGc(m)γ(n−m)

)

×

(
1

ρd−n−2

∣∣∣∣ρ=ρmax

ρ=1/Λ

−
∫ ρmax

1/Λ

dρ

ρd−n−1

)]
. (41.5)

24Even for connected surfaces it is possible that more than one local maxima of the holographic

coordinate exist. In such a case, there are saddle points of the minimal surface. The topology

of the intersection of the minimal surface with the constant-r planes changes at the value of the

holographic coordinate where a saddle point appears. At the level of the flow equation (39.28), a

saddle point is a point where the function a (ρ;ua) becomes infinite and the normal vector n is not

well-defined. In such cases, the integral formula (41.2) has to be split to patches separated by the

saddle points, see also the discussion in section 39.5.
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This clarifies that the divergent terms are determined by the expansion of the minimal

surface up to order d − 2. The Neumann boundary condition, i.e. the non-local

properties of the entangling surface, affect the terms of order d and higher. It follows

that all divergent terms depend solely on the local characteristics of the entangling

surface. Furthermore, we have shown that all terms of odd order lower than d vanish.

Therefore, when d is odd,

A (Λ) =
1

d− 1

(d−3)/2∑
n=0

(d−3)/2∑
m=0

∫
dd−2u

√
detGc(2m)γ(2n−2m)

 d− 2n− 1

d− 2n− 2
Λd−2n−2


+ non-divergent terms, (41.6)

whereas, when d is even

A (Λ) =
1

d− 1

(d−4)/2∑
n=0

(d−4)/2∑
m=0

∫
dd−2u

√
detGc(2m)γ(2n−2m)

 d− 2n− 1

d− 2n− 2
Λd−2n−2


+

1

d− 1

(d−2)/2∑
m=0

∫
dd−2u

√
detGc(2m)γ(d−2m−2)

 ln Λ + non-divergent terms.

(41.7)

We adopt the notation

A (Λ) = a0 ln Λ +
d−2∑
n=1

anΛn + non-divergent terms. (41.8)

The leading divergence is the usual “area law” term. For any d ≥ 3, the relevant

coefficient is

ad−2 =
1

d− 2

∫
dd−2u

√
detG =

1

d− 2
A, (41.9)

where A is the area of the entangling surface.

For any d ≥ 4, there is at least one more divergent term. Using (40.29), we find

that the coefficient of this term equals

ad−4 =

{
− d−3

2(d−2)2(d−4)

∫
dd−2u

√
detGK2, d ≥ 4,

−1
8

∫
d2u
√

detGK2, d = 4.
(41.10)

At d = 4, this term is the universal logarithmic term. The value of its coefficient is

in agreement with [157].
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The next diverging correction to the area appears whenever d ≥ 6. Reading

equations (40.29), (40.58) and (40.59), we find

c(4) + c(2)γ(2) + γ(4) =
d− 1

4 (d− 2)2 (d− 4)

[
d2 − 5d+ 8

2 (d− 2)2 K
4 −K2KabKab −K2K

]
.

(41.11)

Therefore

ad−6 =

 d−5
4(d−2)2(d−4)(d−6)

∫
dd−2u

√
detG

[
d2−5d+8
2(d−2)2 K4 −K2KabKab −K2K

]
, d ≥ 6,

1
128

∫
d4u
√

detG
[

7
16
K4 −K2KabKab −K2K

]
, d = 6.

(41.12)

At d = 6 this is a universal logarithmic term. It is in agreement with the results

of [349], where the logarithmic term is expressed in terms of both the intrinsic and

extrinsic geometry of the entangling surface. Our result is expressed in terms of

the extrinsic geometry of the entangling surface solely and it has a quite simple

expression.

Let us verify the above in the simple case of a spherical entangling surface of

radius R. In this case K = d−2
R

, KabKab = d−2
R2 and 2K = 0. Thus,

ad−4 =

{
− (d−3)Ad−2

2(d−4)R2 , d ≥ 4,

− A2

2R2 , d = 4,
ad−6 =

{
(d−3)(d−5)Ad−2

8(d−6)R4 , d ≥ 6,
3A4

8R4 , d = 6,
(41.13)

where Ad is the area of a d-dimensional sphere of radius R. The minimal surface,

which corresponds to a spherical entangling surface, is analytically known, hence the

above coefficients can be calculated directly. This task is performed in appendix T.

The result of the direct calculation, which is provided by equations (T.17), (T.24)

and (T.25) is in perfect agreement with the perturbatively calculated coefficients

above.

42 Linearized Perturbations in AdS

In the rest of the Part we present an attempt towards the verification of the equiva-

lence of the First Law of Entanglement Thermodynamics with the linearized Einstein

equations. We are interested in holographic entanglement entropy when the bound-

ary CFT lies at the vacuum. Such states are described by pure AdSd+1 bulk geometry.

Variations of the ground state are equivalent to perturbations of the geometry, so

that it is no longer pure AdS, but it is described by the metric

ds2 =
1

z2

(
dz2 + dxµdxµ + zdHµνdx

µdxν
)
, (42.1)
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which is the usual Fefferman - Graham expansion of Asymptotically AdS manifolds

[213]. Since we are not interested in altering the assymptotic geometry, Hµν must be

regular as z → 0. This regular value is related to the holographic energy momentum

tensor as [103,111,112]

Tµν =
d

16πGN

Hµν (z = 0, x) . (42.2)

Any AdS perturbation that obeys Dirichlet boundary conditions with some fixed

metric can be written in the above form. On the contrary, AdS perturbations that

do not obey Dirichlet boundary conditions perturb the boundary metric, i.e. for

small z, Hµν ∼ z−d, so that the boundary metric is altered.

The linearized Einstein equations read

Hµ
µ = 0, ∂µH

µν = 0,
1

zd+1
∂z
(
zd+1∂zHµν

)
+ ∂2Hµν = 0. (42.3)

The last equation is equivalent to the statement that zdHµν is a solution of the

Laplace equation on the AdS. We assume that each component of Hµν is finite at

spacial infinity |~x| → ∞, as well as the far temporal future and past. On general

grounds these requirements imply that the perturbations of the metric remain within

the regime where perturbation theory makes sense. We can solve this equation via

separation of variables. Substituting

Hµν ∝ z−d/2f(z)e−ikµx
µ

, (42.4)

the last Einstein equation assumes the form,

z2∂2
zf + z∂zf −

(
kµkµz

2 − d2

4

)
f = 0. (42.5)

When kµkµ < 0 this is the Bessel equation, whereas for kµkµ > 0 this is modified

Bessel equation. Finally, when kµkµ = 0, this is an Euler equation, thus

f =


c1Jd/2

(√
−kµkµz

)
+ c2Yd/2

(√
−kµkµz

)
, kµkµ < 0,

c1z
d/2 + c2z

−d/2, kµkµ = 0,

c1Id/2
(√

kµkµz
)

+ c2Kd/2

(√
kµkµz

)
, kµkµ > 0.

(42.6)

It is well-known that the Bessel functions have a Taylor expansion around z = 0 of
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the form

Ja (x) =
1

Γ (a+ 1)

(x
2

)a
+O

(
xa+1

)
,

Ya (x) = −Γ (a)

π

(
2

x

)a
+O

(
x−a+1

)
,

Ia (x) =
1

Γ (a+ 1)

(x
2

)a
+O

(
xa+1

)
,

Ka (x) =
Γ (a)

2

(
2

x

)a
+O

(
x−a+1

)
.

It follows that solutions which obey Dirichlet boundary conditions are of the form

f (x) =


cJd/2

(√
−kµkµz

)
, kµkµ < 0,

czd/2, kµkµ = 0,

cId/2
(√

kµkµz
)
, kµkµ > 0.

(42.7)

The other solutions correspond to perturbations which obey Neumann boundary

conditions. Thus, the perturbations read

Hµν =

∫
ddkCµν (kµ) 2d/2Γ

(
d+ 2

2

)[
Jd/2(

√
−kµkµz)(√

−kµkµz
)d/2 θ (−kµkµ)

+
Id/2(

√
kµkµz)(√

kµkµz
)d/2 θ (kµkµ)

]
e−ikµx

µ

, (42.8)

where we use the following convention for the theta function

θ (x) =


0, x < 0,
1
2

x = 0

1, x > 0,

(42.9)

so that

Hµν (z = 0) =

∫
ddkCµν (kµ) e−ikµx

µ

. (42.10)

At this point, the coefficients Cµν are symmetric but otherwise general, i.e. they

contain d (d+ 1) /2 independent components. Returning to the second Einstein equa-

tion of the set (42.3). Substituting (42.8) into this equation yields

Cµν (kµ) kν = 0. (42.11)

351



This equation comprises d constraints for the coefficients Cµν . Finally, the first

Einstein equation of the set (42.3) reads

Cµ
µ (kµ) = 0. (42.12)

Defining the mode decomposition of the holographic energy momentum tensor as

Tµν(x) =

∫
ddkT̂µν(k)e−ikµx

µ

, (42.13)

equation (42.2) implies that

T̂µν(k) =
d

16πGN

Cµν(k). (42.14)

Thus, we can express the perturbations in terms of the holographic energy momentum

tensor as

Hµν =
16πGN

d

∫
ddyTµν(y)

∫
ddk

(2π)d
2d/2Γ

(
d+ 2

2

)[
Jd/2(

√
−kµkµz)(√

−kµkµz
)d/2 θ (−kµkµ)

+
Id/2(

√
kµkµz)(√

kµkµz
)d/2 θ (kµkµ)

]
e−ikµ(xµ−yµ). (42.15)

In the following we will evaluate the momentum space integral in order to obtain in

a sense the graviton bulk to boundary propagator in the Fefferman - Graham gauge.

42.1 Gravitational Perturbations in AdS3

Let us begin with the case d = 2. The metric perturbations (42.8) assume the form

Hµν =

∫
d3k 2Cµν(k

µ)

[
J1(
√
−kµkµz)(√
−kµkµz

) θ (−kµkµ) +
I1(
√
kµkµz)(√
kµkµz

) θ (kµkµ)

]
e−ikµx

µ

.

(42.16)

The coefficient Cµν(k
µ) is given by

Cµν =

(
k1 −k0

−k0 k1

)
C (kµ) δ (kµkµ) . (42.17)

The delta function implies that in this special case the metric perturbations are z

independent, i.e.

Hµν =

∫
d3k 2Cµν(k

µ)e−ikµx
µ

= 8πGNTµν , (42.18)

which is in line with the fact that gravity is topological in 3-dimensional gravity.

There are no local degrees of freedom.
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42.2 Gravitational Perturbations in AdS4

Let us go on with the case d = 3. The perturbations (42.8) assume the form

Hµν =

∫
d3k23/2Γ

(
5

2

)
Cµν(k

µ)

[
J3/2(

√
−kµkµz)(√

−kµkµz
)3/2

θ (−kµkµ)

+
I3/2(

√
kµkµz)(√

kµkµz
)3/2

θ (kµkµ)

]
e−ikµx

µ

. (42.19)

The coefficient Cµν(k
µ) is naturally a sum of 2 terms, i.e. Cµν(k

µ) = C1
µν + C2

µν ,

where

C1
µν =


2k0k1k2 −k2

(
(k0)

2
+ (k1)

2
)
−k1

(
(k0)

2 − (k1)
2
)

−k2
(

(k0)
2

+ (k1)
2
)

2k0k1k2 k0
(

(k0)
2 − (k1)

2
)

−k1
(

(k0)
2 − (k1)

2
)

k0
(

(k0)
2 − (k1)

2
)

0

C1 (kµ) .

(42.20)

C2
µν =


2k0k1k2 −k2

(
(k0)

2 − (k2)
2
)
−k1

(
(k0)

2
+ (k2)

2
)

−k2
(

(k0)
2 − (k2)

2
)

0 k0
(

(k0)
2 − (k2)

2
)

−k1
(

(k0)
2

+ (k2)
2
)

k0
(

(k0)
2 − (k2)

2
)

2k0k1k2

C2 (kµ) .

(42.21)

The constant factors in (42.19) are selected so that

Hµν (z = 0) =

∫
d3kCµν(k

µ)e−ikµx
µ

, (42.22)

which implies that the holographic energy momentum tensor is

Tµν(x) =
3

16πGN

∫
d3kCµν(k)e−ikµx

µ

. (42.23)

Defining its mode decomposition as

Tµν(x) =

∫
d3kT̂µν(k)e−ikµx

µ

, (42.24)

we obtain

T̂µν(k) =
3

16πGN

Cµν(k). (42.25)

For a circular entangling surface the variation of the entanglement entropy is

δS =
R

8GN

∫
rdrdφ

[
H11 +H22 −

r2 cos2 φ

R2
H11 −

r2 sin2 φ

R2
H22 −

2r2 sinφ cosφ

R2
H12

]
.

(42.26)

353



substituting (42.19) we obtain

δS =
R

8GN

∫
d3k

∫
rdrdφ

{
− r2 cos2 φ

R2

(
2k0k1k2C1

)
− r2 sin2 φ

R2

(
2k0k1k2C2

)
− 2r2 sinφ cosφ

R2
k0
[((

k0
)2 −

(
k1
)2
)
C1 +

((
k0
)2 −

(
k2
)2
)
C2
]

+
(
2k0k1k2C1

)
+
(
2k0k1k2C2

)}
23/2Γ

(
5

2

)
[
J3/2(

√
−kµkµz)(√

−kµkµz
)3/2

θ (−kµkµ) +
I3/2(

√
kµkµz)(√

kµkµz
)3/2

θ (kµkµ)

]
eik

0te−ir(k
1 cosφ+k2 sinφ).

(42.27)

Using the following integrals∫ 2π

0

dφei(a cosφ+b sinφ) = 2πJ0

(√
a2 + b2

)
(42.28)∫ 2π

0

dφei(a cosφ+b sinφ) cos 2φ = 2π
a2 − b2

a2 + b2

[
J0

(√
a2 + b2

)
− 2

J1

(√
a2 + b2

)
√
a2 + b2

]
(42.29)∫ 2π

0

dφei(a cosφ+b sinφ) sin 2φ = 2π
2ab

a2 + b2

[
J0

(√
a2 + b2

)
− 2

J1

(√
a2 + b2

)
√
a2 + b2

]
(42.30)

we obtain

δS =
πR

2GN

∫
d3k

∫ R

0

rdrk0k1k2
(
C1 + C2

)
J0

(
r|~k|
)(

1− r2

R2

(k0)
2

|~k|2

)
+
J1

(
r|~k|
)

r|~k|
r2

R2

(
2

(k0)
2

|~k|2
− 1

)
23/2Γ

(
5

2

)[
J3/2(

√
−kµkµz)(√

−kµkµz
)3/2

θ (−kµkµ) +
I3/2(

√
kµkµz)(√

kµkµz
)3/2

θ (kµkµ)

]
eik

0t. (42.31)

The variation of the expectation value of modular Hamiltonian is

δE =
3

16GNR

∫
rdrdφ

(
R2 − r2

)
H00 (z = 0) , (42.32)

thus

δE =
3

8GNR

∫
d3k

∫
rdrdφ

(
R2 − r2

)
k0k1k2

(
C1 + C2

)
eik

0te−ir(k
1 cosφ+k2 sinφ).

(42.33)
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Using the integral (42.28) we obtain

δE =
3πR

4GN

∫
d3kk0k1k2

(
C1 + C2

)
eik

0t

∫ R

0

rdr

(
1− r2

R2

)
J0

(
r|~k|
)

=
3πR

2GN

∫
d3k

k0k1k2

|~k|2
(
C1 + C2

)
eik

0tJ2

(
R|~k|

)

= 4π2R3

∫
d3kT̂00(k)

J2

(
R|~k|

)
(
R|~k|

)2 eik
0t,

(42.34)

where we used the integral∫ R

0

rdr

(
1− r2

R2

)
J0 (cr) =

2

c2
J2 (cR) . (42.35)

Returning to the calculation of δS we observe that if kµkµ = 0 then

δS =
4π2R

3

∫
d3k

∫ R

0

rdrT̂00(k)

J0

(
r|~k|
)(

1− r2

R2

)
+
J1

(
r|~k|
)

r|~k|
r2

R2

 eik
0t.

(42.36)

Using the integral (42.35) and∫ R

0

r2drJ1 (cr) =
R2

c2
J2 (cR) (42.37)

we conclude that

δS = 4π2R3

∫
d3kT̂00(k)

J2

(
R|~k|

)
(
R|~k|

)2 eik
0t = δE, (42.38)

which is the first law of entanglement thermodynamics.

42.2.1 Series Calculation

In order to prove that the relation δS = δE is exact, we have to show that the

neglected terms, i.e. the ones containing kµkµ do not contribute to δS. For this

purpose we will use the series representation of the J and I Bessel functions

Jν(z) =
∞∑
k=0

(−1)k

Γ (k + ν + 1) k!

(z
2

)2k+ν

, (42.39)

Iν(z) =
∞∑
k=0

1

Γ (k + ν + 1) k!

(z
2

)2k+ν

. (42.40)
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These series imply that (42.31) assumes the form

δS =
πR

2GN

∫
d3k

∫ R

0

rdrk0k1k2
(
C1 + C2

)
Γ

(
5

2

)[ ∞∑
n=0

1

Γ
(
n+ 5

2

)
n!

(
kµkµz

2

4

)n]
J0

(
r|~k|
)(

1− r2

R2

)
+
J1

(
r|~k|
)

r|~k|
r2

R2
+
r2

R2

kµkµ

|~k|2

J0

(
r|~k|
)
− 2

J1

(
r|~k|
)

r|~k|

 eik
0t.

(42.41)

We will calculate the above integral as a series in kµkµ. There is a single term that

contains no powers of kµkµ. This term corresponds to (42.36). The contribution of

all other terms is proportional to the integral

I =

∫ R

0

rdr
∞∑
n=0

(kµkµ)n+1

Γ
(
n+ 7

2

)
(n+ 1)!

(
z2n

4n

)J0

(
r|~k|
) z4

4R2
+
J1

(
r|~k|
)

r|~k|
z2

4

(
1− z2

R2

)

+

(
n+

5

2

)
(n+ 1)

(
1− z2

R2

)
1

|~k|2

J0

(
r|~k|
)
− 2

J1

(
r|~k|
)

r|~k|

 . (42.42)

Using the integrals

∫ R

0

rdr
(
R2 − r2

)n
J0 (cr) =

(
2R

c

)n
R

c
Jn+1 (cR) Γ(n+ 1), (42.43)∫ R

0

rdr
(
R2 − r2

)n J1 (cr)

cr
=

1

c2

[
R2n −

(
2R

c

)n
Jn (cR)

]
Γ(n+ 1), (42.44)

we obtain

I =
∞∑
n=0

(kµkµ)n+1

Γ
(
n+ 7

2

) Rn

2n|~k|n
1

|~k|4

×

{
|~k|R (n+ 2)

[
Jn+3

(
|~k|R

)
− 2 (n+ 2)

|~k|R
Jn+2

(
|~k|R

)
+ Jn+1

(
|~k|R

)]

+ (2n+ 5)

[
Jn+2

(
|~k|R

)
− 2 (n+ 1)

|~k|R
Jn+1

(
|~k|R

)
+ Jn

(
|~k|R

)]}
= 0, (42.45)

which vanishes in view of the recursion relation obeyed by the Bessel functions.
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43 Graviton Bulk to Boundary Propagator in AdSd+1

in Fefferman - Graham Gauge

In the case of AdSd+1 the perturbations Hµν are given by (42.15) or equivalently by

Hµν =
16πGN

d

∫
ddyTµν(y)

∫
dd−1~k

(2π)d−1
2d/2Γ

(
d+ 2

2

)
e−i

~k·(~x−~y)

∫ ∞
0

dk0

π
cos
(
k0|x0 − y0|

) Jd/2
(
z

√
(k0)2 − |~k|2

)
(
z

√
(k0)2 − |~k|2

)d/2 (43.1)

Using equation (U.6) we obtain

Hµν =
16πGN

d

Γ
(
d+2

2

)
Γ
(
d+1

2

)
Γ
(

1
2

) 1

z

∫
ddyTµν(y)

(
1− |x

0 − y0|2

z2

) d−1
2

θ
(
z − |x0 − y0|

)
∫

dd−1~k

(2π)d−1
2
d−1

2 Γ

(
d+ 1

2

)
e−i

~k·(~x−~y)

I d−1
2

(
z|~k|

√
1− |x0−y0|2

z2

)
(
z|~k|

√
1− |x0−y0|2

z2

) d−1
2

. (43.2)

We let y0 = x0 + zw0 to yield

Hµν =
16πGN

d

Γ
(
d+2

2

)
Γ
(
d+1

2

)
Γ
(

1
2

) ∫ 1

−1

dw0

∫
dd−1~y Tµν(x

0 + zw0, ~y)
(
1− w2

0

) d−1
2

∫
dd−1~k

(2π)d−1
2
d−1

2 Γ

(
d+ 1

2

)
e−i

~k·(~x−~y)
I d−1

2

(
z|~k|

√
1− w2

0

)
(
z|~k|

√
1− w2

0

) d−1
2

(43.3)

We may implement (U.2) in order to perform d−2 integrations and (U.8) to perform

the last one. In order to proceed we re-express (43.3) as

Hµν =
16πGN

d

Γ
(
d+2

2

)
Γ
(

1
2

) ∫ 1

−1

dw0

∫ ∞
−∞

dy1

∫
dd−2~y Tµν(x

0 + zw0, y1, ~y)
(
1− w2

0

) d−1
2

∫
dd−2~k

(2π)d−2
e−i

~k·(~x−~y)2
d−1

2

∫ ∞
0

dk1

π
cos
(
k1|x1 − y1|

) J d−1
2

(
z1

√
(k1)2 + |~k|2

)
(
z1

√
(k1)2 + |~k|2

) d−1
2

, (43.4)
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where z1 = iz
√

1− w2
0 and ~k denotes the d − 2 remaining coordinates. Equation

(U.2) implies

2
d−1

2

∫ ∞
0

dk1

π
cos
(
k1|x1 − y1|

) J d−1
2

(
z1

√
(k1)2 + |~k|2

)
(
z1

√
(k1)2 + |~k|2

) d−1
2

=
2
d−2

2

√
π

1

z1

(
1− (x1 − y1)

2

z2
1

) d−2
2 J d−2

2

(
z1|~k|

√
1− (x1−y1)2

z2
1

)
(
z1|~k|

√
1− |x1−y1|2

z2
1

) d−2
2

θ
(
z1 − |x1 − y1|

)
,

(43.5)

thus, letting y1 = x1 + z1w1 we obtain

Hµν =
16πGN

d

Γ
(
d+2

2

)
π

∫ 1

−1

dw0

∫ 1

−1

dw1

∫
dd−2~y Tµν

(
x0 + zw0, x

1 + izw1

√
1− w2

0, ~y

)
(
1− w2

0

) d−1
2
(
1− w2

1

) d−2
2

∫
dd−2~k

(2π)d−2
e−i

~k·(~x−~y)2
d−2

2

J d−2
2

(
z1|~k|

√
1− w2

1

)
(
z1|~k|

√
1− w2

1

) d−2
2

. (43.6)

Clearly, repeating the same procedure we can perform all but one integrations. As-

suming d = 3 we obtain

H(3)
µν =

16πGN

3

Γ
(

5
2

)
π

∫ 1

−1

dw0

∫ 1

−1

dw1

∫ ∞
−∞

dy2 Tµν

(
x0 + zw0, x

1 + izw1

√
1− w2

0, y
2

)
(
1− w2

0

) (
1− w2

1

) 1
2

∫ ∞
0

dk2

π
cos
(
k2|x2 − y2|

)
2

1
2

J 1
2

(
z1k

2
√

1− w2
1

)
(
z1k2

√
1− w2

1

) 1
2

. (43.7)

Equation (U.8) implies that

H(3)
µν =

16πGN

3

Γ
(

5
2

)
π

3
2

∫ 1

−1

dw0

∫ 1

−1

dw1

∫ ∞
−∞

dy2 Tµν

(
x0 + zw0, x

1 + izw1

√
1− w2

0, y
2

)
(
1− w2

0

) (
1− w2

1

) 1
2

1

z2

θ
(
z2 − |x2 − y2|

)
, (43.8)

where z2 = z1

√
1− w2

1. Letting y2 = x2 + z2w2 we obtain

H(3)
µν =

16πGN

3

3

4π

∫ 1

−1

dw0

∫ 1

−1

dw1

∫ 1

−1

dw2

Tµν

(
x0 + zw0, x

1 + izw1

√
1− w2

0, x
2 + izw2

√
1− w2

0

√
1− w2

1

)(
1− w2

0

) (
1− w2

1

) 1
2 .

(43.9)
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as we will show briefly, the fact that the prefactor 3
4π

is the inverse of the volume of

a unit ball in 3 dimensions is not accidental.

Let us define new coordinates through

u0 = w0, u1 = w1

√
1− w2

0, u2 = w2

√
1− w2

1

√
1− w2

0. (43.10)

The inverse transformation is

w0 = u0, w1 =
u1√

1− u2
0

, w2 =
u2√

1− u2
0 − u2

1

. (43.11)

Notice that

|~u|2 = 1−
(
1− w2

0

) (
1− w2

1

) (
1− w2

2

)
, (43.12)

thus the coordinates u span the interior of a unit ball in 3 dimensions. Trivially, the

Jacobian of the transformation is

J =
1√

1− u2
0

1√
1− u2

0 − u2
1

, (43.13)

therefore the perturbation assumes the form

H(3)
µν (xµ; z) =

16πGN

3

3

4π

∫
B3

d3~u Tµν
(
x0 + zu0, x

1 + izu1, x
2 + izu2

)
. (43.14)

The value of the perturbation at the space-time point (xµ, z) is the average value of

the energy momentum tensor within a ball of radius z. In particular denoting yµ the

space-time point of the source we obtain |xµ − yµ|2 = −z2|~u|2, which implies that

0 ≥ |xµ − yµ|2 ≥ −z2. As expected the points xµ and yµ are causally connected.

The generalization of the result for higher dimensional cases is obvious. Involutions

of the form of (43.14) are known to appear in precursors [344,345].

Let us verify that the equation of motion are satisfied. Returning to (43.9) we

define

G = Tµν

(
x0 + zw0, x

1 + izw1

√
1− w2

0, x
2 + izw2

√
1− w2

0

√
1− w2

1

)(
1− w2

0

)
(
1− w2

1

) 1
2 (43.15)

Then after some algebra one can show that the equations of motion can be expressed
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as total derivatives with respect to wi as follows

1

z4
∂z
(
z4∂zG

)
− ∂2

x0G+∇2G = − d

dw0

[
(1− w2

0)
2
√

1− w2
1

z
T (1,0,0)
µν

]

+i
d

dw0

[
w0w1 (1− w2

0)
3/2
√

1− w2
1

z
T (0,1,0)
µν

]
+i

d

dw0

[
w0w2 (1− w2

0)
3/2

(1− w2
1)

z
T (0,0,1)
µν

]

− i d

dw1

[√
1− w2

0 (1− w2
1)

3/2

z
T (0,1,0)
µν

]
+ i

d

dw1

[
w1w2

√
1− w2

0 (1− w2
1)

z
T (0,0,1)
µν

]

− i d

dw2

[√
1− w2

0 (1− w2
2)

z
T (0,0,1)
µν

]
. (43.16)

Since all quantities in the square brackets vanish when evaluated at the limits of

integration, the equations of motion are automatically satisfied.

Finally, let us show that the formula (43.14) matches the solution

Hµν =
16πGN

d

∞∑
n=0

(−1)n
z2n

22n

Γ
(
d
2

+ 1
)

n!Γ
(
d
2

+ n+ 1
)2nTµν , (43.17)

which is obtained in [212]. Substituting the following Taylor series

F
(
x0 + εy0, x

1 + εy1, x
2 + εy2

)
=

∞∑
n=0

n∑
k=0

k∑
m=0

εn

n!

n!

(n− k)!k!

k!

(k −m)!m!
yk−m0 yn−k1 ym2 F

(k−m,n−k,m)(x0, x1, x2), (43.18)

equation (43.9) assumes the form

H(3)
µν =

16πGN

3

3

4π

∞∑
n=0

n∑
k=0

k∑
m=0

∫ 1

−1

dw0

∫ 1

−1

dw1

∫ 1

−1

dw2i
n−k+m z

n

n!

n!

(n− k)!k!

k!

(k −m)!m!
wk−m0

(
1− w2

0

)n−k+m+2
2 wn−k1

(
1− w2

1

)m+1
2 wm2 T

(k−m,n−k,m)
µν

(
x0, x1, x2

)
.

(43.19)

Clearly the integral vanishes unless all k, n and m are even. It is straightforward to

perform the integrations to obtain

H(3)
µν =

16πGN

3

3

4π

∞∑
n=0

n∑
k=0

k∑
m=0

(−1)n−k+m z2n

Γ
(
n+ 5

2

)
Γ
(
n+ k − 1

2

)
Γ
(
k −m+ 1

2

)
Γ
(
m+ 1

2

)
(2(n− k))!(2(k −m))!(2m)!

T (2(k−m),2(n−k),2m)
µν

(
x0, x1, x2

)
. (43.20)
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Legendre’s duplication formula implies that

Γ
(
m+ 1

2

)
(2m)!

=

√
π

22mm!
, (43.21)

thus

H(3)
µν =

16πGN

3

∞∑
n=0

(−1)n
Γ
(

5
2

)
n!Γ

(
n+ 5

2

) z2n

22n

n∑
k=0

k∑
m=0

(−1)k−m
n!

(n− k)!k!

k!

(k −m)!m!

∂
2(k−m)
0 ∂

2(n−k)
1 ∂2m

2 Tµν
(
x0, x1, x2

)
, (43.22)

or

H(3)
µν =

16πGN

3

∞∑
n=0

(−1)n
Γ
(

5
2

)
n!Γ

(
n+ 5

2

) z2n

22n
2nTµν

(
x0, x1, x2

)
(43.23)

44 Manifest Conserved Symmetric Tensor

In order to construct a representation of a manifestly conserved holographic stress

tensor we implement (42.20) and (42.21). The stress tensor splits into a sum of 2

terms, i.e. Tµν = T 1
µν + T 2

µν , where

T µν1 =

 2∂0∂1∂2 −∂2

(
(∂0)2 + (∂1)2) −∂1

(
(∂0)2 − (∂1)2)

−∂2

(
(∂0)2 + (∂1)2) 2∂0∂1∂2 ∂0

(
(∂0)2 − (∂1)2)

−∂1

(
(∂0)2 − (∂1)2) ∂0

(
(∂0)2 − (∂1)2) 0

T1 (xµ) .

(44.1)

T µν2 =

 2∂0∂1∂2 −∂2

(
(∂0)2 − (∂2)2) −∂1

(
(∂0)2 + (∂2)2)

−∂2

(
(∂0)2 − (∂2)2) 0 ∂0

(
(∂0)2 − (∂2)2)

−∂1

(
(∂0)2 + (∂2)2) ∂0

(
(∂0)2 − (∂2)2) 2∂0∂1∂2

T2 (xµ) .

(44.2)

44.1 Residual Freedom

Having fixed the elements of the diagonal does not uniquely determine the off diag-

onal elements. In particular, one can always add the following stress tensor, which

is conserved on its own

δT µν =

 0 ∂2 (h1 − h0) ∂1 (h0 − h2)

∂2 (h1 − h0) 0 ∂0 (h2 − h1)

∂1 (h0 − h2) ∂0 (h2 − h1) 0

 , (44.3)

where h0 = h0 (x1, x2) , h1 = h1 (x0, x2) and h2 = h2 (x0, x1).
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In momentum space the corresponding stress tensor reads

δTµν =

 0 k2 (c1 − c0) k1 (c0 − c2)

k2 (c1 − c0) 0 k0 (c2 − c1)

k1 (c0 − c2) k0 (c2 − c1) 0

 , (44.4)

where c0 = c0 (k1, k2) δ (k0) , c1 = c1 (k0, k2) δ (k1) and c2 = c2 (k0, k1) δ (k2). This

tranformation corresponds to the substitution

C1 → C1 +
c0 (k1, k2)

(k1)2 δ
(
k0
)
− c1 (k0, k2)

(k0)2 δ
(
k1
)

+
c2 (k0, k1)

(k0)2 − (k1)2 δ
(
k2
)

(44.5)

C2 → C2 −
c0 (k1, k2)

(k2)2 δ
(
k0
)
− c1 (k0, k2)

(k0)2 − (k2)2 δ
(
k1
)

+
c2 (k0, k1)

(k0)2 δ
(
k2
)

(44.6)

in (42.20) and (42.21) respectively.

45 The First Law of Entanglement Thermodynam-

ics

The variation of the entanglement entropy is

δS =
R

8GN

∫
d2x

[(
1− (x1)

2

R2

)
H11 +

(
1− (x2)

2

R2

)
H22 −

2x1x2

R2
H12

]
, (45.1)

where the domain of integration is (x1)
2

+ (x2)
2 ≤ R2. Let us work out the case

T22 = 0. Using the series (43.17) for the perturbation we obtain

δS =
2πR

3

∞∑
n=0

∫
d2x(−1)n

z2n

22n

Γ
(

5
2

)
n!Γ

(
n+ 5

2

) [(1− (x1)
2

R2

)
2nT11 −

2x1x2

R2
2nT12

]
.

(45.2)

According to (44.1) and (44.3), the needed components of the holographic energy

momentum tensor are

T11 = 2∂0∂1∂2T1 (45.3)

T12 = ∂0

(
(∂0)2 − (∂1)2)T1 + ∂0 (h2 − h1) , (45.4)

where T1 = T1(x0, x1, x2) is an arbitrary function, while h1 = h1 (x0, x2) and h2 =

h2 (x0, x1). Since z2 = R2 − (x1)
2 − (x2)

2
, which is even function of x1 and x2, the

terms containing h1 and h2 do not contribute to δS. For future convenience we

substitute T12 as

T12 = −∂02T1 + ∂0∂
2
2T1. (45.5)
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The variation of the entanglement entropy assumes the form

δS =
4πR

3

∞∑
n=0

∫
d2x(−1)n

z2n

22n

Γ
(

5
2

)
n!Γ

(
n+ 5

2

) [R2 − (x1)
2

R2
2n∂0∂1∂2T1

+
x1x2

R2
2n
(
∂02T1 − ∂0∂

2
2T1

)]
.

(45.6)

Let us work out the last two terms of the sum inside the square brackets. We define

δSn1 = x1x2z2n2n+1∂0T1, (45.7)

δSn2 = −x1x2z2n2n∂0∂
2
2T1. (45.8)

It is straightforward to show that

δSn1 = −
∂1

(
x2z2(n+1)2n+1∂0T1

)
2 (n+ 1)

−
∂2

(
z2(n+2)2n+1∂0∂1T1

)
4(n+ 1)(n+ 2)

+
z2(n+2)2n+1∂0∂1∂2T1

4(n+ 1)(n+ 2)
(45.9)

and

δSn2 =
∂1

(
x2z2(n+1)2n∂0∂

2
2T1

)
2(n+ 1)

−
∂2

(
x2z2(n+1)2n∂0∂1∂2T1

)
2(n+ 1)

−
((
x2
)2 − z2

2(n+ 1)

)
z2n2n∂0∂1∂2T1. (45.10)

Trivially all total derivatives do not contribute to δS, as z vanishes at the entangling

surface, which defines the domain of the integration. Collecting the rest of the terms,

we obtain

δS =
4π

3R

∞∑
n=0

(−1)n

22n

Γ
(

5
2

)
(n+ 1)!Γ

(
n+ 3

2

) ∫ d2xz2(n+1)2n∂0∂1∂2T1

− 4π

3R

∞∑
n=0

(−1)n+1

22(n+1)

Γ
(

5
2

)
(n+ 2)!Γ

(
n+ 5

2

) ∫ d2xz2(n+2)2n+1∂0∂1∂2T1, (45.11)

thus, only the n = 0 term survives, i.e.

δS =
2π

R

∫
d2xz2∂0∂1∂2T1 =

π

R

∫
d2x

(
R2 − r2

)
T11. (45.12)

Obviously one obtains the same result in the case T11 = 0. Even though this

result is not new, it is interesting that the equality of the variation of entanglement

entropy and the expectation value of the modular Hamiltonian is at the level of

integrands. This is yet another manifestation of the locality of the geometric flow.
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46 Conclusion

Since the initial formulation of the Ryu-Takayanagi conjecture [37, 38], which con-

nects the entanglement entropy in the boundary theory to the area of minimal sur-

faces in the bulk, the study of minimal surfaces in asymptotically AdS spaces has

received a great interest. The problem of the specification of a minimal surface in

AdS for given boundary data presents great difficulty due to the non-linearity of the

equations which are obeyed by the minimal surfaces. Actually, very few minimal

surfaces are explicitly known; most of the related literature focuses on those that

correspond to spherical entangling surfaces or strip regions on the boundary. An

example of non-trivial minimal surfaces with explicit expressions is the family of the

elliptic minimal surfaces in AdS4 [190], which includes the helicoids, the catenoids

and the cusps. More general minimal surfaces are known in a more abstract, less

handy form in terms of hyperelliptic functions [188,189].

Instead of relying on exact minimal surfaces, which necessarily correspond to

specific entangling surfaces, we follow a different approach. First, we describe the

minimal surface as a geometric flow of the entangling surface towards the interior

of the bulk. In this language, the evolving entangling surface traces the minimal

surface, in the same sense that a string traces its world-sheet. Then, we solve this

flow equation perturbatively around the boundary, obtaining an expression for the

minimal surface that corresponds to any smooth entangling surface.

The solution to the flow equation presents a specific dependence on the boundary

conditions. Since it is a second order equation with respect to the holographic coor-

dinate, two boundary conditions are required in order to uniquely specify a solution.

The Dirichlet boundary condition is obviously the form of the entangling surface at

the boundary. The second one is a Neumann-type boundary condition. Similarly to

all second order differential equations, the Neumann boundary condition can also be

expressed as a second Dirichlet boundary condition; it depends on the existence of

other disconnected parts of the entangling surface, i.e. on non-local characteristics

of the latter. Assuming that the bulk is AdSd+1, the solution does not depend on

the Neumann boundary condition at any order smaller than d. All smaller orders

are completely determined by the Dirichlet condition, i.e. the local characteristics of

the entangling surface.

It turns out that the terms of order lower than d in this perturbative solution of

the flow equation are those which determine all the divergent terms of the holographic

entanglement entropy, including the universal logarithmic term in odd bulk spacetime

dimensions. Thus, all the divergent terms depend only on the local characteristics of

the entangling surface, such as its curvature. The perturbative solution to the flow

equation constitutes a systematic method for the determination of these terms.
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We found the three most divergent terms in pure AdSd+1 spaces, solely in terms

of the extrinsic geometry of the entangling surface. These include simple expressions

for the universal logarithmic terms both in AdS5 and AdS7, which are in agreement

with the literature [157,349]. Therein, these terms are calculated through the use of

an ansatz dictated by the conformal symmetry. The purely geometric method, which

we have applied here, verifies these results, without any assumptions. Moreover, it

simplifies the obtained expressions and extends them to the polynomially divergent

terms.

Our method has a number of obvious direct uses and generalizations. It is

well known that minimal surfaces, which correspond to entangling curves with non-

smooth points, such as conical or wedge singularities [350,351] or more complicated

logarithmic spiral ones [352], generate new terms in the expansion of the holographic

entanglement entropy that do not emerge for smooth entangling surfaces. These new

terms include universal terms, which are proportional to the logarithm of the UV cut-

off in even bulk dimensions and to its square in odd bulk dimensions. The coefficients

of these terms can be related to the central charges of the dual CFT [351, 353, 354].

The machinery of the geometric flow which describes the minimal surface can be

directly applied to the case of singular entangling surfaces in order to provide simple

analytic expressions for all these terms in an arbitrary number of dimensions. In this

language, the singular points are simply singularities in the Dirichlet boundary data

(e.g. conical and wedge singularities are delta function singularities of the extrinsic

curvature of the entangling surface) and therefore such terms can be studied in a

unified fashion with the terms that emerge in the case of smooth entangling surfaces.

Whenever the CFT has an Einstein gravity holographic dual, the central charges

are proportional to each other at leading order in the rank of the gauge group of

the boundary theory. In effect, their contributions to the universal term are not

discernible. For general higher derivative gravitational duals, the central charges

cease being proportional to each other. These setups are very interesting, since they

allow the study of a broader class of CFTs with unequal central charges. Since the

central charges can be distinguished, one can in principle obtain a formula for the

coefficient of the universal logarithmic term that is valid for arbitrary values of the

central charges, independently of the specific gravitational dual.

In view of this, the generalization of the Ryu–Takayanagi prescription for the

calculation of the holographic entanglement entropy for more general gravitational

theories is required. The correspondence between the entanglement entropy and

the entropy of topological black holes [173], motivates the use of Wald’s functional

instead of the area, for this purpose. Yet, this naive guess does not give the right

answer [198]. There are plenty of works in the literature that discuss the functional

that should be minimized. This discussion was initiated in the context of Lovelock
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gravity in [198] and [199]. The simplest case of Lovelock gravity, namely Gauss-

Bonnet gravity, is discussed extensively in [355], whereas general curvature square

theories are studied in [201]. Even more general theories whose Lagrangians depend

on contractions of the Riemann tensor were treated in [202]. Yet, the picture is far

from clear since these results were debated [356], while various subtleties are not well

understood [357–360].

We have worked out a purely geometric approach to this problem, which is gen-

eralizable for any functional, via the appropriate modification of equation (39.27).

In effect, our approach enables a purely holographic calculation, which does not rely

on any ansatz for the expected result.

Our geometric flow method can also be easily adapted to the study other bulk

geometries, which have very interesting applications, via the appropriate adaptation

of equations (39.28) or (39.33). A first trivial example would be the study of the

AdS black hole geometry, which would allow the specification of thermal corrections

to the holographic entanglement entropy. However, the form of the AdS Black hole

metric

ds2 = −
(
k2r2 + 1− C

rd−2

)
dt2 +

(
k2r2 + 1− C

rd−2

)−1

dr2 + r2dΩ2 (46.1)

implies that deviations from the pure AdS case appear at order d in the perturbation

theory, hence they do not affect the divergent terms of the holographic entanglement

entropy. This is not surprising since the thermal contributions are not expected to

be relevant in the UV of the theory. The same holds for any perturbation of the pure

AdS geometry, which obeys Dirichlet boundary conditions. This becomes obvious via

the Fefferman-Graham expansion of such geometries. Among these geometries, one

of particular interest is the AdS soliton background, which is related to confinement-

deconfinement phase transitions in the boundary. Indeed, it is known that it is

the constant non-divergent term of entanglement entropy that plays the role of a

quantum order parameter [68, 361].

On the other hand, one may study the geometry generated by probe branes,

which corresponds to massive deformations of the boundary field theory. These

geometries do not possess AdS asymptotics and are known to generate new universal

logarithmic terms, associated with the mass scale introduced in the boundary theory

[184,248–251].

Furthermore, it would be particularly interesting to study systems with Fermi

surfaces, as in such systems, the leading divergence of the entanglement entropy is not

the usual “area law” term, but it is enhanced from Λd−2 to Λd−2 ln Λ [362,363]. Our

method is appropriate for the specification of all divergent terms and additionally,

it has the advantage that since it is a perturbative method, it does not require the
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full explicit solution of the background geometry, but only its expansion around the

boundary.

Finally, the investigation of the thermalization process in the boundary CFT,

requires the study of black hole formation in the bulk [364], and, thus, the study of

not static geometries. In such cases, the problem cannot be reduced to the problem

of a co-dimension one minimal surface in a Riemannian manifold. Therefore, the

geometric flow method that we presented has to be reformulated for co-dimension

two minimal surfaces.

Regarding the equivalence between the First Law of Entanglement Thermody-

namics and the linearized Einstein equations, our study gives another perspective into

the results of [66, 67], which are limited to spherical entangling surfaces. As already

discussed, spherical entangling surfaces, are Killing horizons and all their extrinsic

curvatures vanish. Taking into account the discrepancy between the functionals of

Wald [197] and of Jacobson and Myers [200] in the calculation of holographic en-

tanglement entropy for Lovelock gravity and the fact that these functionals differ

at extrinsic curvature terms, one should be very cautious with this kind of terms.

Unfortunately we are not able to bypass the main obstacle, which is the calcula-

tion of the modular Hamiltonian for an arbitrary entangling surface. Nevertheless,

we provide the computational tools necessary for the calculation once the modular

Hamiltonian is provided.

Interestingly the variation of the entanglement entropy and the variation of the

expectation value of the modular Hamiltonian are equal at the level of integrands up

to terms that integrate to zero. This is a manifestation of the locality of the modular

flow.
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Appendix





A Discretization of the Scalar Field Theory

3 + 1 Dimensions

We consider a free real scalar field theory in 3 + 1 dimensions. The Hamiltonian

reads

H =
1

2

∫
d3x

[
π2 (~x) +

∣∣∣~∇ϕ (~x)
∣∣∣2 + µ2ϕ2(~x)

]
. (A.1)

We define,

ϕ`m (r) = r

∫
dΩY`m (θ, ϕ)ϕ (~x), (A.2)

π`m (r) = r

∫
dΩY`m (θ, ϕ) π (~x), (A.3)

where r = |~x| is the radial coordinate and Y`m are the real spherical harmonics,

defined as,

Y`m =


√

2(−1)mIm
[
Y −m`

]
, m < 0,

Y 0
l , m = 0,
√

2(−1)mRe [Y m
` ] , m > 0.

(A.4)

The real spherical harmonics form an orthonormal basis of harmonic functions on

the sphere S2. It is easy to show that quantities ϕ`m (r) and π`m (r) obey canonical

commutation relations,

[ϕ`m (r) , π`′m′ (r
′)] = iδ (r − r′) δ``′δmm′ . (A.5)

Expanding the field in real spherical harmonics and substituting in (A.1), we

acquire an expression of the Hamiltonian in terms of ϕ`m (r) and π`m (r),

H =
1

2

∑
`,m

∫ ∞
0

dr

{
π2
`m (r) + r2

[
∂

∂r

(
ϕ`m (r)

r

)]2

+

(
` (`+ 1)

r2
+ µ2

)
ϕ2
`m (r)

}
.

(A.6)

The only continuous variable left is the radial coordinate r. We regularize the

theory introducing a lattice of N spherical shells with radii ri = ia with i ∈ N
and 1 ≤ i ≤ N . The Hamiltonian of the discretized system can be found via the

application of the following rules on equation (A.6):

r → ja, ϕlm (ja)→ ϕlm,j, πlm (ja)→ πlm,j
a

,

∂ϕlm (r)

∂r

∣∣∣∣
r=ja

→ ϕlm,j+1 − ϕlm,j
a

,

∫ (N+1)a

0

dr → a
N∑
j=1

,
(A.7)
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The discretized Hamiltonian reads

H =
1

2a

∑
`,m

N∑
j=1

[
π2
`m,j +

(
j +

1

2

)2(
ϕ`m,j+1

j + 1
− ϕ`m,j

j

)2

+

(
` (`+ 1)

j2
+ µ2a2

)
ϕ2
`m,j

]
.

(A.8)

2 + 1 Dimensions

We may study free scalar field theory in 2 + 1 dimensions in a similar manner. The

Hamiltonian reads

H =
1

2

∫
d2x

[
π2 (~x) +

∣∣∣~∇ϕ (~x)
∣∣∣2 + µ2ϕ2(~x)

]
. (A.9)

We define,

ϕ` (r) =
√
r

∫
dθY` (θ)ϕ (~x), (A.10)

π` (r) =
√
r

∫
dθY` (θ) π (~x), (A.11)

where r is the radial coordinate and Y` are the real circular harmonics,

Y` =


sin (`θ)/

√
π, ` < 0,

1/
√

2π ` = 0,

cos (`θ)/
√
π, ` > 0.

(A.12)

The functions Y` form an orthonormal basis of harmonic functions on the circle S1.

The quantities ϕ` (r) and π` (r) obey canonical commutation relations,

[ϕ` (r) , π`′ (r
′)] = iδ (r − r′) δ``′ . (A.13)

We expand the field in real circular harmonics and substitute in (A.9) to find

H =
1

2

∑
`

∫ ∞
0

dr

{
π2
` (r) + r

[
∂

∂r

(
ϕ` (r)√

r

)]2

+

(
`2

r2
+ µ2

)
ϕ2
` (r)

}
. (A.14)

Using the discretization scheme (A.7), we obtain the discretized Hamiltonian

H =
1

2a

∑
`

N∑
j=1

[
π2
`,j +

(
j +

1

2

)(
ϕ`,j+1√
j + 1

− ϕ`,j√
j

)2

+

(
`2

j2
+ µ2a2

)
ϕ2
`,j

]
. (A.15)
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B The Inverse Mass Expansion at Second and Third

Order

It is not difficult to show that there are no corrections to the entanglement entropy

at the next to leading order in ε. Therefore, the first corrections appear at third

order in the inverse mass expansion. For this purpose it is required that the matrix

Ω is calculated with four non-vanishing terms. Following the definitions (9.2), (9.3)

and (9.4), we find that the matrix Ω at order ε5 is given by

Ωij =
(
ω

0(−1)
i ε−1 + ω

0(3)
i ε3

)
δij+

(
ω

1(1)
i ε1 + ω

1(5)
i ε5

)
δi+1,j+

(
ω

1(1)
j ε1 + ω

1(5)
j ε5

)
δi,j+1

+ ω
2(3)
i ε3δi+2,j + ω

2(3)
j ε3δi,j+2 + ω

3(5)
i ε5δi+3,j + ω

3(5)
j ε5δi,j+3 +O

(
ε7
)
, (B.1)

where

ω
0(−1)
i = ki, (B.2)

ω
0(3)
i = − 1

2ki

(
l2i (1− δiN) + l2i−1 (1− δi1)

)
, (B.3)

ω
1(1)
i = li, (B.4)

ω
1(5)
i =

1

2

li
ki + ki+1

[
l2i

(
1

ki
+

1

ki+1

)
+ l2i−1 (1− δi1)

(
1

ki
+

2

ki−1 + ki+1

)
+ l2i+1 (1− δi,N−1)

(
1

ki+1

+
2

ki + ki+2

)]
,

(B.5)

ω
2(3)
i = − lili+1

ki + ki+2

, (B.6)

ω
3(5)
i =

lili+1li+2 (ki + ki+1 + ki+3 + ki+3)

(ki + ki+2) (ki+1 + ki+3) (ki + ki+3)
. (B.7)

Trivially,

Aij = Ωij, i = 1, . . . , n, j = 1, . . . , n, (B.8)

Bij = Ωi,j+n, i = 1, . . . , n, j = 1, . . . , N − n, (B.9)

Cij = Ωi+n,j+n, i = 1, . . . , N − n, j = 1, . . . , N − n. (B.10)

The matrix B has only a finite set of elements not vanishing at this order, namely,

Bij =
(
ω1(1)
n ε+ ω1(5)

n ε5
)
δinδj1 + ω

2(3)
n−1ε

3δi,n−1δj1 + ω2(3)
n ε3δinδj2

+ ω
3(5)
n−2ε

5δi,n−2δj1 + ω
3(5)
n−1ε

5δi,n−1δj2 + ω3(5)
n ε5δinδj3 +O

(
ε7
)
. (B.11)
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We need to acquire the matrices A−1 and C−1 with three non-vanishing terms.

They equal

(
A−1

)
ij

=
(
a

0(1)
i ε+ a

0(5)
i ε5

)
δij + a

1(3)
i ε3δi+1,j + a

1(3)
j ε3δi,j+1

+ a
2(5)
i ε5δi+2,j + a

2(5)
j ε5δi,j+2 +O

(
ε7
)
, (B.12)

where

a
0(1)
i =

1

ki
, (B.13)

a
0(5)
i =

1

k2
i

[
l2i−1 (1− δi1)

(
1

ki−1

+
1

2ki

)
+ l2i

(
1− δin
ki+1

+
1

2ki

)]
, (B.14)

a
1(3)
i = − li

kiki+1

, (B.15)

a
2(5)
i =

lili+1

kiki+2

(
1

ki+1

+
1

ki + ki+2

)
. (B.16)

Similarly,

(
C−1

)
ij

=
(
c

0(1)
i ε+ c

0(5)
i ε5

)
δij + c

1(3)
i ε3δi+1,j + c

1(3)
j ε3δi,j+1

+ c
2(5)
i ε5δi+2,j + c

2(5)
j ε5δi,j+2 +O

(
ε7
)
, (B.17)

where

c
0(1)
i =

1

ki+n
, (B.18)

c
0(5)
i =

1

k2
i+n

[
l2i+n (1− δi,N−n)

(
1

ki+n+1

+
1

2ki+n

)
+ l2i+n−1

(
1− δi1
ki+n−1

+
1

2ki+n

)]
,

(B.19)

c
1(3)
i = − li+n

ki+nki+n+1

, (B.20)

c
2(5)
i =

li+nli+n+1

ki+nki+n+2

(
1

ki+n+1

+
1

ki+n+2 + ki+n

)
. (B.21)

It is a matter of algebra to show that the matrix γ−1β has a finite number of

non-vanishing elements at this order, namely,

(
γ−1β

)
ij

=
(
β

(4)
11 ε

4 + β
(8)
11 ε

8
)
δi1δj1 + β

(6)
21 ε

6δi2δj1 + β
(6)
12 ε

6δi1δj2

+ β
(8)
31 ε

8δi3δj1 + β
(8)
13 ε

8δi1δj3 + β
(8)
22 ε

8δi2δj2 +O
(
ε10
)
. (B.22)
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Up to this order, the matrix γ−1β has in general two non-vanishing eigenvalues

λ1 = β
(4)
11 ε

4 +

(
β

(8)
11 +

β
(6)
12 β

(6)
21

β
(4)
11

)
ε8 +O

(
ε12
)
, (B.23)

λ2 =

(
β

(8)
22 −

β
(6)
12 β

(6)
21

β
(4)
11

)
ε8 +O

(
ε12
)
. (B.24)

The eigenvalue λ2 turns out to vanish at this order, whereas

λ1 =
l2n

2knkn+1

ε4 +
l2n

2knkn+1

[
l2n
2

((
1

kn
+

1

kn+1

)2

+
1

knkn+1

)

+ l2n+1

(
1

2k2
n+1

+
kn+1

kn+2(kn + kn+2)2 +
(kn + kn+1 + kn+2) (kn + 2kn+1 + kn+2)

kn+1kn+2 (kn + kn+1) (kn + kn+2)

)

+ l2n−1

(
1

2k2
n

+
kn

kn−1(kn−1 + kn+1)2 +
(kn−1 + kn + kn+1) (kn−1 + 2kn + kn+1)

kn−1kn (kn + kn+1) (kn−1 + kn+1)

)]
ε8.

(B.25)

At third non-vanishing order in the inverse mass expansion, another non-vanishing

eigenvalue emerges having a leading contribution of order ε12. Considering only the

area law term contribution to entanglement entropy is equivalent to approximating all

ki and li with knR and −1 respectively. At this approximation and without showing

more details, the eigenvalues of γ−1β at third order in the inverse mass expansion

equal

λ1 =
1

8k4
nR

+
5

16k8
nR

+
1875

2048k12
nR

+O
(
µ−16

)
, (B.26)

λ2 =
1

2048k12
nR

+O
(
µ−16

)
. (B.27)

The entanglement entropy at this order reads

SEE` =
λ

(4)
1

2

(
1− ln

λ
(4)
1 ε4

2

)
ε4 +


(
λ

(4)
1

)2

8

(
1− 2 ln

λ
(4)
1 ε4

2

)
− λ

(8)
1

2
ln
λ

(4)
1 ε4

2

 ε8

+


(
λ

(4)
1

)3

24

(
1− 6 ln

λ
(4)
1 ε4

2

)
−

(
λ

(8)
1

)2

4λ
(4)
1

− λ
(4)
1 λ

(8)
1 + λ

(12)
1

2
ln
λ

(4)
1 ε4

2

+
λ

(12)
2

2

(
1− ln

λ
(12)
2 ε12

2

)]
ε12 +O

(
ε16
)
, (B.28)

where λ
(4,8,12)
1 and λ

(12)
2 may be read from equations (B.25), (B.26) and (B.27).
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C Numerical Calculation Code

In section 10, the perturbative formulae for entanglement entropy were compared

with a numerical calculation of the latter. The numerical algorithm uses the same

regularization scheme as the perturbative expansion, but it calculates the matrices β,

γ, as well as the eigenvalues of the matrix γ−1β, numerically. The numerical calcu-

lation was performed with the help of the following code in Wolfram’s Mathematica.

xi[beta_] := beta / (1 + Sqrt[1 - beta^2]);

S[xi_] :=-Log[1-xi]-xi/(1-xi)*Log[xi]/; xi>0;

S[xi_] := 0 /; xi <= 0; (*to prevent errors from vanishing eigs*)

mass_sq = 1;

Nmax = 60;

elmax = 1000;

entropies_el = Table[

0,{el,1,elmax+1},{n,1,Nmax-1}

];

ent_entropy = Table[0, {n, 1, Nmax - 1}];

For[el = 0, el < elmax + 1, el++,

K = Table[ KroneckerDelta[i,j]*((j + 1/2)^2/j^2

+ (j-1/2)^2 / j^2 * HeavisideTheta[j-3/2]

+ (el * (el + 1)) / j^2 + mass_sq)

- KroneckerDelta[i,j+1](j+1/2)^2/(j*(j+1))

- KroneckerDelta[i+1,j](i+1/2)^2/(i*(i+1)),

{i, 1, Nmax}, {j, 1, Nmax}

];

Omega = MatrixPower[N[K], 1/2];

For[n = 1, n < Nmax, n++,

KA = Omega[[1;; n, 1;; n]];

KB = Omega[[1;; n, n+1;; Nmax]];

KC = Omega[[n+1;; Nmax, n+1;; Nmax]];

beta =(1/2)*Transpose[KB].Inverse[KA].KB;

gamma = KC - beta;

lambdas=Eigenvalues[Inverse[gamma].beta];

entropies_el[[el + 1, n]] =

Sum[S[xi[lambdas[[i]]]], {i,1,Nmax-n}];

(*el=0 corresponds to entropies_el[[1]]*)

];

]
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For[n = 1, n < Nmax, n++,

ent_entropy[[n]] = Sum[

(2*(el-1)+1)*entropies_el[[el,n]],

{el, 1, elmax + 1}

]

]

The above code applies in the case of 3 + 1 dimensions. For the numerical calcu-

lation it is necessary to impose a cutoff `max to the values of `. This has been selected

appropriately large so that the series has converged close enough to the `max → ∞
limit (such an appropriate choice of `max depends on the value of the mass parame-

ter). Specification of terms beyond the area law term requires much larger values of

`max, and, thus, running time. The required modifications for the numerical calcula-

tion of entanglement entropy in different number of dimensions or the introduction

of an angular cutoff that depends on the entangling sphere radius are quite simple.

D Classical Mutual Information for a Pair of Cou-

pled Oscillators

In order to understand the nature of the remnant of the mutual information at

infinite temperature, we present the classical analysis [239]. First we consider a single

harmonic oscillator with eigenfrequency ω. Without loss of generality we assume that

the mass of the oscillator is equal to one. In the classical limit, the probability of

finding the particle at position x is inverse proportional to the magnitude of the

velocity.

p (x) ∼ 1

|v|
. (D.1)

It follows from energy conservation, 1
2
v2 + 1

2
ω2x2 = E, that when the system has

energy E, the above probability distribution assumes the form

pE (x) =
ω

π
√

2E − ω2x2
. (D.2)

Now we turn on the temperature, introducing a canonical ensemble of harmonic

oscillators. As a consequence of the fact that the period of the motion is independent

of the energy, the phase space volume per energy is constant. It follows that the

appropriately normalized probability distribution for the energies is

p (E) =
1

T
e−

E
T . (D.3)
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This implies that the spatial probability distribution at finite temperature T is

pcan (x;ω, T ) =

∫ ∞
1
2
ω2x2

p (E) pE (x) dE =
ω√
2πT

e−
ω2x2

2T , (D.4)

where the lower bound of the integration was taken equal to 1
2
ω2x2, since at least

that much energy is required is order to reach the position x.

Let us now consider the system of two coupled oscillators of section 11, which is

described by the Hamiltonian (11.10). As usual, one may introduce the canonical

coordinates (11.11), which allow the re-expression of the Hamiltonian in the form

(11.12), which describes two decoupled oscillators, one for each mode. Therefore,

p (x1, x2;T ) = pcan

(
x1 + x2√

2
;ω+, T

)
pcan

(
x1 + x2√

2
;ω−, T

)
=
ω+ω−
2πT

e−
ω2

+(x1+x2)2+ω2
−(x1−x2)2

4T .

(D.5)

The probability distribution of the position of the first of the two coupled oscillators

can be calculated integrating out the position of the second one. Simple algebra

yields

p (x1;T ) =

∫
p (x1, x2;T ) dx2 =

ω∞eff√
2πT

e−
(ω∞eff)2

x2
1

2T , (D.6)

where ω∞eff =

√
2ω2

+ω
2
−

ω2
++ω2

−
. We remind the reader that this is not the first time we meet

this frequency. It is identical to the limiting value at infinite temperature (11.34)

of the eigenfrequency of the effective single oscillator (11.25) that reproduces the

reduced density matrix at the appropriate effective temperature (11.26).

It is now straightforward to find the classical version of the “entanglement” en-

tropy, i.e. the Shannon entropy of the classical probability distribution p (x1;T ),

Scl
A = Scl

AC = −
∫
p (x1;T ) ln p (x1;T ) dx1 =

1

2

(
1− ln

(ω∞eff)2

2πT

)
(D.7)

and the thermal entropy

Scl
A∪AC = −

∫
p (x1, x2;T ) ln p (x1, x2;T ) dx1dx2 = 1− ln

ω+ω−
2πT

. (D.8)

It follows that the classical mutual information is equal to

Icl
(
A : AC

)
= ln

ω+ω−

(ω∞eff)2 = ln
ω2

+ + ω2
−

2ω+ω−
= I∞. (D.9)

This does not depend on the temperature and is equal to the asymptotic value of

the quantum mutual information at infinite temperature (11.37). It follows that the
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quantum mutual information at infinite temperature should be attributed to classical

correlations. In a similar manner, one can trivially show that the classical mutual

information coincides with the infinite temperature limit of the quantum mutual

information in the case of an arbitrary number of coupled harmonic oscillators [239].

E Entanglement Negativity in Systems of Cou-

pled Oscillators

In section 11, we showed that there is a finite remnant of mutual information at

infinite temperature, unlike the usual behaviour in qubit systems. This remnant can

be attributed to classical correlations, as we showed in Appendix D. A consistency

check is the specification of entanglement negativity. This is defined as the opposite

of the sum of the negative eigenvalues of the partially transposed density matrix,

ρTA , i.e. if λi are the eigenvalues of ρTA , then the negativity N will be equal to

N =
∑
i

1

2
(|λi| − λi). (E.1)

The entanglement negativity is a measure of quantum entanglement25. Although a

non-vanishing negativity implies the presence of quantum entanglement, the opposite

does not hold, when the subsystems have sufficiently high-dimensional Hilbert spaces

[131]. Obviously, this is the case for harmonic oscillators, since the corresponding

Hilbert spaces are infinite dimensional. Thus, finding vanishing negativity at infinite

temperature is not a proof of the classical origin of the mutual information, but it is

consistent with such an interpretation.

In qubit systems, typically negativity vanishes at a given finite temperature and

it remains vanishing at temperatures higher than that. We will show that this also

holds in harmonic oscillatory systems. The techniques of section 12 can be easily

generalized for the calculation of entanglement negativity.

The density matrix of a system of N oscillators in a thermal state reads (see

equation (12.8)),

ρ =

(
det (a+ b)

πN

)1/2

exp

{
−1

2
xTax− 1

2
x′Tax′ − xT bx′

}
, (E.2)

where

a =

(
aA aB
aTB aC

)
b =

(
bA bB
bTB bC

)
(E.3)

25Strictly speaking, a measure of quantum entanglement should reduce to the entanglement

entropy in the case of pure states of the composite system, which is not the case for entanglement

negativity.
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We calculate the entanglement negativity between the first n (system A) and the

last N − n (system AC) oscillators. As in section 12, we decompose x as

x =

(
x

xC

)
(E.4)

Taking the partial transpose ρTA is equivalent to the interchange of xC and xC′, which

is also equivalent to the interchange of x and x′. It is easy to show that after this

action the density matrix assumes the form

ρTA =

(
det (γ − β)

πN

)1/2

exp

{
−1

2
xTγx− 1

2
x′Tγx′ + xTβx′

}
, (E.5)

where

γ =

(
aA bB
bTB aC

)
, β = −

(
bA aB
aTB bC

)
. (E.6)

The spectrum of the partially transposed density matrix is given by

pn1,...,nN =
N∏
i=1

(1− ξi) ξnii , ni ∈ Z, (E.7)

where the quantities ξi are related to the eigenvalues λi of the matrix γ−1β as

ξi =
λi

1 +
√

1− λ2
i

. (E.8)

First, let us consider the case of two coupled harmonic oscillators. In this case

the elements of the matrices γ and β in the expressions (E.6) are not blocks but

single elements. These matrices equal

γ =
1

2

(
a+ + a− b+ − b−
b+ − b− a+ + a−

)
, β = −1

2

(
b+ + b− a+ − a−
a+ − a− b+ + b−

)
. (E.9)

The eigenvalues of the matrix γ−1β are

λ1 =
ω− − ω+ tanh ω+

2T
tanh ω−

2T

ω− + ω+ tanh ω+

2T
tanh ω−

2T

, λ2 =
ω+ − ω− tanh ω+

2T
tanh ω−

2T

ω+ + ω− tanh ω+

2T
tanh ω−

2T

. (E.10)

Clearly, one of those, namely λ2, is negative at zero temperature, since

lim
T→0

λ1 = − lim
T→0

λ2 =
ω− − ω+

ω− + ω+

, (E.11)

whereas they are both positive at infinite temperature since

lim
T→∞

λ1 = lim
T→∞

λ2 = 1. (E.12)
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Both eigenvalues are monotonous functions of the temperature, therefore there is a

specific finite critical temperature Tneg, defined as the single solution of the equation

ω+ − ω− tanh
ω+

2Tneg

tanh
ω−

2Tneg

= 0, (E.13)

where λ2 vanishes. At temperatures higher than this critical temperature, the nega-

tivity vanishes. Figure 56 shows the dependence of Tneg on the ratio ω−/ω+. Appro-

Tneg/ω−

ω−/ω+

2

1

0 2 4 6

Figure 56: The critical temperature Tneg, as function of the ratio ω−/ω+

priate expansions can be used to show that the critical temperature for large values

of the ratio ω−/ω+ is approximately equal to

Tneg ' c
ω−
ω+

, (E.14)

where c is the solution to the equation tanh 1
2c

= 2c, which is approximately equal

to c ' 0.41678.

It is a matter of simple algebra to show that below the critical temperature Tneg,

the entanglement negativity equals

N = − λ2√
1 + λ2

1√
1 + λ2 +

√
1− λ2

. (E.15)

Figure 57 depicts the entanglement negativity, as well as the eigenvalues of the par-

tially transposed density matrix, as functions of the temperature.

In the case of a system of N coupled oscillators, the eigenvalues λi are determined

by the equation

det

(
bA + λaA aB + λbB
aTB + λbTB bC + λaC

)
= 0 (E.16)
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λ N

T

T

1 N0

1
2

1
5

−1
5

Tneg 2ω+ 6ω+ 10ω+

Tneg

Figure 57: The eigenvalues of the partially transposed density matrix (left) and the

entanglement negativity (right), as functions of the temperature. For these plots it

is assumed that ω−/ω+ = 3/2, which implies that lim
T→0

λ1/2 = ±1
5
.

or equivalently by

det

(
(1 + λ)(a+ b)A − (1− λ)(a− b)A (1 + λ)(a+ b)B + (1− λ)(a− b)B
(1 + λ)(a+ b)TB + (1− λ)(a− b)TB (1 + λ)(a+ b)C − (1− λ)(a− b)C

)
= 0.

(E.17)

The eigenvalues λi can be re-expressed as

1 + λi
1− λi

= Λi, (E.18)

where Λi are the eigenvalues of the matrix(
(a+ b)A (a+ b)B
(a+ b)TB (a+ b)C

)−1(
(a− b)A −(a− b)B
−(a− b)TB (a− b)C

)
. (E.19)

Since the matrix a + b tends to the zero matrix at infinite temperature, it follows

that all eigenvalues Λi tend to infinity, or equivalently all eigenvalues λi tend to one.

This implies that the negativity vanishes at infinite temperature. Actually, since all

λi’s tend to one and they are continuous functions of the temperature, it follows

that they all become positive at a finite critical temperature, similarly to the two

oscillators case.

On the contrary at zero temperature, the b matrix vanishes and the a matrix

tends to the matrix Ω =
√
K. Therefore, the eigenvalues λi are determined by the

equation

det

(
λIn Ω−1

A ΩB

Ω−1
C ΩT

B λIN−n

)
= 0 (E.20)

or equivalently by

det
(
λ2IN−n − Ω−1

C ΩT
BΩ−1

A ΩB

)
= 0. (E.21)
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These eigenvalues come in min(n,N − n) pairs in view of Sylvester’s determinant

identity. There are always negative eigenvalues, therefore the system exhibits quan-

tum entanglement. This is obviously expected; at this limit the system lies at its

ground state, which is a pure, entangled state and has non-vanishing entanglement

entropy.

F The High Temperature Expansion for Coupled

Oscillators

In this appendix, we obtain the high temperature expansion for the entanglement

entropy and the mutual information for systems of coupled harmonic oscillators. For

this purpose, we first need to expand the matrices a, b and a+ b, which are defined

in equation (12.4), at infinite temperature. It is simple to show that

a = T

(
I +

1

3T 2
K − 1

45T 4
K2 +

2

945T 6
K3 +O

(
1

T 8

))
, (F.1)

b = −T
(
I − 1

6T 2
K +

7

360T 4
K2 − 31

15120T 6
K3 +O

(
1

T 8

))
, (F.2)

a+ b =
1

2T
K

(
I − 1

12T 2
K +

1

120T 4
K2 +O

(
1

T 6

))
. (F.3)

In the following, we will need the A, B and C blocks of the matrices K2 and K3,

in order to substitute them into formulae (F.1), (F.2) and (F.3). These are given in

terms of the corresponding blocks of the matrix K by(
K2
)
A

= K2
A +KBK

T
B , (F.4)(

K2
)
B

= KAKB +KBKC , (F.5)(
K2
)T
B

= KT
BKA +KCK

T
B , (F.6)(

K2
)
C

= KT
BKB +K2

C (F.7)

and (
K3
)
A

= K3
A +KBK

T
BKA +KAKBK

T
B +KBKCK

T
B , (F.8)(

K3
)
B

= K2
AKB +KBK

T
BKB +KAKBKC +KBK

2
C , (F.9)(

K3
)T
B

= KT
BK

2
A +KCK

T
BKA +KT

BKBK
T
B +K2

CK
T
B , (F.10)(

K3
)
C

= KT
BKAKB +KCK

T
BKB +KT

BKBKC +K3
C . (F.11)

We need to specify the high temperature expansion of the eigenvalues of the

matrix γ−1β. We recall that the matrices γ and β are defined as γ = aC − d/2 and
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β = −bC +d/2, where d =
(
aTB + bTB

)
(aA + bA)−1 (aB + bB). As a direct consequence

of the equation (F.3), we have

(a+ b)A =
1

2T

(
KA −

1

12T 2

(
K2
)
A

+
1

120T 4

(
K3
)
A

+O
(

1

T 6

))
(F.12)

and

((a+ b)A)−1 = 2T

[
(KA)−1 +

1

12T 2
(KA)−1(K2

)
A

(KA)−1

+
1

24T 4

(
1

6
(KA)−1(K2

)
A

(KA)−1(K2
)
A

(KA)−1

−1

5
(KA)−1(K3

)
A

(KA)−1

)
+O

(
1

T 6

)]
. (F.13)

Then, defining K̃C ≡ KC −KT
B(KA)−1KB and using the notation

d = T

(
0 +

1

T 2
d(1) +

1

T 4
d(2) +

1

T 6
d(3) +O

(
1

T 8

))
, (F.14)

we find

d(1) =
1

2

(
KC − K̃C

)
, (F.15)

d(2) =
1

24

[(
K̃C

)2

−
(
K2
)
C

]
, (F.16)

d(3) =
1

240

[(
K3
)
C
− 5

6
K̃C

(
1

5
KC + K̃C

)
K̃C

]
. (F.17)

Adopting a similar notation for the high temperature expansions of the matrices β

and γ, their definitions (12.13) and (12.14) yield

β(1) =
1

12
KC −

1

4
K̃C , (F.18)

β(2) = − 1

720

(
K2
)
C

+
1

48

(
K̃C

)2

, (F.19)

β(3) =
1

30240

(
K3
)
C
− 1

576
K̃C

(
1

5
KC + K̃C

)
K̃C (F.20)

and

γ(1) =
1

12
KC +

1

4
K̃C , (F.21)

γ(2) = − 1

720

(
K2
)
C
− 1

48

(
K̃C

)2

, (F.22)

γ(3) =
1

30240

(
K3
)
C

+
1

576
K̃C

(
1

5
KC + K̃C

)
K̃C . (F.23)
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The calculation of the high temperature expansion of the matrix γ−1β,

γ−1β = I +
1

T 2

(
γ−1β

)(1)
+

1

T 4

(
γ−1β

)(2)
+

1

T 6

(
γ−1β

)(3)
+O

(
1

T 8

)
, (F.24)

is facilitated by the use of the iterative formulae(
γ−1β

)(1)
= β(1) − γ(1), (F.25)(

γ−1β
)(2)

= β(2) − γ(2) − γ(1)
(
γ−1β

)(1)
, (F.26)(

γ−1β
)(3)

= β(3) − γ(3) − γ(1)
(
γ−1β

)(2) − γ(2)
(
γ−1β

)(1)
, (F.27)

which yield(
γ−1β

)(1)
= −1

2
K̃C , (F.28)(

γ−1β
)(2)

=
1

6

(
1

4
KC + K̃C

)
K̃C , (F.29)

(
γ−1β

)(3)
= − 1

18

[(
1

4
KC + K̃C

)(
1

5
KC + K̃C

)
+

1

80

((
K2
)
C

+K2
C

)]
K̃C . (F.30)

The specification of the high temperature expansion of the eigenvalues of the

matrix γ−1β is now a straightforward perturbation theory problem. The zeroth order

result is obviously 1 and the eigenvectors are arbitrary. Let |vi〉 be the eigenvectors

of the matrix K̃C , i.e.

K̃C |vi〉 = λi |vi〉 . (F.31)

We expand the eigenvalues of the matrix γ−1β as

βDi = 1− β
(1)
Di

T 2
− β

(2)
Di

T 4
− β

(3)
Di

T 6
+O

(
1

T 8

)
. (F.32)

As a direct consequence of the equation (F.28), we have

β
(1)
D =

λi
2
. (F.33)

The specification of the next corrections to the eigenvalues is a problem identical to

the usual perturbation theory in quantum mechanics. The role of the unperturbed

Hamiltonian is played by −(γ−1β)
(1)

and there are two perturbations, one which is of

first order in the expansive parameter 1/T 2, namely −(γ−1β)
(2)

, and a second order

one, namely −(γ−1β)
(3)

. Therefore,

β
(2)
D = −1

6
〈vi|

(
1

4
KC + K̃C

)
K̃C |vi〉 = −λ

2
i

6
− λi 〈vi|KC |vi〉

24
, (F.34)
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while β
(3)
D gets contributions from both perturbations

β
(3)
D =

1

18
〈vi|

[(
1

4
KC + K̃C

)(
1

5
KC + K̃C

)
+

1

80

((
K2
)
C

+K2
C

)]
K̃C |vi〉

+
1

18

∑
j 6=i

〈vi|
(

1
4
KC + K̃C

)
K̃C |vj〉 〈vj|

(
1
4
KC + K̃C

)
K̃C |vi〉

λi − λj

=
1

18

(
λ3
i +

9

20
λ2
i 〈vi|KC |vi〉+

1

16
λi 〈vi|K2

C |vi〉+
1

80
λi 〈vi|

(
K2
)
C
|vi〉
)

+
1

288

∑
j 6=i

λiλj 〈vi|KC |vj〉 〈vj|KC |vi〉
λi − λj

. (F.35)

Given the expansion (F.32), the corresponding quantities ξi and the contribution

of each eigenvalue to the entanglement entropy are

ξi = 1−
√

2β
(1)
Di

1

T
+ β

(1)
Di

1

T 2
−

3
(
β

(1)
Di

)2

+ 2β
(2)
Di

2

√
2β

(1)
Di

1

T 3
+

((
β

(1)
Di

)2

+ β
(2)
Di

)
1

T 4

−
23
(
β

(1)
Di

)4

+ 36
(
β

(1)
Di

)2

β
(2)
Di − 4

(
β

(2)
Di

)2

+ 16β
(1)
Diβ

(3)
Di

8

(√
2β

(1)
Di

)3

1

T 5

+

((
β

(1)
Di

)3

+ 2β
(1)
Diβ

(2)
Di + β

(3)
Di

)
1

T 6
+O

(
1

T 7

)
(F.36)

and

Si =
1

2
ln

T 2

2β
(1)
Di

+ 1−

(
β

(1)
Di

3
+

β
(2)
Di

2β
(1)
Di

)
1

T 2

−

7
(
β

(1)
Di

)2

60
+
β

(2)
Di

3
−

(
β

(2)
Di

)2

4
(
β

(1)
Di

)2 +
β

(3)
Di

2β
(1)
Di

 1

T 4
+O

(
1

T 6

)
, (F.37)

respectively. Notice that although odd powers of T are absent in the expansion of

βDi, they appear in ξi due to the presence of
√

1− β2
Di in the definition of ξi.

We expand the entanglement entropy as

SA = (N − n) lnT + S
(0)
A +

S
(1)
A

T 2
+
S

(2)
A

T 4
+O

(
1

T 6

)
. (F.38)

We recall the definition of the mutual information I
(
A : AC

)
= SA+SAC −Sth. The

formula (11.8) implies that in the case of N coupled oscillators the thermal entropy
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has a high temperature expansion of the form

Sth =
1

2
ln

T 2

detK
+N +

TrK

24

1

T 2
− TrK2

960

1

T 4
+O

(
1

T 6

)
. (F.39)

It follows that the logarithmic terms cancel and the mutual information has a high

temperature expansion of the form

I
(
A : AC

)
= I(0) +

I(1)

T 2
+
I(2)

T 4
+O

(
1

T 6

)
. (F.40)

At zeroth order we find

S
(0)
A =

∑
i

1

2

(
ln

1

2β
(1)
D

+ 1

)
= −1

2
ln
∏
i

λi+N−n = −1

2
ln det K̃C +N−n. (F.41)

In an obvious manner, S
(0)

AC
= −1

2
ln det K̃A + n, where K̃A = KA −KB(KC)−1KT

B .

Then the zeroth order contribution to the mutual information is

I(0) = −1

2
ln

det K̃A det K̃C

detK
= −1

2
ln det

(
I − (KC)−1KT

B(KA)−1KB

)
= −1

2
ln det

(
I − (KA)−1KB(KC)−1KT

B

)
,

(F.42)

since detK = detKA det K̃C = det K̃A detKC . The two last forms for I(0), although

they are expressed as determinants of matrices of different dimensions, they are equal

and they are connected through the Sylvester’s determinant formula.

Similarly,

S
(1)
A = −

∑
i

(
β

(1)
D

3
+

β
(2)
D

2β
(1)
D

)
=

1

24

∑
i

〈vi|KC |vi〉 =
1

24
TrKC . (F.43)

Obviously, S
(1)

AC
= 1

24
TrKA and thus,

I(1) =
1

24
(TrKA + TrKC − TrK) = 0. (F.44)

Finally,

S
(2)
A = −

∑
i

7
(
β

(1)
D

)2

60
+
β

(2)
D

3
−

(
β

(2)
D

)2

4
(
β

(1)
D

)2 +
β

(3)
D

2β
(1)
D


=
∑
i

(
− 1

720
λ2
i +

1

360
λi 〈vi|KC |vi〉+

1

576
(〈vi|KC |vi〉)2 − 1

288
〈vi|K2

C |vi〉

− 1

1440
〈vi|

(
K2
)
C
|vi〉−

1

288

∑
j 6=i

λj 〈vi|KC |vj〉 〈vj|KC |vi〉
λi − λj

)
(F.45)
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or

S
(2)
A = − 1

720
TrK̃2

C +
1

360
Tr
(
K̃CKC

)
+

1

576

∑
i

(〈vi|KC |vi〉)2

− 1

288
TrK2

C −
1

1440
Tr
(
K2
)
C
− 1

288

∑
i,j,j 6=i

λj 〈vi|KC |vj〉 〈vj|KC |vi〉
λi − λj

. (F.46)

The two terms that are written as a sum, simplify if we write the double sum term

as the symmetrized sum,∑
i

(〈vi|KC |vi〉)2 − 2
∑
i,j,j 6=i

λj 〈vi|KC |vj〉 〈vj|KC |vi〉
λi − λj

=
∑
i

(〈vi|KC |vi〉)2 −
∑
i,j,j 6=i

(λj − λi) 〈vi|KC |vj〉 〈vj|KC |vi〉
λi − λj

=
∑
i

(〈vi|KC |vi〉)2 +
∑
i,j,j 6=i

〈vi|KC |vj〉 〈vj|KC |vi〉

=
∑
i,j

〈vi|KC |vj〉 〈vj|KC |vi〉 =
∑
i

〈vi|K2
C |vi〉 = TrK2

C .

(F.47)

The latter implies

S
(2)
A = − 1

720
TrK̃2

C +
1

360
Tr
(
K̃CKC

)
− 1

576
TrK2

C −
1

1440
Tr
(
K2
)
C
. (F.48)

Using the definition of K̃C and expressing K2
C in terms of (K2)C , using formula (F.7),

yields

S
(2)
A = − 1

960
Tr
(
K2
)
C
− 1

720
Tr
[(
KT
B(KA)−1KB

)2
]

+
1

2880
Tr
(
KT
BKB

)
. (F.49)

Finally, the above equation implies that

I(2) = − 1

960

[
Tr
(
K2
)
C

+ Tr
(
K2
)
A
− Tr

(
K2
)]

+
1

2880

[
Tr
(
KT
BKB

)
+ Tr

(
KBK

T
B

)]
− 1

720

(
Tr
[(
KT
B(KA)−1KB

)2
]

+ Tr
[(
KB(KC)−1KT

B

)2
])

= − 1

720

(
Tr
[(
KT
B(KA)−1KB

)2
]

+ Tr
[(
KB(KC)−1KT

B

)2
]

+
1

2
Tr
(
KT
BKB

))
.

(F.50)

Putting everything together, the high temperature expansions of the entangle-

ment entropy and the mutual information are given by the equations (12.25) and

(12.26), respectively.
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G The Low Temperature Expansion for Coupled

Oscillators

At zero temperature, the matrices a and b, defined in equation (12.4), are not analytic

functions of the temperature. Acquiring a low temperature expansion of the entan-

glement entropy or the mutual information is not as straightforward as the respective

high temperature expansion presented in Appendix F. In an obvious manner, at ex-

actly T = 0, a =
√
K and b = 0, resulting in the will-known results for the ground

state of the system, presented in [42]. Beyond that, we may obtain an asymptotic

expansion, approximating the hyperbolic functions as a series of exponentials. More

specifically,

a = Ω

(
I + 2

∞∑
n=1

Ω̃2n

)
, (G.1)

b = −2ΩΩ̃

(
I +

∞∑
n=1

Ω̃2n

)
, (G.2)

a+ b = Ω

(
I + 2

∞∑
n=1

(−1)nΩ̃n

)
, (G.3)

where

Ω̃ = exp (−Ω/T ) . (G.4)

Only even powers of Ω̃ appear in a, whereas only odd powers of Ω̃ appear in b,

aC = a
(0)
C + a

(2)
C + . . . , (G.5)

bC = b
(1)
C + b

(3)
C + . . . , (G.6)

where the superscript in parentheses indicates the power of Ω̃ that appears in each

term. Using the same notation for the matrices γ, β, γ−1 and γ−1β, it is easy to

show that

γ−1 =
(
γ−1
)(0)
[
γ(0) − γ(1) +

(
γ(1)
)2 − γ(2) + . . .

] (
γ−1
)(0)

, (G.7)

thus, at leading order one recovers the zero temperature result(
γ−1β

)(0)
=
(
γ−1
)(0)

β(0). (G.8)

At next to leading order it holds(
γ−1β

)(1)
=
(
γ−1
)(0)

β(1) −
(
γ−1
)(0)

γ(1)
(
γ−1
)(0)

β(0). (G.9)
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We recall that the matrices γ and β are defined as γ = aC − d/2 and β = −bC + d/2,

where d =
(
aTB + bTB

)
(aA + bA)−1 (aB + bB). As a direct consequence of the form of

the expansions (G.5) and (G.6), it holds

β(0) =
1

2
d(0) and γ(1) = −1

2
d(1). (G.10)

As a result, we obtain

(
γ−1β

)(1)
= −

(
γ−1
)(0)

b
(1)
C +

1

2

(
γ−1
)(0)

d(1) +
1

2

(
γ−1
)(0)

d(1)
(
γ−1
)(0)

β(0). (G.11)

At leading order it holds

d(0) = ΩT
BΩ−1

A ΩB. (G.12)

At next to leading order it holds(
(aA + bA)−1

)(1)
= 2Ω−1

A

(
ΩΩ̃
)
A

Ω−1
A , (aB + bB)(1) = −2

(
ΩΩ̃
)
B
,

(aTB + bTB)(1) = −2
(

ΩΩ̃
)
BT
, b

(1)
C = −2

(
ΩΩ̃
)
C
,

(G.13)

where we used the following shorthand notation(
ΩΩ̃
)
A

= ΩAΩ̃A + ΩBΩ̃T
B,

(
ΩΩ̃
)
B

= ΩAΩ̃B + ΩBΩ̃C ,(
ΩΩ̃
)
BT

= ΩT
BΩ̃A + ΩCΩ̃T

B,
(

ΩΩ̃
)
C

= ΩCΩ̃C + ΩT
BΩ̃B.

(G.14)

After some algebra, we obtain

d(1) = 2
[(
γ(0) − β(0)

) (
Ω̃C − Ω̃T

BΩ−1
A ΩB

)
−
(

ΩΩ̃
)
C

]
(G.15)

and

β(1) =
(
γ(0) − β(0)

) (
Ω̃C − Ω̃T

BΩ−1
A ΩB

)
+
(

ΩΩ̃
)
C
. (G.16)

It is straightforward to substitute the above into (G.11) and show that

(
γ−1β

)(1)
=
(

1−
(
γ−1β

)(0)
)(

Ω̃C − Ω̃T
BΩ−1

A ΩB

)(
1 +

(
γ−1β

)(0)
)

+
(
γ−1
)(0)
(

ΩΩ̃
)
C

(
1−

(
γ−1β

)(0)
)
. (G.17)

It is not possible to obtain analytic expressions for the eigenvalues of (γ−1β) in the

low temperature expansion. However, the above formula implies that the corrections

to the zero temperature result are exponentially suppressed.
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H The Hopping Expansion in a Chain of Oscilla-

tors

In this appendix, we provide some details on the perturbative calculation of the mu-

tual information in chains of oscillators in the l/k expansion. First we perturbatively

calculate the matrix γ−1β and then we proceed to the specification of its eigenvalues.

H.1 The Matrix γ−1β in the Hopping Expansion

In order to find a perturbative expansion for the matrix γ−1β, first we need to expand

the matrices

a = Tf1

(
K

T 2

)
, b = Tf2

(
K

T 2

)
, (H.1)

where

f1 (x) =
√
x coth

√
x =

∞∑
n=0

anx
n, (H.2)

f2 (x) = −
√
xcsch

√
x =

∞∑
n=0

bnx
n, (H.3)

since both cothx and cschx are odd functions of x, and, thus, the Taylor expansions

of f1 (x) and f2 (x) contain only even powers of
√
x. It obviously holds that

∞∑
n=0

nanx
n−1 = f1

′ (x) =
1

2

(
1√
x

coth
√
x− csch2

√
x

)
, (H.4)

∞∑
n=0

nbnx
n−1 = f2

′ (x) = −1

2

(
1√
x

csch
√
x− coth

√
x csch

√
x

)
. (H.5)

Moreover the following identities are obeyed

f 2
1 (x)− f 2

2 (x) = x, (H.6)

f1
′ (x) f2 (x)− f1 (x) f2

′ (x) =
1

2
f2 (x) , (H.7)

which will become handy later.

In order to obtain the expansions of the matrices a and b in ε, we first need to

find the corresponding expansion of the powers of the matrix K. The latter equals,

Kij =
1

ε
[kiδij + ε (liδi,j+1 + ljδi+1,j)] ≡

1

ε
K(0) +K(1). (H.8)

Therefore, writing

KN =
1

εN

[(
KN
)(0)

+ ε
(
KN
)(1)

+ ε2
(
KN
)(2)

+O
(
ε3
)]
, (H.9)
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it follows that(
KN
)(0)

=
(
K(0)

)N
, (H.10)(

KN
)(1)

=
N−1∑
n=0

(
K(0)

)n
K(1)

(
K(0)

)N−1−n
, (H.11)

(
KN
)(2)

=
N−2∑
n=0

N−2−n∑
m=0

(
K(0)

)n
K(1)

(
K(0)

)m
K(1)

(
K(0)

)N−2−n−m
. (H.12)

Since K(0) is diagonal, it is trivial to find its powers. Therefore it is a matter of

simple algebra to show that at zeroth order(
KN
)(0)

ij
=
(
KN
)0(0)

i
δij, (H.13)

where (
KN
)0(0)

i
= kNi . (H.14)

At first order (
KN
)(1)

ij
=
(
KN
)1(1)

i
δi+1,j +

(
KN
)1(1)

j
δi,j+1, (H.15)

where (
KN
)1(1)

i
=
kNi − kNi+1

ki − ki+1

li. (H.16)

Finally, at second order(
KN
)(2)

ij
=
(
KN
)0(2)

i
δij +

(
KN
)2(2)

i
δi+2,j +

(
KN
)2(2)

j
δi,j+2, (H.17)

where(
KN
)0(2)

i
= NkN−1

i

(
l2i

ki − ki+1

−
l2i−1

ki−1 − ki

)
+

(
l2i−1

(
kNi−1 − kNi

)
(ki−1 − ki)2 −

l2i
(
kNi − kNi+1

)
(ki − ki+1)2

)
, (H.18)

(
KN
)2(2)

i
= lili+1

(
kNi

(ki − ki+1) (ki − ki+2)

−
kNi+1

(ki − ki+1) (ki+1 − ki+2)
+

kNi+2

(ki − ki+2) (ki+1 − ki+2)

)
. (H.19)

Throughout this appendix, we will use the shorthand notation

fn

(
ki
T 2

)
≡ fn,i. (H.20)
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Writing the matrix a as

a = T
(
a(0) + εa(1) + ε2a(2) +O

(
ε3
))
, (H.21)

one can make use of the Taylor series of the functions f1 and f2 (H.2) and (H.3), to

show that

a
(0)
ij = a

0(0)
i δij, (H.22)

where

a
0(0)
i = f1,i. (H.23)

Similarly, at first order

a
(1)
ij = a

1(1)
i δi+1,j + a

1(1)
j δi,j+1, (H.24)

where

a
1(1)
i =

f1,i − f1,i+1

ki − ki+1

li. (H.25)

Finally, at second order

a
(2)
ij = a

0(2)
i δij + a

2(2)
i δi+2,j + a

2(2)
j δi,j+2, (H.26)

where

a
0(2)
i =

f1,i
′

T 2

(
l2i

ki − ki+1

−
l2i−1

ki−1 − ki

)
+
l2i−1 (f1,i−1 − f1,i)

(ki−1 − ki)2 − l2i (f1,i − f1,i+1)

(ki − ki+1)2 ,

(H.27)

a
2(2)
i = lili+1

(
f1,i

(ki − ki+1) (ki − ki+2)

− f1,i+1

(ki − ki+1) (ki+1 − ki+2)
+

f1,i+2

(ki − ki+2) (ki+1 − ki+2)

)
. (H.28)

In a similar manner, one can obtain the expansion for the matrix b. The formulae

are identical upon the substitution of the function f1 with the function f2.

We proceed to calculate the matrix γ−1β. We define

f3 (x) := f1 (x) + f2 (x) =
√
x tanh

√
x

2
, (H.29)

f4 (x) := −f2 (x)

f1 (x)
=

1

cosh
√
x
. (H.30)

Similarly to the previous steps of this calculation, we expand γ−1β as

γ−1β =
(
γ−1β

)(0)
+ ε
(
γ−1β

)(1)
+ ε2

(
γ−1β

)(2)
+O

(
ε3
)
. (H.31)

393



Although γ−1 and β are symmetric, this is not the case for γ−1β. At zeroth order

we get (
γ−1β

)0(0)

i
= f4,n+i. (H.32)

At first order we get(
γ−1β

)1(1)

i
=

ln+i

kn+i − kn+i+1

(f4,n+i − f4,n+i+1) , (H.33)(
γ−1β

)−1(1)

i
=

ln+i

kn+i − kn+i+1

(f4,n+i − f4,n+i+1) . (H.34)

Finally, at second order we get

(
γ−1β

)0(2)

i
=

l2n+i−1

kn+i−1 − kn+i

(
f4,n+i−1 − f4,n+i

kn+i−1 − kn+i

+
1

2T 2

f4,n+i

f1,n+i

)
− (1− δi,N−n)

l2n+i

kn+i − kn+i+1

(
f4,n+i − f4,n+i+1

kn+i − kn+i+1

+
1

2T 2

f4,n+i

f1,n+i

)
+ δi1

l2n
(kn − kn+1)2

[
−(f1,n − f1,n+1) (f2,n − f2,n+1)

f1,nf1,n+1

+
f2,n+1

f1,n+1

(f1,n − f1,n+1)2

f1,nf1,n+1

+
f1,n+1 − f2,n+1

2f 2
1,n+1

(f3,n − f3,n+1)2

f3,n

]
. (H.35)

and (
γ−1β

)2(2)

i
=

ln+iln+i+1

kn+i − kn+i+1

(
f4,n+i − f4,n+i+2

kn+i − kn+i+2

−f4,n+i+1 − f4,n+i+2

kn+i+1 − kn+i+2

)
, (H.36)

(
γ−1β

)−2(2)

i
=

ln+iln+i+1

kn+i+1 − kn+i+2

(
f4,n+i − f4,n+i+1

kn+i − kn+i+1

−f4,n+i − f4,n+i+2

kn+i − kn+i+2

)
. (H.37)

This concludes the perturbative calculation of the matrix γ−1β in the ε expansion

up to second order.

H.2 The Eigenvalues in Non-Degenerate Perturbation The-

ory

So far, we have calculated the matrix γ−1β, perturbatively in ε. As we have already

discussed in section 13, a small ε is sufficient for the perturbative calculation of

the matrix, but not of its eigenvalues. For this purpose, it is necessary to know

whether the non-diagonal elements of K are larger or smaller than the differences

of the diagonal elements of K and not the elements themselves. In the following

we present two approaches for the perturbative calculation of the eigenvalues of the

matrix γ−1β and consequently the entanglement entropy and the mutual information.
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In this subsection, we consider the case where the off-diagonal elements of the matrix

K are smaller than the differences of the diagonal ones. We refer to this approach

as “non-degenerate” perturbation theory.

In this case one can consider (γ−1β)
(0)

as an unperturbed, exactly solvable prob-

lem, and treat (γ−1β)
(1)

and (γ−1β)
(2)

as perturbative corrections. Since (γ−1β)
(0)

is

diagonal, in an obvious manner the unperturbed eigenvectors are |vj〉, where(
vj
)
i

= δij. (H.38)

At zeroth and first order, the eigenvalues of the matrix γ−1β are trivially

β
(0)
Di =

(
γ−1β

)0(0)

i
= f4,n+i, (H.39)

β
(1)
Di =

〈
vi
∣∣ (γ−1β

)(1) ∣∣vi〉 = 0. (H.40)

At second order, one has to take account of the second order correction from the

first order perturbation, as well as the first order correction from the second order

perturbation. It is a matter of algebra to find that

β
(2)
Di =

〈
vi
∣∣ (γ−1β

)(2) ∣∣vi〉+
∑
j 6=i

〈vi| (γ−1β)
(1) |vj〉 〈vj| (γ−1β)

(1) |vi〉
β

(0)
Di − β

(0)
Dj

=
(
γ−1β

)0(2)

i
+

[
(γ−1β)

1(1)
i

]2

(γ−1β)0(0)
i − (γ−1β)0(0)

i+1

(1− δi,N−n)+

[
(γ−1β)

1(1)
i−1

]2

(γ−1β)0(0)
i − (γ−1β)0(0)

i−1

(1− δi,1)

=
1

2T 2

f4,n+i

f1,n+i

(
l2n+i−1

kn+i−1 − kn+i

−
l2n+i

kn+i − kn+i−1

(1− δi,N−n)

)
+ δi1

l2n
(kn − kn+1)2

1

f1,n+1

[
f1,n (f4,n − f4,n+1)+ (1 + f4,n+1)

(f3,n − f3,n+1)2

2f3,n

]
. (H.41)

In a similar manner, had we considered the complementary subsystem, we would

have found similar expressions for the eigenvalues. We give here the second order

correction of those

β
(2)
Di =

1

2T 2

f4

(
ki
T 2

)
f1

(
ki
T 2

) ( l2i−1

ki−1 − ki
(1− δi,1)− l2i

ki − ki+1

)
+ δin

l2n
(kn − kn+1)2

1

f1,n

[
−f1,n+1 (f4,n − f4,n+1)+ (1 + f4,n)

(f3,n − f3,n+1)2

2f3,n+1

]
. (H.42)

The corresponding calculation of the thermal entropy requires the perturbative
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calculation of the eigenvalues of the matrix K. It is trivial to show that

k
(0)
i = ki, (H.43)

k
(1)
i = 0, (H.44)

k
(2)
i = −

(
l2i−1

ki−1 − ki
(1− δi,1)− l2i

ki − ki+1

(1− δi,N)

)
. (H.45)

The entanglement and thermal entropies can now be calculated in terms of the

quantities ξi = βDi

1+
√

1−β2
Di

and ζi = e−
√
ki/T , respectively. These quantities give

identical contributions to the entanglement and thermal entropy respectively, namely

SEE =
∑(
− ln (1− ξi)− ξi

1−ξi ln ξi

)
and Sth =

∑(
− ln (1− ζi)− ζi

1−ζi ln ζi

)
. It is a

matter of algebra to show that

ξi = ξ
(0)
i + ξ

(2)
i +O

(
l3
)

= ξ
(0)
i + ξ

(0)
i

T√
ki

f1,i

f4,i

β
(2)
Di +O

(
l3
)
, (H.46)

ζi = ζ
(0)
i + ζ

(2)
i +O

(
l3
)

= ζ
(0)
i − ζ

(0)
i

1

2T
√
ki
k

(2)
i +O

(
l3
)
. (H.47)

The index i runs from 1 to N for both cases. In the case of the ξi’s, the i ≤ n values

correspond to the eigenvalues that we get when we trace out the i > n subsystem

and vice versa. The formulae obtained above for the expansions of βDi and ki imply

ξ
(0)
i = ζ

(0)
i = e−

√
ki
T , (H.48)

ξ
(1)
i = ζ

(1)
i = 0. (H.49)

The second order corrections are

ξ
(2)
i = ζ

(2)
i

+
T l2n

(kn − kn+1)2

{
δi,n

e−
√
kn
T

√
knf4,n

[
f1,n+1 (f4,n+1 − f4,n)+ (1 + f4,n)

(f3,n − f3,n+1)2

2f3,n+1

]

+ δi,n+1
e−
√
kn+1
T√

kn+1f4,n+1

[
f1,n (f4,n − f4,n+1)+ (1 + f4,n+1)

(f3,n − f3,n+1)2

2f3,n

]}
(H.50)

and

ζ
(2)
i = − 1

2T
√
ki
e−
√
ki
T

(
l2i

ki − ki+1

(1− δiN) +
l2i−1

ki − ki−1

(1− δi1)

)
. (H.51)
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The expansive expression for the mutual information is

I =
N∑
i=1

− ln
(

1− ξ(0)
i

)
− ξ

(0)
i

1− ξ(0)
i

ln ξ
(0)
i −

ln ξ
(0)
i(

1− ξ(0)
i

)2 ξ
(2)
i

+ ln
(

1− ζ(0)
i

)
+

ζ
(0)
i

1− ζ(0)
i

ln ζ
(0)
i +

ln ζ
(0)
i(

1− ζ(0)
i

)2 ζ
(2)
i

 . (H.52)

It follows from the equations above that there are only two contributions to the

mutual information, which appear at second order. These originate from the two

eigenvalues for whom the corresponding ξ(2) and ζ(2) are not identical (see equation

(H.50)), namely the (ξn, ζn) and (ξn+1, ζn+1) ones,

I = − ln ξ
(0)
n(

1− ξ(0)
n

)2

(
ξ(2)
n − ζ(2)

n

)
−

ln ξ
(0)
n+1(

1− ξ(0)
n+1

)2

(
ξ

(2)
n+1 − ζ

(2)
n+1

)
. (H.53)

After some algebra, it turns out that the mutual information is equal to

I =
l2n

4T 2 (kn − kn+1)

(
1

f3,n+1

− 1

f3,n

)
+O

(
l3
)
. (H.54)

H.3 The Eigenvalues in Degenerate Perturbation Theory

When, the off-diagonal elements of the matrix K are larger than the differences of

the diagonal ones, a different approach is required. Then, the unperturbed problem

is the problem where the diagonal elements are all identical. In such cases, it is clear

that even the formulae that we have written down in the previous section for the

matrix γ−1β in the l/k expansion need rephrasing, since they are undetermined. The

expansion of the powers of the matrix K reads

(Kn)(0)
ij = knδij, (H.55)

(Kn)(1)
ij = nlkn−1 (δi+1,j + δi,j+1) , (H.56)

(Kn)(2)
ij =

n (n− 1)

2
l2kn−2 ((2− δi,1 − δi,N) dij + δi+2,j + δi,j+2) , (H.57)

The formulae (H.4) and (H.5) imply that(
f

(
K

T 2

))
ij

= f

(
k

T 2

)
δij +

l

T 2
f ′
(
k

T 2

)
(δi+1,j + δi,j+1)

+
l2

2T 4
f ′′
(
k

T 2

)
((2− δi,1 − δi,N) dij + δi+2,j + δi,j+2) . (H.58)
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At this order

dij =
l2

T 4
∆δi,1δj,1 +O

(
l3
)
, ∆ =

[
f3
′ ( k

T 2

)]2
f3

(
k
T 2

) , (H.59)

implying that

γij = f1

(
k

T 2

)
δij +

l

T 2
f1
′
(
k

T 2

)
(δi+1,j + δi,j+1)

+
l2

2T 4

[
f1
′′
(
k

T 2

)
((2− δi,1 − δi,N) δij + δi+2,j + δi,j+2)−∆δi,1δj,1

]
, (H.60)

βij = −f2

(
k

T 2

)
δij −

l

T 2
f2
′
(
k

T 2

)
(δi+1,j + δi,j+1)

− l2

2T 4

[
f2
′′
(
k

T 2

)
((2− δi,1 − δi,N) δij + δi+2,j + δi,j+2)−∆δi,1δj,1

]
. (H.61)

It is a matter of algebra to show that(
γ−1β

)0(0)

i
= f4

(
k

T 2

)
, (H.62)

(
γ−1β

)1(1)

i
=

l

T 2
f4
′
(
k

T 2

)
, (H.63)

(
γ−1β

)2(2)

i
=

l2

2T 4
f4
′′
(
k

T 2

)
, (H.64)

(
γ−1β

)0(2)

i
=

l2

2T 4

(
f4
′′
(
k

T 2

)
(2− δi,1 − δi,N−n) + β1δi,1

)
≡ l2

T 4

(
f4
′′
(
k

T 2

)
+B1δi,1 +BN−nδi,N−n

)
, (H.65)

where

β1 =
1(

f1

(
k
T 2

))2

[(
f1

(
k

T 2

)
− f2

(
k

T 2

))
∆

−
(
f1

(
k

T 2

)
f2
′′
(
k

T 2

)
− f1

′′
(
k

T 2

)
f2

(
k

T 2

))]
. (H.66)

The above imply that the eigenvalues at zeroth order are

β
j(0)
D = f4

(
k

T 2

)
, (H.67)

they are all equal and they do not determine the eigenvectors. At first order the

matrix γ−1β is proportional to the matrix δi+1,j + δi,j+1. Its normalized eigenvectors

vj are

vji =

√
2

N + 1
sin

ijπ

N + 1
(H.68)
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with corresponding eigenvalues

λj = 2 cos
jπ

N + 1
. (H.69)

It follows that the eigenvalues of the matrix γ−1β at first order equal

β
j(1)
D =

2l

T 2
f4
′
(
k

T 2

)
cos

jπ

N − n+ 1
. (H.70)

Now we may proceed with perturbation theory to determine the eigenvalues at second

order. They equal

β
j(2)
D =

〈
vj
∣∣ (γ−1β

)(2) ∣∣vj〉 . (H.71)

There are three contributions to the above formula. The first one is trivial and comes

from the part of (γ−1β)
(2)

that is proportional to the identity matrix. It equals

β
j(2)
D1 =

l2

T 4
f4
′′
(
k

T 2

)
. (H.72)

The second contribution comes from the corrections at the edges of the diagonal

part. This equals

β
m(2)
D2 =

l2

T 4

N−n∑
i=1

N−n∑
j=1

vmi (B1δi,1δj,1 +BN−nδi,N−nδj,N−n) vmj

=
l2

T 4

2 (B1 +BN−n)

N − n+ 1
sin2 mπ

N − n+ 1
.

(H.73)

Finally, the third contribution comes from the off-diagonal part. It equals

β
m(2)
D3 =

l2

2T 4
f4
′′
(
k

T 2

)N−n∑
i=1

N−n∑
j=1

vmi (δi+2,j + δi,j+2) vmj

=
l2

T 4
f4
′′
(
k

T 2

)(
1− 4

N − n+ 1
sin2 mπ

N − n+ 1

)
.

(H.74)

Putting everything together, we find

β
m(2)
D =

l2

T 4

(
2f4
′′
(
k

T 2

)
cos2 mπ

N − n+ 1
+

β1

N − n+ 1
sin2 mπ

N − n+ 1

)
. (H.75)

The quantities ξi are

ξi = ξi(0) + ξi(1)ε+ ξi(2)ε2 +O
(
ε3
)
, (H.76)
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where

ξi(0) = e−
√
k
T , (H.77)

ξi(1) = − l

T
√
k
e−
√
k
T cos

iπ

N − n+ 1
, (H.78)

ξi(2) =
l2

2T 2k
e−
√
k
T

[(
1 +

T√
k

)
cos2 iπ

N − n+ 1

+
T

2
√
k

(
1 + f1

(
k

T 2

)
− f2

(
k

T 2

)
− 1/f2

(
k

T 2

))
1

N − n+ 1
sin2 iπ

N − n+ 1

]
.

(H.79)

Similarly, we may calculate the quantities ζ i that enter into the calculation of the

thermal entropy, perturbatively. This is trivial as they equal e−
√
ki
T , where ki are the

known eigenvalues of the matrix K. They equal

ζ i = e−
√
k
T

(
1− l√

kT
cos

iπ

N + 1
+

l2

2kT 2

(
1 +

T√
k

)
cos2 iπ

N + 1

)
+O

(
l3
)

(H.80)

Putting everything together, the entanglement entropy at this order equals

SA = (N − n)

[√
k

T

e−
√
k
T

1− e−
√
k
T

− ln
(

1− e−
√
k
T

)]

+
l2

32k
3
2T 3

[
√
kT csch2

√
k

2T
+ coth

√
k

2T

(
2T 2 + k (2 (N − n)− 1) csch2

√
k

2T

)]
+O

(
l3
)
, (H.81)

The thermal entropy equals

Sth = N

[√
k

T

e−
√
k
T

1− e−
√
k
T

− ln
(

1− e−
√
k
T

)]

+
l2

32
√
kT 3

(N − 1) csch4

√
k

2T
sinh

√
k

T
+O

(
l3
)

(H.82)

and finally, the mutual information equals

I =
l2

16k
3
2T 3

csch2

√
k

2T

(
√
k + T sinh

√
k

T

)
+O

(
l3
)
. (H.83)

I Low Temperature Expansion in a Chain of Os-

cillators

In Appendix G, we showed that it is not simple to find a low temperature expansion

of the eigenvalues of the matrix γ−1β for a generic oscillatory system. However, in
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the case of a chain of oscillators, since we managed to perturbatively calculate these

eigenvalues, we can perform this task. As we have already encountered in section

G, the functions that we need to expand are not analytic at T = 0. However, they

can be expanded in a series of exponentials and we expect to find that all deviations

from the zero-temperature result should be exponentially suppressed.

First we expand the eigenvalues, which have been calculated up to second order

in the l/k expansion in the previous appendix (see equations (H.39), (H.40) and

(H.41)). The generic eigenvalues, i.e. all eigenvalues except βDn and βDn+1, can be

expanded as

βDi = 2 exp

[
−
√
ki
T

(
1 +

k
(2)
i

2k
(0)
i

+O
(
l3
))]

+ . . . , i 6= n, n+ 1, (I.1)

where k
(2)
i is given by the equation (H.45). The two special ones are a little different.

Since they do not vanish at zero temperature they can be expanded around this value

to yield
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+ . . . , (I.3)

where β
(0)
Dn and β

(0)
Dn+1 are the zero temperature values of βDn and βDn+1. At second

order in the l/k expansion, they are

β
(0)
Dn = β

(0)
Dn+1 =

l2n

2
√
kn
√
kn+1

(√
kn +

√
kn+1

)2 . (I.4)

One can observe a basic difference between the low temperature expressions of

the generic eigenvalue and the two special ones. In the first case, the l/k expansion

is performed in the argument of the exponential, whereas this is not the case for the

two special eigenvalues. This is due to the fact that the latter do not vanish at zero

temperature. However, as discussed in Appendix G, we expect that the result should
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be exponentially suppressed, with the eigenfrequencies of the overall system appear-

ing in the exponents. This implies that naturally, the l/k expansion should appear

in the exponents of the low temperature expansion terms. This argument strongly

suggests that the expressions for the two special eigenvalues should be resummed, so

that the first terms read

βDn = β
(0)
Dn + β

(1)
Dn + . . . , βDn+1 = β

(0)
Dn+1 + β

(1)
Dn+1 + . . . , (I.5)
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As discussed in section 13.2, most of the eigenvalues tend to zero at low tem-

peratures. As a result, performing a Taylor expansion of the relations (12.16) and

(12.17) is not a good approach for finding the contributions to the entanglement

entropy from each eigenvalue. Instead the expansion of these formulas around a van-

ishing eigenvalue is required, which is not regular. Following this, the contributions

from the generic eigenvalues read

Si =
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+ · · · =

[
1 +

√
ki
T

(
1 +

k
(2)
i

2k
(0)
i

+O
(
l3
))]

× exp

[
−
√
ki
T

(
1 +

k
(2)
i

2k
(0)
i

+O
(
l3
))]

+ . . . , i 6= n, n+ 1. (I.8)

Using the fact that β
(0)
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Dn+1, the two special contributions are
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(I.9)
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Finally, we may follow the same procedure to calculate the thermal entropy, and,

thus the mutual information. The quantities ζi are

ζi = exp
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−
√
ki
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1 +
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2k
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+O
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+ . . . . (I.10)

The contribution of each ζ to the thermal entropy reads
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It is evident from the equations (I.8) and (I.11) that Si = Sthi for all generic

eigenvalues. Therefore, the mutual information receives non-vanishing contributions

only from the two special eigenvalues. It is equal to

I =

[
1− log

(
β

(0)
Dn

2

)]
β

(0)
Dn

+

{[
− log

(
β

(0)
Dn

2

)(
1 + β

(0)
Dn

)
−

(
1 +

√
kn
T

(
1 +

k
(2)
n

2k
(0)
n

+O
(
l3
)))]

× exp

[
−
√
kn
T

(
1 +

k
(2)
n

2k
(0)
n

+O
(
l3
))]

+ (n→ n+ 1)

}
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J Review of the Dressing Method

The theories emerging after the Pohlmeyer reduction of the non-linear sigma models

describing the propagation of classical strings in symmetric spaces possess Bäck-

lundtransformations, which connect pairs of solutions. These transformations are a

manifestation of the model’s integrability. The dressing method [260, 286, 287, 298,

299,365,366] is the direct analogue of the Bäcklundtransformations in the NLSM. In

the literature, it has been used in order to generate non-trivial solutions [299–303],

whose seed solution corresponds to the vacuum of the reduced theory. In this ap-

pendix, we review a few elements of the theory of NLSMs on symmetric spaces, the

dressing method in general, and the case of spheres Sn in particular. This is by no

means a complete review of the subject. It is rather a quick introduction to some

concepts used in this paper. In the next section, we apply the dressing method on

an elliptic seed string solution on S2 in order to generate new non-trivial string so-

lutions. In the following, without loss of generality, we take the radius of the target

space sphere equal to one.
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J.1 The Non-linear Sigma Model

The action of the non linear sigma model is

S =
1

8

∫
dξ+dξ−Tr

(
∂+f

−1∂−f
)
, (J.1)

where f takes values in the Lie group F and it is a function of the worldsheet

coordinates ξ±. Varying this action with respect to f yields the equation of motion

∂+

(
∂−ff

−1
)

+ ∂−
(
∂+ff

−1
)

= 0. (J.2)

We introduce the currents J± := ∂±ff
−1, which allow the expression of the equation

of motion (J.2) as

∂+J− + ∂−J+ = 0. (J.3)

By construction, the currents J± obey the relation

[∂+ − J+, ∂− − J−] = 0. (J.4)

Introducing a complex parameter λ, equations (J.3) and (J.4) can be packed to one,

namely, [
∂+ −

J+

1 + λ
, ∂− −

J−
1− λ

]
= 0. (J.5)

In this form, equations (J.3) and (J.4) can be recovered as the residues of (J.5) at

λ = ±1.

We introduce the following auxiliary system of first order differential equations

∂±Ψ (λ) =
J±

1± λ
Ψ (λ) . (J.6)

Equation (J.5) is just the compatibility condition for this system.

The NLSM action (J.1) is invariant under the transformations

f → UL f UR, UL,R ∈ F. (J.7)

Thus, it possesses a global FL×FR symmetry. The associated left and right conserved

currents are

JLµ = ∂µff
−1, JRµ = f−1∂µf, (J.8)

respectively. Notice that the left current was already defined earlier, where we sup-

pressed the superscript L for notational simplicity. In the following, we will continue

to do so for the left currents and we will only write the superscript R for the right

currents if necessary. The corresponding conserved charges are

QL =

∫
dξ1∂0ff

−1, QR =

∫
dξ1f−1∂0f. (J.9)
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J.2 The Dressing Method

Let F = SL(n,C) and suppose that we already know a solution f — the seed

solution — of the equation of motion (J.5). The dressing transformation allows us

to construct a new solution f ′ from the seed solution f . In principle, we can solve

the auxiliary system (J.6) with the condition Ψ(0) = f and find Ψ(λ). The dressing

transformation involves constructing a new solution Ψ′(λ) of the auxiliary system

(J.6) of the form

Ψ′(λ) = χ(λ)Ψ(λ). (J.10)

The n× n matrix χ(λ) is called the dressing factor. It can be shown [287] that the

general form of χ is

χ(λ) = I +
∑
i

Qi

λ− λi
, χ(λ)−1 = I +

∑
i

Ri

λ− µi
. (J.11)

It turns out that at the level of the F = SL(n,C) NLSM, the poles can be selected

at arbitrary positions on the complex plane and we are left with the problem of

specifying the appropriate residues. There are two conditions that the residues must

satisfy, which are adequate for their specification. The first one is the demand that

χ(λ)χ(λ)−1 = I. Taking the residues of this equation at the positions of the poles

λi and µi provides a set of algebraic equations for Qi and Ri. Notice that one has

to be careful when a pole of χ(λ) coincides with a pole of χ(λ)−1, since in this case

the product χ(λ)χ(λ)−1 will have a second order pole, which has to be considered

separately.

The solution Ψ′ (λ) of the auxiliary system gives rise to a new solution f ′ = Ψ′ (0)

of the NLSM. It follows that f ′ and Ψ′ (λ) must satisfy equations (J.6), namely,

J ′± = (1± λ)∂±Ψ′ (λ) (Ψ′ (λ))
−1
. (J.12)

Using (J.10) this reduces to

J ′± = (1± λ)∂±χχ
−1 + χJ±χ

−1 = −(1± λ)χ∂±χ
−1 + χJ±χ

−1. (J.13)

Taking the residues of the previous equations at the positions of the poles λi and

µj, yields two more relations for the unknown matrices Qi and Ri, which are first

order differential equations for the latter. These, combined with the set of algebraic

equations derived from the residues of the equation χ(λ)χ(λ)−1 = I, are sufficient

for the specification of the residues Qi and Ri. More details are provided in [287]

and in appendix K.1.

We now turn to the effect of the dressing transformation on the sigma model

charge. The latter gets altered by

∆QL =

∫
dξ1 (J ′0 − J0) =

1

2

∫
dξ1 (J ′+ − J ′− − J+ + J−) . (J.14)
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We notice that the left hand side of (J.13) is independent of λ. In the limit |λ| → ∞
(J.13) reduces to

J ′± = ±∂±
∑
j

Qj + J± (J.15)

Using (J.15) we arrive at the equation

∆QL =
∑
j

∫
dξ1∂1Qj, (J.16)

which relates the charges of the seed and dressed solutions.

J.3 Involutions

As it has already been mentioned, the previous results refer to the SL(n,C) NLSM.

For our purposes f must take values in some symmetric space F/G, where F , G are

Lie groups and G ⊂ F . This can be achieved by constraining appropriately the field

f to take values in the coset F/G with the help of an involution. An involution is a

bijective mapping σ : F → F with the properties

σ2 = 1, (J.17)

and

σ(f1f2) = σ(f1)σ(f2), (J.18)

where f1, f2 ∈ F . Furthermore, we demand that the involution σ obeys

σ(g) = g, ∀g ∈ G. (J.19)

On the Lie algebra side, the mapping σ is just a linear operator acting on the vector

space f , having the property σ2 = 1. Since σ2 = 1, σ has eigenvalues ±1 and thus

the vector space f can be decomposed as follows

f = g ⊕ p, (J.20)

where g and p are the +1 and −1 eigenspaces respectively. Trivially it holds that

[g,g] ⊂ g, [g,p] ⊂ p, [p,p] ⊂ g, (J.21)

where g is by definition the Lie algebra corresponding to the subgroup G and p is

its orthogonal complement. Thus, the involution σ naturally splits the group F to

the subgroup G and the coset F/G.

We consider now the following coset valued field

F := σ(f)f−1. (J.22)
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It can be easily shown that it is indeed invariant under the coset equivalence relation

f ∼ fg. Acting on F with σ gives the following relation

σ(F) = F−1. (J.23)

This is the constraint we need to impose on the fields f of the NLSM (J.1) in order

to restrict them inside the coset F/G. In the following, we assume that the sigma

model field is appropriately constrained into the coset F/G and we denote it again

as f . The NLSM action with target space the coset F/G is not invariant under the

full FL × FR symmetry group, but only under transformations of the type

f → σ(U) f U−1. (J.24)

This implies that the conserved charges QL,QR are not independent anymore. They

are related by

QL = −σ(QR). (J.25)

In general, when we want to study the NLSM with a symmetric target space

F/G, we start with the model on the group SL(n,C). Using one or possibly more

involutions denoted by σ+, we restrict to the subgroup F ⊂ SL(n,C) and then

via another involution σ− we further restrict the target space to be F/G ⊂ F . In

particular, we are interested in the spheres Sn = SO(n+1)/SO(n). For this purpose,

we need three involutions [298].

Firstly, we demand invariance (σ+(f) = f), under the involution

σ+(f) =
(
f †
)−1

. (J.26)

Obviously, this involution restricts the target space to be SU(n+ 1) ⊂ SL(n+ 1,C).

The auxiliary system equations (J.6) and invariance of the group element f under

this involution imply that Ψ(λ) obeys

Ψ(λ) =
(
Ψ(λ̄)†

)−1
. (J.27)

We require that the new solution f ′, found after the application of the dressing

method, also belongs in SU(n+ 1). This means that the condition (J.27) should be

obeyed by Ψ′(λ), which in turn implies that χ(λ) =
(
χ(λ̄)†

)−1
. Applying the above

to the dressing factor, as given by equation (J.11), implies that the poles and the

residues obey

µi = λ̄i and Ri = Q̄i, (J.28)

simplifying the dressing factor χ. The simplest case to consider is a dressing factor

with only one pole. In this case, if the initial solution f was the vacuum solution,
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the dressed one f ′ turns out to be the one soliton solution. By adding more poles to

the dressing factor one would get the N -soliton solution in general.

The second involution needed is the following

σ−(f) = Jfθ−1, J = diag{+1, · · · ,+1,−1}. (J.29)

Demanding that σ−(f) = f−1, — see equation (J.23) — restricts the target space

to be SU(n + 1)/U(n). Then, the auxiliary system (J.6) implies that when f obeys

σ−(f) = f−1, Ψ(λ) obeys

Ψ(λ−1) = fJΨ(λ)J−1. (J.30)

Applying the above on Ψ′(λ), results in the following relation for the dressing factor:

χ(λ−1) = f ′Jχ(λ)Jf−1. This in turn implies that poles in the dressing factor come

in pairs {λ, λ−1}. Thus, the simplest case to consider is that of a dressing factor with

two poles λ1 and λ2 = 1/λ1. In this case, the corresponding residues must satisfy

Q2 = −λ2
2f
′JQ1Jf. (J.31)

Finally, we demand invariance of f under the involution

σ+(f) = f ∗. (J.32)

This is just the reality condition to be imposed on the solution, so that it belongs to

the coset SO(n+ 1)/SO(n). The auxiliary system (J.6) implies that Ψ(λ) must obey

Ψ
(
λ̄
)

= Ψ (λ) . (J.33)

Demanding the above for Ψ′(λ) leads to the fact that the poles in the dressing factor

must come in pairs {λ, λ̄}. Had we imposed this involution to the SU(N) model,

we would have concluded that the simplest possible dressing factor would have two

poles λ1 and λ2 = λ̄1 with the corresponding residues obeying

Q2 = Q̄1. (J.34)

Notice that imposing the reality involution together with the unitarity involution

adds an extra complexity to finding the appropriate dressing factor. The latter

involution enforces the poles of χ (λ) to come in pairs of numbers being complex

conjugate to each other. The former involution enforces the poles of χ (λ)−1 to be

the complex conjugates of the poles of χ (λ). Thus, when studying SO(N) models

or coset subspaces of the latter, the dressing factor χ (λ) necessarily has poles that

coincide with the poles of its inverse χ (λ)−1, complicating the specification of the

residues Qi as we discussed above. In the simplest case of two poles, it obviously

holds that µ1 = λ̄1 = λ2 and µ2 = λ̄2 = λ1.
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In the case of interest, we have to impose the constraints originating from the

coset involution σ− and the reality involution. This implies that naively, the dressing

factor in the case of the SO(n + 1)/SO(n) NLSM comes with quadruplets of poles

{λ1, λ2 = λ̄, λ3 = λ−1, λ4 = λ̄−1}. The corresponding residues obey Q2 = Q̄1,

Q3 = −λ2
2f
′JQ1Jf and Q4 = Q̄3. However, the simplest possible dressing factor

does not have four poles, but only two. When |λ1| = 1, it holds that λ̄ = λ−1 and

the quadruplet reduces to a doublet of poles. This is the case that we will consider

from now on. In this case, the dressing factor assumes the form

χ (λ) = I +
λ1 − λ̄1

λ− λ1

P +
λ̄1 − λ1

λ− λ̄1

P̄ , (J.35)

where

P =
Ψ
(
λ̄1

)
pp†Ψ−1 (λ1)

p†Ψ−1 (λ1) Ψ
(
λ̄1

)
p

(J.36)

and the vector p is any constant complex vector obeying pTp = 0 and p̄ = Jp. More

details are provided in [287,367] and in the appendix K.1.

J.4 Pohlmeyer Reduction and Virasoro Constraints

As it was described in [264] the sigma model on a symmetric space admits a Pohlmeyer

reduction, which amounts to exploiting the conformal symmetry of the NLSM at the

classical level in order to set the components of the energy momentum tensor to be

constant, i.e.

T±± = m2
±. (J.37)

It was shown in [268] that at algebraic level the Pohlmeyer reduction is equivalent

to imposing the condition,

∂±ff
−1 = ξ±Λ±ξ

−1
± , with σ−(ξ±) = f−1ξ±, (J.38)

where Λ± are constant elements in a maximal abelian subspace of p and ξ± ∈ F .

The degree of freedom left after the reduction is γ = ξ−1
− ξ+. In order to see how this

is equivalent to (J.37), we will use the parametrization (23.5) for the coset element

f . The components of the energy momentum tensor of the NLSM are

T±± = Tr(J±J±). (J.39)

From (J.8), (J.38) and (23.5), it follows that

T±± = −8(∂±X
m)(∂±X

m) = TrΛ2
±. (J.40)
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If we make the identification TrΛ2
± = −8m2

±, equation (J.40) will become (J.37).

This indicates the equivalence between (J.38) and (J.37). More details on this can

be found in [268].

In order to see if the dressing transformation is compatible with Pohlmeyer re-

duction, we go back to (J.13), divide by (1 ± λ) and find the residues at λ = ±1.

This gives the following relations

∂±f̃ f̃
−1 = χ(∓1)∂±ff

−1χ(∓1)−1. (J.41)

Using equation (J.38) yields

∂±f̃ f̃
−1 = χ(∓1)ξ±Λ±ξ

−1
± χ(∓1)−1. (J.42)

Therefore, if we set

ξ̃± = χ(∓1)ξ±Ξ, [Ξ,Λ±] = 0, (J.43)

equation (J.42) will take the form of the Pohlmeyer constraint (J.38). This shows

that the dressing procedure respects the constraint (J.38) or equivalently (J.37).

The element Ξ will be chosen so that the degree of freedom of the reduced system

γ̃ = ξ̃−1
− ξ̃+ is an element of the subgroup G.

Interpreting X i as the coordinates of a string moving on a sphere, it can be shown

that the NLSM charge is related to the angular momentum of the string. Using (J.40)

and (J.9) we find that

QL = −2

∫
dξ1 (Xµ∂0X

ν −Xν∂0X
µ) . (J.44)

Therefore, the sigma model charge is proportional to the string angular momentum.

K The Dressing Factor with a Pair of Poles

K.1 The Construction of the Dressing Factor

In this section we construct the simplest dressing factor. We begin the analysis by

presenting the constraints that have to be imposed on the dressing factor

χ−1(λ) = χT (λ), (K.1)

χ (1/λ) = f ′Jχ (λ) fJ, (K.2)

χ̄
(
λ̄
)

= χ (λ) , (K.3)

so that Ψ′(λ) = χ(λ)Ψ(λ) obeys (23.11), (23.12) and (23.13).
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Considering meromorphic dressing factors, the above constraints naively suggest

that the poles must form quadruplets of the form
(
λ1, λ̄1, λ

−1
1 , λ̄−1

1

)
[268]. Thus, the

dressing factor should have the following structure:

χ (λ) = I +
Q

λ− λ1

+
Q̄

λ− λ̄1

+
Q̃

λ− λ−1
1

+
¯̃Q

λ− λ̄1
−1 . (K.4)

Concerning the discussion about the reduction group, the reader should notice that

for λ = 0, equations (K.1), (K.2) and (K.3) reduce to

χ̄ (0) = χ (0) , (K.5)

χ−1(0) = χT (0), (K.6)

I = f ′Jf ′J. (K.7)

As long as Ψ(0) = f , these relations imply that f ′ satisfies (23.6) and (23.7) and

thus, it belongs to the coset SO(3)/SO(2). In the following, we show that the precise

form of the matrices mi(λ) is irrelevant.

We restrict our analysis to the simplest dressing factor. This emerges, when the

poles lie on the unit circle, i.e.

λ1 = eiθ1 , (K.8)

where θ1 ∈ R. This choice implies that the location of the poles at λ̄1 and λ−1
1

coincide and thus, the quadruplet of poles reduces to a doublet. After an appropriate

redefinition of the residues, the dressing factor can be expressed as

χ = I +
eiθ1 − e−iθ1
λ− eiθ1

Q− eiθ1 − e−iθ1
λ− e−iθ1

Q̄. (K.9)

Clearly, the constraint (K.3) is satisfied. We postulate that the inverse of the dressing

factor is given by (K.1). Next, we impose the relation χχ−1 = I. The cancellation

of the residue of the second order poles at eiθ1 and e−iθ1 requires QQT = 0. Then,

the cancellation of the residues of the first order poles on the same locations implies

that

Q
(
I −Q†

)
+
(
I − Q̄

)
QT = 0. (K.10)

Clearly, this relation is satisfied if

Q = Q† (K.11)

and Q is a projection matrix, i.e. it obeys Q2 = Q. The relation χ−1χ = I implies

QTQ = 0. We define

Q =
FF †

F †F
. (K.12)
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where F is a vector. The constraints QQT = QTQ = 0 imply that

F TF = 0. (K.13)

The requirement that Ψ′ satisfies the auxiliary system determines the equations of

motion of the dressing factor, which read

(1± λ) (∂±χ)χ−1 + χ (∂±f) f−1χ−1 = (∂±f
′) f ′−1. (K.14)

For λ = 0 these equations are satisfied trivially, thus one needs only to ensure that

the residues of the various poles cancel. The right-hand-side of (K.14) does not

depend on λ, thus, the same must hold true for the left-hand-side. The cancellation

of the residues of the second order poles at eiθ1 suggests that(
1± eiθ1

)
∂±F

† + F † (∂±f) f−1 = 0. (K.15)

This equation implies that

F † = p†Ψ−1(eiθ1), (K.16)

where p is a constant vector. Taking into account (36.50) and (36.52) it is easy to

show that

F = Ψ(e−iθ1)
[
C†(eiθ1)C(e−iθ1)

]−1
p. (K.17)

It is a matter of elementary algebra to show that

F TF = pT
[
C†(eiθ1)C̄(eiθ1)

]−1
p. (K.18)

We may redefine the constant vector p as follows

p = C†(eiθ1)p̃, (K.19)

where

p̃T p̃ = 0, (K.20)

in order to satisfy (K.13).Equation (K.17) may be re-expressed as

F = Ψ(e−iθ1)C−1(e−iθ1)p̃ = V (e−iθ1)p̃, (K.21)

where

V (λ) = JUJV̂ (λ). (K.22)

Furthermore, in view of (36.51) we may obtain

gJF = −Ψ(eiθ1)C−1(eiθ1)M(eiθ1)p̃ (K.23)

and

F̄ = Ψ(eiθ1)C−1(eiθ1)¯̃p. (K.24)
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Clearly, if
¯̃p = −M(eiθ1)p̃, (K.25)

we will obtain

F̄ = fJF, (K.26)

which implies

Q̄ = fJQfJ. (K.27)

The above formulae and equation (36.43) imply that the precise form of the matrix

C does not affect F , in the sense that C can be absorbed into the selection of the

constant vector p. Without loss of generality, it may be substituted by C(0) = I.

Moreover, for M = −J , equations (K.20) and (K.25) restrict the constant vector p̃

to be of the form

p̃ =

cosw

sinw

i

 , (K.28)

where w ∈ R. The overall scale is irrelevant since it cancels at the level of the residues

Q.

Then, equating the residues of the left-hand-side and right-hand-side of (K.2) we

obtain

Q̄ = e−2iθ1f ′JQfJ, (K.29)

while the analytic part implies

χ(0)fJχ(0) = fJ. (K.30)

This relation is the coset constraint f ′Jf ′J = I. It is simple to show that these

relations are indeed satisfied. Finally, it is a matter of algebra to show that the

residues of the first order poles of the equations of motion (K.14) cancel.

K.2 The Dressed Solution for a Pair Poles on the Unit Circle

Using the dressing factor, which is constructed in appendix K.1, the dressed element

of the coset reads

f ′ = J

[
Jf − eiθ1 − e−iθ1

eiθ1
Jf

WW T

W TJfW
Jf +

eiθ1 − e−iθ1
e−iθ1

WW T

W TJfW

]
, (K.31)

where W is given by

W = JF̄ . (K.32)

Notice that W TW = 0 as a direct consequence of (K.13). Using the mapping (23.5),

along with the last relation, we obtain

X ′ = cos θ1X + i sin θ1

(
W

W TX
−X

)
, (K.33)
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where X ′ corresponds to the element of the coset g′. Notice that XTX ′ = cos θ1,

which implies that each point of the dressed string lies on an epicycle of angle θ1,

which is centered at a point of the seed string. In order to express the above relation

in a manifestly real form we implement (K.26). The latter in view of (23.5) implies

X =
W − W̄
2W TX

⇒ XT W̄ = −XTW. (K.34)

Thus, the dressed solution of the NLSM reads

X ′ = cos θ1X + sin θ1Xw, (K.35)

where

Xw = i
W + W̄

XT
(
W − W̄

) =
ReW

XT ImW
(K.36)

is a unit norm vector, which is perpendicular to X.

Let us use the specific form of X ′ in order to verify that it satisfies the same

Virasoro constraints as the seed, the NLSM equations of motion and specify the

corresponding Pohlmeyer field and its connection to that of the seed. Taking into

account (K.32), the equations of motion (K.15) imply

∂±W =
1

1± eiθ1
J (∂±f) JfW. (K.37)

Substituting g and using the mapping (23.5), we obtain

∂±W =
2

1± eiθ1
((
XTW

)
∂±X −

(
W T∂±X

)
X
)
. (K.38)

In addition, since X is unit norm, it follows that

∂±
(
W TX

)
= −1∓ eiθ1

1± eiθ1
W T∂±X. (K.39)

Substituting the latter into (K.38) yields

∂±W =
2

1± eiθ1
(
XTW

)
∂±X +

2

1∓ eiθ1
∂±
(
W TX

)
X. (K.40)

Taking the complex conjugate and using the fact that XT W̄ = −XTW , we obtain

∂±W̄ = − 2

1± e−iθ1
(
XTW

)
∂±X −

2

1∓ e−iθ1
∂±
(
W TX

)
X. (K.41)

The above imply that

∂±
(
W + W̄

)
= 2

1∓ eiθ1
1± eiθ1

(
XTW

)
∂±X + 2

1± eiθ1
1∓ eiθ1

(
∂±
(
W TX

))
X. (K.42)
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Taking everything into account, we obtain

∂±X
′ = ±

(
∂±X −

∂±
(
W TX

)
W TX

X

)
−
∂±
(
W TX

)
W TX

X ′. (K.43)

Having this equation at hand it is possible to proceed into the necessary verifications.

It is a matter of algebra to show that

(∂±X
′)
T

(∂±X
′) = (∂±X)T (∂±X) = m2

±, (K.44)

thus the Virasoro constraints are preserved by the dressing transformation. It order

to derive the above it is advantageous to use the relation (∂±X)T X ′ = −XT (∂±X
′).

Similarly, one can show that the cosine of the dressed Pohlmeyer field is related to

the one of the seed as

(∂+X
′)
T
∂−X

′ = − (∂+X)T ∂−X − 2
∂+

(
W TX

)
∂−
(
W TX

)
(W TX)2 . (K.45)

Using (K.38) and (K.39) it is easy to show that

∂+∂−
(
W TX

)
= −

[
(∂+X)T ∂−X

] (
W TX

)
. (K.46)

It is a matter of algebra to show that

∂+∂−X
′ +
[
(∂+X

′)
T
∂−X

′
]
X ′

= ∂+∂−X
′ +

[
− (∂+X)T ∂−X − 2

∂+

(
W TX

)
∂−
(
W TX

)
(W TX)2

]
X ′ =

∂+∂−X +
[
(∂+X)T ∂−X

]
X, (K.47)

which proves that the equations of motion for X ′ are satisfied as long as the ones for

X do so.

The identity
∂+f∂−f

f 2
=
∂+∂−f

f
− ∂+∂− ln f (K.48)

and (K.46) imply that (K.45) assumes the form

(∂+X
′)
T
∂−X

′ = (∂+X)T ∂−X + ∂+∂− ln
[(
W TX

)2
]
. (K.49)

This is an algebraic addition formula for the cosine of the Pohlmeyer field. In the

context of AdS/CFT, the latter is the on-shell Lagrangian density of the S2 part of

the string action.
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The sine of the Pohlmeyer field of the dressed solution is given by

m+m− sinϕ′ = X ′ · (∂+X
′ × ∂−X ′) = − cos θ1X · (∂+X × ∂−X)

− sin θ1

[
∂+

(
W TX

)
(W TX)

X · (Xw × ∂−X) +
∂−
(
W TX

)
(W TX)

X · (∂+X ×Xw)

]
. (K.50)

One can easily show that

XT
w∂±X = −X

T∂±X
′

sin θ1

= ±
∂±
(
W TX

)
(W TX)

1± cos θ1

sin θ1

, (K.51)

which allows the expansion of Xw in the basis formed by the vectors ∂±X. After

some tedious, but straightforward, algebra one may obtain

sinϕ sinϕ′ = − cos θ1 [1 + cosϕ cosϕ′]

−

( ∂+

(
W TX

)
m+ (W TX)

)2

(1 + cos θ1)−

(
∂−
(
W TX

)
m− (W TX)

)2

(1− cos θ1)

 , (K.52)

which is equivalent to[
cos

(
ϕ− ϕ′

2

)]2

cot

(
θ1

2

)
−
[
cos

(
ϕ+ ϕ′

2

)]2

tan

(
θ1

2

)
=(

∂−
(
W TX

)
m− (W TX)

)2

tan

(
θ1

2

)
−

(
∂+

(
W TX

)
m+ (W TX)

)2

cot

(
θ1

2

)
. (K.53)

In addition, (K.45) can be written in the form

cos

(
ϕ− ϕ′

2

)
cos

(
ϕ+ ϕ′

2

)
= −

(
∂+

(
W TX

)
m+ (W TX)

)(
∂−
(
W TX

)
m− (W TX)

)
. (K.54)

Thus, it is trivial to show that

∂+

(
W TX

)
(W TX)

= ±m+ tan

(
θ1

2

)
cos

(
ϕ+ ϕ′

2

)
, (K.55)

∂−
(
W TX

)
(W TX)

= ∓m− cot

(
θ1

2

)
cos

(
ϕ− ϕ′

2

)
. (K.56)

Finally, (K.49) implies that

∂+∂− ln
(
W TX

)
= m+m− sin

(
ϕ+ ϕ′

2

)
sin

(
ϕ− ϕ′

2

)
. (K.57)
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Since ∂+∂− ln
(
W TX

)
= ∂−∂+ ln

(
W TX

)
, the latter corresponds to the pair of first

order equations, which are the Bäcklundtransformations of the sine-Gordon equation

(18.26). These read

∂+

(
ϕ− ϕ′

2

)
= αm+ sin

(
ϕ+ ϕ′

2

)
, (K.58)

∂−

(
ϕ+ ϕ′

2

)
= − 1

α
m− sin

(
ϕ− ϕ′

2

)
, (K.59)

where, according to the presented analysis, the parameter α of the Bäcklundtrans-

formation is given by

α = ± tan

(
θ1

2

)
. (K.60)

The sign of α can not be determined since it corresponds to the freedom of shifting

either a or a′ by 2π.

L Double Root Limits of the Dressed SG Solu-

tions

The dressed solutions of the sine-Gordon equation (25.37) reduce to simpler expres-

sions in the special case of a double root of the corresponding Weierstrass elliptic

function. This is physically expected, since in these limits, the seed solution is ei-

ther the vacuum or the one-kink solution, implying that the corresponding dressed

solution should coincide to the one-kink or two-kink solution, respectively.

In the following, without loss of generality, we assume a > 1. The first case

to consider is the limit E → −µ2. In this limit, the translationally invariant seed

solution tends to the vacuum ϕ = 0, and, thus, our expressions should degenerate to

the well-known expressions of single kinks of the sine-Gordon equation. Indeed, the

two smaller roots coincide, therefore the imaginary period of the Weierstrass elliptic

function diverges, whereas the real period acquires the specific value

ω1 =
π

2µ
. (L.1)

The parameter D acquires the value

D =
µ

2

(
a+ a−1

)
. (L.2)

Finally, it is a matter of simple algebra to show that the solution (25.37) acquires

the usual expression

ϕ̃ = 4 arctan e
µ
(
a+a−1

2
ξ1−a−a

−1

2
ξ0
)
. (L.3)
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In the case of static seeds, in the limit E → −µ2, the seed solution tends to the

unstable vacuum ϕ = π and the dressed solutions tend to solutions evolving from

one unstable vacuum to another.

Another interesting case is the limit E → µ2. In the case of a static seed solution,

this is a single static kink. Therefore, we should expect that our solutions should

degenerate to the usual two-kink solutions of the sine-Gordon equation, in the frame

where one of the two is stationary. In this case, the two larger roots coincide, and,

thus, the real period of the Weierstrass elliptic function diverges. The seed solution

is written as

cosϕ = 1− 2

cosh2µξ1
(L.4)

or

ϕ = 4 arctan eµξ
1

. (L.5)

The parameter D assumes the value

D =
µ

2

∣∣a− a−1
∣∣ (L.6)

and the parameter ã equals

sinhµã =
2

a− a−1
. (L.7)

Finally, the solution (25.39) degenerates to the form

tan
ϕ̃

4
=
a− 1

a+ 1

e
µ
(
a+a−1

2
ξ1+a−a−1

2
ξ0
)
− e−µξ1

1 + e
µ
(
a+a−1−2

2
ξ1+a−a−1

2
ξ0
) , (L.8)

which is indeed the form of the two-kink solution in the frame that one of those is

stationary. It corresponds to the outcome of the addition formula (25.3) with ϕ = 0,

a1 = −1 and a2 = a.

M The Asymptotics of the Dressed Elliptic Strings

with D2 > 0

In the following we present some details of the algebra related to the asymptotic

behaviour of the dressed string solutions with a propagating kink Pohlmeyer coun-

terpart (D2 > 0). For simplicity we consider the case of static seeds. In a similar

manner one can study the asymptotic behaviour of dressed strings with translation-

ally invariant seeds.
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Equations (24.77), (24.78) and (24.79) imply that the vectors Ei, in the case

∆ = −D2 < 0 can be written as

E1 = cosh
(
Dξ0 + iΦ

(
ξ1; ã

))
e1 + i sinh

(
Dξ0 + iΦ

(
ξ1; ã

))
e2, (M.1)

E2 = i sinh
(
Dξ0 + iΦ

(
ξ1; ã

))
e1 − cosh

(
Dξ0 + iΦ

(
ξ1; ã

))
e2, (M.2)

E3 = e3, (M.3)

where the vectors e1, e2 and e3 are given by (24.60). Far away from the position of

the kink, or else when

±
(
Dξ0 + iΦ

(
ξ1; ã

))
≡ ±Φ̃

(
ξ0, ξ1

)
� 1, (M.4)

these vectors asymptotically assume the form

E1 '
1

2
e±(Dξ0+iΦ(ξ1;ã)) (e1 ± ie2) , (M.5)

E2 '
1

2
e±(Dξ0+iΦ(ξ1;ã)) (−e2 ± ie1) , (M.6)

E3 ' e3. (M.7)

This implies that the solution of the auxiliary system (24.92), asymptotically equals

Ψ ' −1

2
e±(Dξ0+iΦ(ξ1;ã)) ( e1 ± ie2 −e2 ± ie1 0

)
. (M.8)

It has to be noted that the signs ± in the above expressions for the asymptotic

behaviour of the solution refer to the function Φ̃ going to ±∞ and not necessarily

the static gauge spacelike coordinate σ1. One has to be careful when studying the

asymptotic behaviour of the string in identifying the correspondence between the

limits of these two parameters. Using the general vector p given by

p =

 a cos b

a sin b

ia

 , (M.9)

we may find that the vectors X±, defined in equation (24.101), can be written as

X+ = ΨJp ' −a
2
e±(Dξ0+iΦ(ξ1;ã))±ib (e1 ± ie2) , (M.10)

X− = JΨJp ' −a
2
e±(Dξ0+iΦ(ξ1;ã))±ibJ (e1 ± ie2) , (M.11)

which finally implies that far away from the position of the kink, the dressed solution

assumes the form

X ′ = −U 1

℘2
A


℘1

(
cos θ1℘a + i℘′(a)

2`℘a

)
∓ D℘′(ξ1+ω2)

2℘1℘a

±D
(

cos θ1℘a + i℘′(a)
2`℘a

)
+

℘′(ξ1+ω2)
2℘a

− cos θ1℘
2
A

 , (M.12)
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where √
℘ (ξ1 + ω2)− ℘ (a) ≡ ℘a, (M.13)√
x1 − ℘ (ξ1 + ω2) ≡ ℘1, (M.14)√

℘ (ã)− ℘ (ξ1 + ω2) ≡ ℘A (M.15)

and the matrix U is given by equation (24.16).

The Weierstrass elliptic function obeys the identity

[(℘ (a)− ℘ (c)) ℘′ (b)± (℘ (b)− ℘ (c)) ℘′ (a)]
2

= (℘ (a)− ℘ (b))2 [℘′2 (c) + 4 (℘ (a)− ℘ (c)) (℘ (b)− ℘ (c)) (℘ (a∓ b)− ℘ (c))
]
,

(M.16)

which is going to be useful in the following. Trivially, if c is any of the half periods,

implying that ℘ (c) equals one of the roots ei, the above identity assumes the form

[(℘ (a)− ei) ℘′ (b)± (℘ (b)− ei) ℘′ (a)]
2

= 4(℘ (a)− ℘ (b))2 (℘ (a)− ei) (℘ (b)− ei) (℘ (a∓ b)− ei) . (M.17)

Writing the dressed solution in spherical coordinates as usual

X ′ =

 sin θdressed cosϕdressed

sin θdressed sinϕdressed

cos θdressed

 , (M.18)

we may read from equation (M.12) that

` cos θdressed = − 1

℘2
A

(
cos θ1℘1 (℘ (a)− ℘ (ã))− ℘1

i℘′ (a)

2`
±D℘

′ (ξ1 + ω2)

2℘1

)
.

(M.19)

The above equation gets simplified via the use of the identity cos 2x = 1−tan2x
1+tan2x

=
cot2x−1
cot2x+1

,

cos θ1 (℘ (a)− ℘ (ã)) = −1

4
cos θ1

[
m2

+

(
1 + tan2 θ1

2

)
+m2

−

(
cot2 θ1

2
+ 1

)]
= −1

4

[
m2

+

(
1− tan2 θ1

2

)
+m2

−

(
cot2 θ1

2
− 1

)]
=
i℘′ (a)

2`
+
℘′ (ã)

2D
.

(M.20)

In the last step we used equations (20.38) and (24.71). The above equation implies

that

` cos θdressed = − 1

℘2
A

(
℘1
℘′ (ã)

2D
±D℘

′ (ξ1 + ω2)

2℘1

)
= − (℘ (ξ1 + ω2)− x1)℘′ (ã)∓ (℘ (ã)− x1)℘′ (ξ1 + ω2)

2 (℘ (ξ1 + ω2)− ℘ (ã))
√

(x1 − ℘ (ξ1 + ω2)) (℘ (ã)− x1)
. (M.21)
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Direct application of identity (M.17) results in

`2cos2θdressed = x1 − ℘
(
ξ1 + ω2 ± ã

)
= `2cos2θseed

(
ξ1 ± ã

)
. (M.22)

In the case of seeds with rotating counterparts, where cosθseed has a given sign for

all points of the seed solution, i.e. the whole seed solution lies in a single hemisphere,

equation (M.21) implies that the asymptotic behaviour of the dressed string has the

same property. However, whether this is the same hemisphere is determined by the

sign of −℘′ (ã). In other words when ã > 0 is positive, the seed and asymptotic

behaviour of the dressed solution lie in the same hemisphere, whereas when ã < 0

they lie in opposite hemispheres. This is exactly the behaviour described in section

27.1.

In a similar manner, it is a matter of algebra to show that the azimuthal angle

of the dressed solution assumes the form

φdressed = ∓ arctan
−DP1 − ` (P2 ± P3)

`P1 −D (P2 ± P3)
+ φseed

= ∓ arctan
`

D
∓ arctan

P1

(P2 ± P3)
+ φseed,

(M.23)

where

P1 =
(
℘
(
ξ1 + ω2

)
− ℘ (ã)

)
i℘′ (a) , (M.24)

P2 =
(
℘
(
ξ1 + ω2

)
− ℘ (a)

)
℘′ (ã) , (M.25)

P3 = (℘ (a)− ℘ (ã))℘′
(
ξ1 + ω2

)
. (M.26)

It is trivial that

∂0φdressed = ∂0φseed, (M.27)

while

∂1φdressed = ∓(P2 ± P3) ∂1P1 − P1∂1 (P2 ± P3)

P 2
1 + (P2 ± P3)2 + ∂1φseed. (M.28)

The denominator of the fraction in (M.28) can be simplified via the direct appli-

cation of the identity (M.16),

P 2
1 + (P2 ± P3)2 =

[(
℘
(
ξ1 + ω2

)
− ℘ (a)

)
℘′ (ã)∓ (℘ (ã)− ℘ (a))℘′

(
ξ1 + ω2

)]2
−
(
℘
(
ξ1 + ω2

)
− ℘ (ã)

)2
℘′2 (a)

= 4
(
℘
(
ξ1 + ω2

)
− ℘ (ã)

)2 (
℘
(
ξ1 + ω2

)
− ℘ (a)

)
(℘ (ã)− ℘ (a))(

℘
(
ξ1 + ω2 ± ã

)
− ℘ (a)

)
. (M.29)
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The numerator can also be simplified using Weierstrass differential equation, ℘′2 (x) =

4℘3 (x)− g2℘ (x)− g3 and its derivative, ℘′′ (x) = 6℘2 (x)− g2/2,

(P2 ± P3) ∂1P1 − P1∂1 (P2 ± P3)

= ±i℘′ (a) (℘ (ã)− ℘ (a))

×
[
℘′′
(
ξ1 + ω2

) (
℘
(
ξ1 + ω2

)
− ℘ (ã)

)
− ℘′2

(
ξ1 + ω2

)
± ℘′

(
ξ1 + ω2

)
℘′ (ã)

]
= ±i℘

′ (a)

2
(℘ (ã)− ℘ (a))

×
[
2℘′′

(
ξ1 + ω2

) (
℘
(
ξ1 + ω2

)
− ℘ (ã)

)
− ℘′2

(
ξ1 + ω2

)
+ ℘′2 (ã)−

(
℘′
(
ξ1 + ω2

)
∓ ℘′ (ã)

)2
]

= ∓2i℘′ (a) (℘ (ã)− ℘ (a))
(
℘
(
ξ1 + ω2

)
− ℘ (ã)

)2

×

[
1

4

(
℘′ (ξ1 + ω2)∓ ℘′ (ã)

℘ (ξ1 + ω2)− ℘ (ã)

)2

− 2℘
(
ξ1 + ω2

)
− ℘ (ã)

]
(M.30)

Finally, using the addition theorem for the Weierstrass elliptic function yields

(P2 ± P3) ∂1P1 − P1∂1 (P2 ± P3)

= ∓2i℘′ (a) (℘ (ã)− ℘ (a))
(
℘
(
ξ1 + ω2

)
− ℘ (ã)

)2 [
℘
(
ξ1 + ω2 ± ã

)
− ℘

(
ξ1 + ω2

)]
.

(M.31)

Putting everything together, we yield

∂1φdressed =
i℘′ (a) [℘ (ξ1 + ω2 ± ã)− ℘ (ξ1 + ω2)]

2 (℘ (ξ1 + ω2)− ℘ (a)) (℘ (ξ1 + ω2 ± ã)− ℘ (a))
+ ∂1φseed

=
i℘′ (a)

2 (℘ (ξ1 + ω2)− ℘ (a))
− i℘′ (a)

2 (℘ (ξ1 + ω2 ± ã)− ℘ (a))
+ ∂1φseed

= − i℘′ (a)

2 (℘ (ξ1 + ω2 ± ã)− ℘ (a))
= ∂1φseed

(
ξ0, ξ1 ± ã

)
.

(M.32)

This finally, implies that

φdressed

(
ξ0, ξ1

)
= φseed

(
ξ0, ξ1 ± ã

)
+ φ±. (M.33)

The above hold in the case of seeds with static counterparts. In a trivial manner

one could obtain the analogous asymptotic expressions in the case of translationally

invariant seeds. They emerge from equations (M.22) and (M.33) after the trivial

operation ξ0 ↔ ξ1. Converting equations (M.22) and (M.33) to the static gauge

trivially results in the asymptotic formulae (27.10), (27.11), (27.12) and (27.13).

We would like to determine the constants ϕ±. We recall that the above expressions

are given in the linear gauge. Determining the asymptotic behaviour of a snapshot

of the string in the physical time X0 requires determining them in the static gauge.
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The values of the constants at the two gauges are obviously not identical. In the

following ϕ± denote the constants in the static gauge. Converting to the latter, we

get

φdressed

(
σ0, σ1

)
= φseed

(
σ0, σ1 ± ã

γ

)
+ φ±. (M.34)

Comparing the above to equation (M.23) we get

φ± = φdressed (0, 0)− φseed

(
0,± ã

γ

)
, (M.35)

where

φdressed (0, 0) = ± arctan
DP1 (0, 0) + `P2 (0, 0)

`P1 (0, 0)−DP2 (0, 0)
, (M.36)

P1 (0, 0) = (x3 − ℘ (ã)) i℘′ (a) , (M.37)

P2 (0, 0) = (x3 − ℘ (a))℘′ (ã) , (M.38)

P3 (0, 0) = 0, (M.39)

since φseed (0, 0) = 0. Finally, the elliptic solution implies

φseed

(
0,± ã

γ

)
= ∓ (`βã+ Φ (ã; a)) , (M.40)

which in turn results in

±φ± = `βã+ Φ (ã; a) + arctan
D (x3 − ℘ (ã)) i℘′ (a) + ` (x3 − ℘ (a))℘′ (ã)

` (x3 − ℘ (ã)) i℘′ (a)−D (x3 − ℘ (a))℘′ (ã)
. (M.41)

It is a matter of algebra and careful use of the appropriate properties of Weierstrass

functions to show that this formula is equivalent to the formula (27.14) for the case

of seed solutions with static Pohlmeyer counterparts. In a similar manner one can

specify this angle in the case of seeds with translationally invariant counterparts.

N The Angular Momentum of the Dressed Strings

In the following, we post some details of the proof of equation (32.15). The variation

of the sigma model charge by the dressing is given by equations (J.16) and (J.36).

Using the definitions (24.101) and (24.8), the projector P assumes the form

P = JUJ
X−X

T
+

XT
+X−

JUTJ. (N.1)

Taking advantage of the asymptotic form of the vectors X± (M.10) and (M.11), we

find

∆Q12
L = 2i sin θ1

(
b+F1|σ1=σ̄+

n1ω1−sΦã
γ

−b−F1|σ1=σ̄−n1ω1−sΦã
γ

)
, (N.2)

423



where

b± =
κ3

0κ
2
0 ∓ sΦDκ

1
0

(κ1
0)

2
+ (κ2

0)
2 (N.3)

and F1 is given by (24.18).

Using the definitions (24.41) and (24.42)

i sin θ1b± =
−k2

1k
3
0 ± sΦD (k1

0 cos θ1 − k1
1)

℘ (σ±)− ℘ (ã)
, (N.4)

where σ± are given by (32.8). The quantities ki0/1 are determined by the seed elliptic

solution through the equations UT (∂iU) = kjiTj, where the matrix U is given by

(24.16) and Tj are the generators of the SO(3) group defined as usual. It is a matter

of algebra to show that

2i` sin θ1b±F1 = −
℘′ (σ±)± sΦD

[
2 (℘ (σ±)− ℘ (a)) cos θ1 + i℘′(a)

`

]
℘ (σ±)− ℘ (ã)

. (N.5)

Using the formula (M.20), the above expression assumes the form

2i` sin θ1b±F1 = −℘
′ (σ±)− ℘′ (±sΦã)

℘ (σ±)− ℘ (±sΦã)
∓ 2sΦD cos θ1, (N.6)

which finally implies that

∆Q12
L = −2n2

`
[−2n1ζ (ω1) + ζ (σ+)− ζ (σ−) + 2sΦ (ζ (ã)−D cos θ1)] . (N.7)

This equation leads to equation (32.10) and in turn to equation (32.11), which pro-

vides the angular momentum of the dressed string. This derivation concerns dressed

strings with static seeds. In a similar manner one can repeat the proof for strings

with translationally invariant seeds.

The interval of the worldsheet coordinate σ1 that covers the whole closed dressed

string depends on the value of ã and the sign sΦ. This in turn has consequences on

the variation of the energy and angular momentum that the dressing procedure has

induced. In order to understand how these quantities depend on the position of the

poles of the dressing factor, which is determined by the angle θ1 we have to consider

the figures 26 and 32.

Figure 32 shows that in all cases the dependence of ã on θ1 is monotonous. When

θ1 = 0, ã is equal to −2ω1 (it is congruent to zero). Then, as θ1 increases, ã increases

until a given angle θ1 = θ̃ (or θ1 = θ̃− in the case of rotating seeds), where ã equals

−ω1 (which is congruent to ω1). Then, ã continues increasing, either immediately in

the case of oscillating seeds, or after some range of θ1 where it is complex in the case

of rotating seeds. Then, it continues increasing until θ1 = π when it vanishes.
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Returning to figure 26, and bearing in mind that the mean kink velocity is an

odd function of ã, we may conclude the following: in the case of translationally

invariant seeds, the sign sφ is the sign of 1 + βv̄0. In our analysis, the parameter

β is positive and smaller than 1. Therefore, when E < Ec, sΦ is always positive.

When Ec < E < µ2 and the maximum kink velocity is larger that 1/β, there are

two critical values of θ1, let them be θc1 and θc2, being both larger than θ̃, since they

correspond to negative ã, and sΦ is negative when θc1 < θ1 < θc2. Similarly, when

E > µ2 and the maximum kink velocity is larger than 1/β, there is one critical value

of θ1 let it be θc, which is larger than θ̃+ and sΦ is negative when θ̃+ < θ1 < θc.

In the case of static seeds, the sign sΦ is the opposite of the sign of β + 1/v̄1.

It follows that sΦ is always negative for θ1 < θ̃ in the case of oscillating seeds and

θ1 < θ̃− in the case of rotating seeds. In the latter case, when θ1 > θ̃+, sΦ is always

positive as the mean kink velocity is always subluminal. On the contrary in the

former case, there is always a critical θ1, let it be θc, where β + 1/v̄1 vanishes, since

the kink velocity diverges as ã → ±ω1. The sign sΦ is positive when θ1 > θc and

negative when θ1 < θc. These are summarized in table 7.

The product of the signs of ã with sΦ directly determines whether the dressed

string has larger or smaller energy than its seed, as shown by equation (32.14). In

figure 58, the variation of the energy and angular momentum that got induced by

the dressing is plotted versus the angle θ1.

O The Equations of Motion and the Virasoro Con-

straints

In order to verify that the dressed minimal surface Yk, which is given by (33.62),

satisfies the Virasoro constraints, we use the auxiliary system (33.54). Projecting it

in the direction of the vector pk yields

∂±Wk =
1

1± iµk
(∂±gk−1) g−1

k−1Wk. (O.1)

Taking into account the mapping (33.60) and after some algebra we obtain

∂±Wk =
2

1± iµk
J
[(
W T
k ∂±Yk−1

)
Yk−1 −

(
W T
k Yk−1

)
∂±Yk−1

]
. (O.2)

In addition, since Y T
k−1JYk−1 = −1, we obtain

∂±
(
W T
k Yk−1

)
= −1∓ iµk

1± iµk
W T
k ∂±Yk−1. (O.3)
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θ1 sΦ sgnã sgnD2 sΦsgnã

unstable trans. invariant oscillating

(0, θ̃) + + + +

(θ̃, θc1) + − + −
(θc1, θc2) − − + +

(θc2, π) + − + −
stable trans. invariant oscillating

(0, θ̃) + + + +

(θ̃, π) + − + −
unstable trans. invariant rotating

(0, θ̃−) + + + +

(θ̃−, θ̃+) /∈ R −
(θ̃+, θc) − − + +

(θc, π) + − + −
stable trans. invariant rotating

(0, θ̃−) + + + +

(θ̃−, θ̃+) /∈ R −
(θ̃+, π) + − + −

static oscillating

(0, θ̃) − + + −
(θ̃, θc) − − + +

(θc, π) + − + −
static rotating

(0, θ̃−) − + + −
(θ̃−, θ̃+) /∈ R −
(θ̃+, π) + − + −

Table 7: The dependence of the signs of ã, D2 and the sign sΦ on the angle θ1
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translationally invariant oscillating seed translationally invariant rotating seed

static oscillating seed static rotating seed

δE δE

δE δE

Ehop

2

Ehop

2

Ehop

2

Ehop

2

θ1

θ1

θ1

θ1

θ̃

θ̃

θ̃− θ̃+

θ̃− θ̃+

infinite closed strings with D2 > 0
finite closed strings with D2 > 0
finite closed strings with D2 < 0

translationally invariant oscillating seed translationally invariant rotating seed

static oscillating seed static rotating seed

δJ δJ

δJ δJ

Jhop

2

Jhop

2

Jhop

2

Jhop

2

θ1 θ1

θ1

θ1

θ̃

θ̃

θ̃− θ̃+

θ̃− θ̃+

Figure 58: The Edressed − Eseed and Jdressed − Jseed as functions of the angle θ1
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Putting everything together, the derivatives of Yk assume the form

∂±Yk = i

[
±i∂±Yk−1 +

1∓ iµk
µk

W T
k ∂±Yk−1

W T
k Yk−1

Yk−1 +
(1∓ iµk)2

2µk

W T
k ∂±Yk−1

(W T
k Yk−1)

2JWk

]
.

(O.4)

Then, it is a matter of algebra to show that

(∂±Yk)
T J (∂±Yk) = (∂±Yk−1)T J (∂±Yk−1) , (O.5)

thus, the solution Yk satisfies the Virasoro constraints, as long as its seed Yk−1 does

so.

Similarly, one can show that the surface element transforms as

(∂+Yk)
T J (∂−Yk) = − (∂+Yk−1)T J (∂−Yk−1) + 2

(
W T
k ∂+Yk−1

) (
W T
k ∂−Yk−1

)
(W T

k Yk−1)
2 . (O.6)

Taking into account (O.3), we obtain

(∂+Yk)
T J (∂−Yk) = − (∂+Yk−1)T J (∂−Yk−1) + 2

∂+

(
W T
k Yk−1

)
∂−
(
W T
k Yk−1

)
(W T

k Yk−1)
2 . (O.7)

Using (O.2) and (O.3) it is easy to show that

∂+∂−
(
W T
k Yk−1

)
=
(
W T
k Yk−1

)
(∂+Yk−1)T J (∂−Yk−1) . (O.8)

In order to show that the equations of motion of Yk are satisfied, we substitute

(O.4) into (O.3), so that the latter assumes the form

∂±Yk = ∓

(
∂±Yk−1 −

∂±
(
W T
k Yk−1

)
W T
k Yk−1

Yk−1

)
−
∂±
(
W T
k Yk−1

)
W T
k Yk−1

Yk. (O.9)

Then, with the aid of (O.8) it is a matter of algebra to show that

∂+∂−Yk +

[
(∂+Yk−1)T J (∂−Yk−1)− 2

∂+

(
W T
k Yk−1

)
∂−
(
W T
k Yk−1

)
(W T

k Yk−1)
2

]
Yk

= −∂+∂−Yk−1 +
[
(∂+Yk−1)T J (∂−Yk−1)

]
Yk−1, (O.10)

which in view of (O.7), proves that the vector Yk satisfies the equations of motion,

as long as the vector Yk−1 does so.
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P Implications of Orthonormality

In this section we enforce the condition that
~̂
Vi should form an orthonormal basis as

suggested by (36.28). We first discuss the implication of the normalization. Using

(36.33), the relevant constraints are

|~τ1|2
(
∂0V̂

3
j

)2

+ |~τ0|2
(
∂1V̂

3
j

)2

− 2~τ0 · ~τ1

(
∂0V̂

3
j

)(
∂1V̂

3
j

)
|~τ0 × ~τ1|2

+
(
V̂ 3
j

)2

= 1. (P.1)

For j = 3 one obtains the following equation

|~τ1|2 (∂0Θ)2 + |~τ0|2 (∂1Θ)2 − 2~τ0 · ~τ1 (∂0Θ) (∂1Θ) = |~τ0 × ~τ1|2. (P.2)

Using this result, the j = 1 and j = 2 equations imply

sin2 Θ
[
|~τ1|2 (∂0Φ)2 + |~τ0|2 (∂1Φ)2 − 2~τ0 · ~τ1 (∂0Φ) (∂1Φ)

]
= |~τ0 × ~τ1|2, (P.3)

|~τ1|2 (∂0Θ) (∂0Φ) + |~τ0|2 (∂1Θ) (∂1Φ)− ~τ0 · ~τ1 [(∂0Θ) (∂1Φ) + (∂1Θ) (∂0Φ)] = 0. (P.4)

Equations (P.2) and (P.3) are equivalent to

|~τ1|2
[
(∂0Θ)2 + sin2 Θ (∂0Φ)2]+ |~τ0|2

[
(∂1Θ)2 + sin2 Θ (∂1Φ)2]

− 2~τ0 · ~τ1

[
∂0Θ∂1Θ + sin2 Θ∂0Φ∂1Φ

]
= 2|~τ0 × ~τ1|2,

(P.5)

|~τ1|2
[
(∂0Θ)2 − sin2 Θ (∂0Φ)2]+ |~τ0|2

[
(∂1Θ)2 − sin2 Θ (∂1Φ)2]

− 2~τ0 · ~τ1

[
∂0Θ∂1Θ− sin2 Θ∂0Φ∂1Φ

]
= 0.

(P.6)

Equations (P.4) and (P.6) yield

|~τ0|2 =
(∂0Θ)2 + sin2 Θ (∂0Φ)2

∂0Θ∂1Θ + sin2 Θ∂0Φ∂1Φ
~τ0 · ~τ1, (P.7)

|~τ1|2 =
(∂1Θ)2 + sin2 Θ (∂1Φ)2

∂0Θ∂1Θ + sin2 Θ∂0Φ∂1Φ
~τ0 · ~τ1. (P.8)

Finally, using the identity |~τ0 × ~τ1|2 = |~τ0|2|~τ1|2 − (~τ0 · ~τ1)2 and substituting these

results into equation (P.1) we specify ~τ0 · ~τ1 as

~τ0 · ~τ1 = ∂0Θ∂1Θ + sin2 Θ∂0Φ∂1Φ. (P.9)

As a consequence

|~τi|2 = (∂iΘ)2 + sin2 Θ (∂iΦ)2 . (P.10)

Having obtained these results, it is straightforward to show that the vectors
~̂
Vj and

~̂
Vk are orthogonal to each other for j 6= k.
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Q The Remaining Equation of the Auxiliary Sys-

tem

In this appendix we show that equations (36.39), (36.40) and (36.41) imply that

equation (36.34) for j = 1, 2, 3 is satisfied without any further constraints on Θ and

Φ. This equation contains V̂ 3
j , as well as its derivatives. Since we do not rely on an

explicit expression for the seed solution, we are not able to proceed directly, thus we

will work with appropriate projections of this equation. The form of (36.33) implies

that ∑
j

[
~̂
Vj × ~X0

]
V̂ 3
j = 0, (Q.1)

∑
j

[
~̂
Vj × ~X0

]
∂0V̂

3
j =

|~τ0|2

(~τ0 × ~τ1) · ~X0

~τ1 × ~X0 −
~τ0 · ~τ1

(~τ0 × ~τ1) · ~X0

~τ0 × ~X0 = ~τ0, (Q.2)

∑
j

[
~̂
Vj × ~X0

]
∂1V̂

3
j =

~τ0 · ~τ1

(~τ0 × ~τ1) · ~X0

~τ1 × ~X0 −
|~τ1|2

(~τ0 × ~τ1) · ~X0

~τ0 × ~X0 = ~τ1, (Q.3)

where we used equation (36.28), as well as equations (36.39), (36.40) and (36.41)26.

Similarly one can obtain∑
j

V̂ 3
j ∂

2
i V̂

3
j = −|~τi|2, (Q.4)∑

j

∂0V̂
3
j ∂

2
0 V̂

3
j = ~τ0 · ∂0~τ0,

∑
j

∂1V̂
3
j ∂

2
1 V̂

3
j = ~τ1 · ∂1~τ1. (Q.5)

Equations (Q.1) and (Q.4) suggest that the projection of (36.34) on V̂ 3
j is satisfied

identically. Likewise, equations (Q.2), (Q.3) and (Q.5) imply that the projections of

(36.34) for i = 0 on ∂0V̂
3
j and for i = 1 on ∂1V̂

3
j are

~τ0 · ∂0~τ0 =
(
∂0~τ0 − ~t0 × ~τ0

)
· ~τ0, (Q.6)

~τ1 · ∂1~τ1 =
(
∂1~τ1 − ~t1 × ~τ1

)
· ~τ1, (Q.7)

respectively. These equations are identically true.

R The Embedding of the Minimal Surface in the

Bulk

In this appendix, we provide some intermediate steps in the derivation of the basic

equation (39.28), which describes a static minimal surface in an asymptotic AdS

26Since ~τi · ~X0 = 0 one can decompose ~τi on the basis which consists of ~τ0 × ~X0 and ~τ1 × ~X0.

430



space as a geometric flow of the entangling surface towards the interior of the bulk.

Since the defining property of the minimal surface is its vanishing mean curvature, we

need to calculate the components of the second fundamental form, for the embedding

of the minimal surface in the bulk, in the particular parametrization (39.16) that we

use.

In the following the greek indices identify the coordinates in the bulk, including

the holographic coordinate, thus they take d distinct values. The latin indices i,

j and so on, identify the coordinates that parametrize a constant-r plane in the

bulk, thus, they take d − 1 distinct values. Finally, the latin indices a, b and so on

identify the variables that parametrize the intersection of the minimal surface with

the constant-r plane and thus, they take d− 2 distinct values.

Let us first derive some relations that are going to be useful in the following. The

form of the parametrization of the minimal surface (39.4) and the particular choice

of the parameters ua that satisfy (39.16) imply that

∂ρ =
∂r

∂ρ
∂r +

∂xk

∂ρ
∂k = ∂r + ank∂k, (R.1)

∂a =
∂r

∂ua
∂r +

∂xk

∂ua
∂k =

∂xk

∂ua
∂k. (R.2)

Furthermore the parametrization (39.16) implies that

∂2xj

∂ua∂ρ
= ∂a

(
anj
)

= (∂aa)nj + a∂an
j. (R.3)

The normal vector is normalized, i.e. ninjhij = 1. This implies that

2
(
∂ρn

i
)
njhij + ninj∂ρhij = 0, (R.4)

2
(
∂an

i
)
njhij + ninj∂ahij = 0. (R.5)

The above equations combined with equations (R.1) and (R.2) yield(
∂ρn

i
)
njhij = −1

2
ninj

(
∂rhij + ank∂khij

)
, (R.6)(

∂an
i
)
njhij = −1

2
ninj

∂xk

∂ua
∂khij. (R.7)

The specific choice of the parameters ua (39.16) implies that ni ∂x
j

∂ua
hij = 0. It

follows that

∂ρn
i ∂x

j

∂ua
hij + ni

∂2xj

∂ua∂ρ
hij + ni

∂xj

∂ua
∂ρhij = 0. (R.8)

Implementing equation (R.3), the above equation assumes the form

− ∂ρni
∂xj

∂ua
hij = ∂aa+ ani∂an

jhij + ni
∂xj

∂ua
∂ρhij. (R.9)
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Finally, equations (R.1) and (R.7) allow the re-expression of the above equation as

− ∂ρni
∂xj

∂ua
hij = ∂aa−

1

2
aninj

∂xk

∂ua
∂khij + ni

∂xj

∂ua
∂rhij + a

∂xj

∂ua
nink∂khij. (R.10)

Let us now calculate the components of the second fundamental form for the

embedding of the minimal surface in the bulk. We start with the ρρ component.

This equals

Kρρ = −∇κN
µ∂x

κ

∂ρ

∂xν

∂ρ
Gµν , (R.11)

where G is the bulk metric that corresponds to the line element (39.1). The indices

µ and ν may be equal to r or to any other value i. Since the bulk metric does not

contain ri elements, we get

Kρρ = −∇κN
r ∂x

κ

∂ρ
f −∇κN

i∂x
κ

∂ρ

∂xj

∂ρ
hij. (R.12)

Then, implementing the definition of the covariant derivative ∇κ in terms of the

Christoffel symbols, we get

Kρρ = −∂ρN rf − ΓrκλN
λ∂x

κ

∂ρ
f − ∂ρN i∂x

j

∂ρ
hij − ΓiκλN

λ∂x
κ

∂ρ

∂xj

∂ρ
hij. (R.13)

Equation (39.3) states that the Christoffel symbols with two r indices vanish, hence,

Kρρ = −∂ρN rf − ΓrrrN
rf − ΓrklN

l∂x
k

∂ρ
f

− ∂ρN i∂x
j

∂ρ
hij − ΓikrN

r ∂x
k

∂ρ

∂xj

∂ρ
hij − ΓirlN

l∂x
j

∂ρ
hij − ΓiklN

l∂x
k

∂ρ

∂xj

∂ρ
hij. (R.14)

We now take advantage of the particular parametrization (39.16). In this parametriza-

tion, it holds that N i = cni and N r = −ca/f . Furthermore, we substitute the values

of the Christoffel symbols from equation (39.3) and after some algebra we find

Kρρ =
√
fc∂ρ

(
a√
f

)
− ca

(
∂ρn

i
)
njhij +

ca3

2f
nknj∂rhjk − ca2γikln

lnknjhij. (R.15)

At this point it is useful to implement equation (R.6), which allows the re-expression

of the above equation as

Kρρ =
√
fc∂ρ

(
a√
f

)
+
ca

2

(
1 +

a2

f

)
ninj∂rhij

+
ca2

2

(
∂khij − γlkjhil − γlkihlj

)
ninjnk. (R.16)
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The parentheses in the last term contain the covariant derivative of the metric hij
with respect to itself, thus it vanishes. Finally, using the fact that c−2 = 1 + a2/f ,

we find

Kρρ =
√
fc∂ρ

(
a√
f

)
+

a

2c
ninj∂rhij. (R.17)

We proceed to the ρa element of the second fundamental form. We recall that
∂r
∂ua

= 0, Gri = 0 and Γirr = 0. Then, Kρa is given by

Kρa = −∇κN
µ∂x

κ

∂ρ

∂xν

∂ua
Gµν = −∇κN

i∂x
κ

∂ρ

∂xj

∂ua
hij

= −∂ρN i ∂x
j

∂ua
hij − ΓiκλN

λ∂x
κ

∂ρ

∂xj

∂ua
hij

= −∂ρN i ∂x
j

∂ua
hij − ΓirlN

l ∂x
j

∂ua
hij − ΓikrN

r ∂x
k

∂ρ

∂xj

∂ua
hij − ΓiklN

l∂x
k

∂ρ

∂xj

∂ua
hij.

(R.18)

Finally, substituting the values of the Christoffel symbols from equation (39.3) and

the components of the vector N in terms of components of the vector n and the

functions c and a, as we did for the Kρρ component, we find

Kρa = −c∂ρni
∂xj

∂ua
hij −

c

2
nl
∂xj

∂ua
∂rhjl +

ca2

2f
nk
∂xj

∂ua
∂rhjk − caγiklnlnk

∂xj

∂ua
hij. (R.19)

Implementation of equation (R.10) yields

Kρa = c∂aa−
1

2
caninj

∂xk

∂ua
∂khij + canink

∂xj

∂ua
∂khij

+
c

2

(
1 +

a2

f

)
ni
∂xj

∂ua
∂rhij − caγiklnlnk

∂xj

∂ua
hij. (R.20)

Using the fact that c−2 = 1 + a2/f and after an appropriate relabelling of some

indices we find

Kρa = c∂aa+
1

2c
ni
∂xj

∂ua
∂rhij

+ cani
(
nk
∂xj

∂ua
− 1

2
nj
∂xk

∂ua

)(
∂khij − γlkihlj − γlkjhil

)
. (R.21)

The last parentheses contain the covariant derivative of the metric hij with respect

to itself, therefore it vanishes. So we are left with

Kρa = c∂aa+
1

2c
ni
∂xj

∂ua
∂rhij. (R.22)
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The ab element of the second fundamental form for the embedding of the minimal

surface in the bulk is given by

Kab = −∇κN
µ∂x

κ

∂ua
∂xν

∂ub
Gµν . (R.23)

If either κ or ν is equal to r the partial derivatives are vanishing. Thus, the above

expression can be simplified to

Kab = −∇kN
i∂x

k

∂ua
∂xj

∂ub
hij. (R.24)

We write the covariant derivative in terms of the Christoffel symbols to find

Kab = −∂kN i∂x
k

∂ua
∂xj

∂ub
hij − ΓikλN

λ∂x
k

∂ua
∂xj

∂ub
hij

= −∂aN i∂x
j

∂ub
hij − ΓikrN

r ∂x
k

∂ua
∂xj

∂ub
hij − ΓiklN

l∂x
k

∂ua
∂xj

∂ub
hij.

(R.25)

We substitute the Christoffel symbols from equation (39.3), as well as N i = cni and

N r = −ca/f , and we find

Kab = −c∂ani
∂xj

∂ub
hij +

ca

2f

∂xk

∂ua
∂xj

∂ub
∂rhkj − γiklcnl

∂xk

∂ua
∂xj

∂ub
hij. (R.26)

Taking into account equation (39.22), we have

Kab = ckab +
ca

2f

∂xk

∂ua
∂xj

∂ub
∂rhkj. (R.27)

It is now simple to calculate the trace of the second fundamental form, using

equations (39.21), (R.17) and (R.27),

K = ΓρρKρρ + ΓabKab

= ck +
c3

√
f
∂ρ

(
a√
f

)
+
ca

2f

(
γab

∂xi

∂ua
∂xj

∂ub
+ ninj

)
∂rhij

= ck +
c3

√
f
∂ρ

(
a√
f

)
+
ca

2f
hij∂rhij.

(R.28)

S A Non-trivial Verifying Solution of the Flow

Equation

It is quite trivial to show that several explicitly known minimal surfaces, which

possess either rotational or translational symmetry, satisfy equation (39.28). These
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include the minimal surfaces that correspond to a spherical entangling surface or a

strip region in AdSd+1 and the catenoid minimal surfaces in AdS4. In all these cases,

the symmetry allows the reduction of (39.28) to an ordinary differential equation

for a single variable. As a non-trivial verifying example, we will study the case of a

helicoid minimal surface in AdS4 in Poincaré coordinates. In this case the boundary

data depend on the position on the entangling curve and equation (39.28) is a non-

trivial partial differential equation.

The equation of the helicoid [190] is

r =
√
e−2ωφ − x2. (S.1)

We will use the following parametrization

r = ρ,

φ = φ (ρ, u) ,

x =
√
e−2ωφ(ρ,u) − ρ2

(S.2)

and specify the function φ (ρ, u) so that the parametrization obeys equation (39.16).

This is equivalent to imposing Γuρ = 0, i.e.,

∂ux∂zx+ x2∂uφ∂zφ = 0. (S.3)

Substituting (S.2) in (S.3) yields

e2ωφ∂ρφ
[(
e−2ωφ − ρ2

)2
+ ω2e−4ωφ

]
+ ωρ = 0. (S.4)

This equation has the solution

2e−2ωϕ = u
(
1 + ω2

)
+ ρ2 +

√
u2(1 + ω2)2 + 2u (ω2 − 1) ρ2 + ρ4, (S.5)

2x2 = u
(
1 + ω2

)
− ρ2 +

√
u2(1 + ω2)2 + 2u (ω2 − 1) ρ2 + ρ4. (S.6)

In the special parametrization (39.16), it holds that ∂ρx = anx, ∂ρϕ = anϕ. Thus,

the normalization of the vector ni reads

a =
1

ρ

[
(∂ρx)2 + x2(∂ρϕ)2] 1

2 . (S.7)

Substituting equations (S.5) and (S.6) yields

(aρ)2 =
u (1 + ω2) + ρ2 −

√
u2(1 + ω2)2 + 2u (ω2 − 1) ρ2 + ρ4

2
√
u2(1 + ω2)2 + 2u (ω2 − 1) ρ2 + ρ4

. (S.8)
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On the constant-r plane the metric reads ds2 = 1
ρ2

(
dx2 + x2dϕ2

)
. Thus, the non-

vanishing Christoffel symbols are γxϕϕ = −x, γxxϕ = 1/x. Thus, using its definition,

the second fundamental form equals

ρ2kuu = − (∂un
x) (∂ux)− x2 (∂un

ϕ) (∂uϕ)− xnx(∂uϕ)2

= −1

a

[
(∂ux) (∂ρ∂ux)− x2 (∂uϕ) (∂ρ∂uϕ)− x (∂ux) (∂uϕ)2] = −∂ρ (ρ2γuu)

2a
,

(S.9)

since

ρ2γuu = (∂ux)2 − x2(∂uϕ)2. (S.10)

The intersection of the minimal surface with the constant-r plane is in this case

one-dimensional. Thus, trivially, γuu = 1/γuu and

2ka = −∂ρ (ρ2γuu)

ρ2γuu
. (S.11)

Finally, upon substitution of (S.5) and (S.6) in (S.10), we find

ρ2γuu =
1

8

(1 + ω2
)

+
u (1 + ω2) + (ω2 − 1) ρ2√

u2(1 + ω2)2 + 2u (ω2 − 1) ρ2 + ρ4

2

×
u (1 + ω2) +

√
u2(1 + ω2)2 + 2u (ω2 − 1) ρ2 + ρ4

u (1 + ω2) + ρ2 +
√
u2(1 + ω2)2 + 2u (ω2 − 1) ρ2 + ρ4

. (S.12)

It is now a matter of tedious algebra to show that upon substitution of (S.8),

(S.11) and (S.12) into (39.28), the latter is satisfied.

T The Divergent Terms of Entanglement Entropy

for Spherical Entangling Surfaces

In this appendix, we calculate all the divergent terms of the expansion of the en-

tanglement entropy in the case of a spherical entangling surface in AdSd+1, taking

advantage of the fact that the minimal surface is explicitly known, in order to com-

pare with the general formulae of section 41.

We adopt polar coordinates on the constant-r plane. Let x denote the radial

coordinate, i.e. x =
√
xixi. Then the bulk metric assumes the form

ds2 =
1

r2

(
dr2 − dt2 + dx2 + x2dΩ2

d−2

)
. (T.1)
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The minimal surface, corresponding to a spherical entangling surface of radius R is

given by

r (x) =
√
R2 − x2. (T.2)

We parametrize the minimal surface using x and the d−2 spherical coordinates on

the constant-r slices (and constant time slices). Then, the only non-trivial element

of the induced metric for the embedding of the minimal surface in the bulk is

Γxx =
1

r(x)2

(
1 +

(
dr (x)

dx

)2
)

=
R2

(R2 − x2)2 , (T.3)

while all the others are directly inherited from the bulk metric, since the angular

coordinates do not appear in the minimal surface equation. Thus, the induced metric

on the minimal surface is given by

ds2 =
1

R2 − x2

(
R2

R2 − x2
dx2 + x2dΩ2

d−2

)
. (T.4)

The area element of the minimal surface can thus be expressed as

dA =
Rxd−2

(R2 − x2)
d
2

dxdΩd−2. (T.5)

We cutoff the minimal surface at r = 1/Λ . This is equivalent to restricting to

the region x <
√
R2 − 1/Λ2. Thus, the area of the cut-off minimal surface equals

A (d; Λ) =

∫
dΩd−2

∫ √R2−1/Λ2

0

Rxd−2

(R2 − x2)
d
2

dx =
Ad−2

Rd−2
B1− 1

R2Λ2

(
d− 1

2
,−d− 2

2

)
,

(T.6)

where Ad is the area of a d-dimensional sphere with radius R (thus Ad−2 is the area

of the entangling surface) and Bx (a, b) is the incomplete beta function.

For d = 2, 3, 4, 5, the above expression reads

A (2; Λ) = 2tanh−1

√
1− 1

R2Λ2
, (T.7)

A (3; Λ) = 2π (RΛ− 1) , (T.8)

A (4; Λ) = 2π

(
R2Λ2

√
1− 1

R2Λ2
− tanh−1

√
1− 1

R2Λ2

)
, (T.9)

A (5; Λ) =
2π2

3

(
R3Λ3 − 3RΛ + 2

)
. (T.10)

It is possible to derive explicit formulae at all dimensions using the recursive

relation

bBx (a, b) = (a− 1) Bx (a− 1, b+ 1)− xa−1(1− x)b. (T.11)
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We also recall that

Ad = 2
π
d+1

2

Γ
(
d+1

2

)Rd. (T.12)

The above imply that

A (d+ 2; Λ) =
π
d+1

2

Γ
(
d+1

2

)B1− 1
R2Λ2

(
d+ 1

2
,−d

2

)
= − 4π

d (d− 1)

π
d−1

2

Γ
(
d−1

2

) [d− 1

2
B1− 1

R2Λ2

(
d− 1

2
,−d− 2

2

)

−
(

1− 1

R2Λ2

) d−1
2 (

R2Λ2
) d

2

]

= −2π

d
A (d; Λ) +

2

d

π
d+1

2

Γ
(
d+1

2

)RΛ
(
R2Λ2 − 1

) d−1
2 .

(T.13)

For odd d = 2k + 1, the above formula can be written as

A (2k + 1; Λ) = − 2π

2k − 1
A (2k − 1; Λ) +

2

2k − 1

πd

(k − 1)!
RΛ
(
R2Λ2 − 1

)k−1
. (T.14)

This equation, combined with the fact that A (1; Λ) = 1, iteratively results in

A (2k + 1; Λ) =
(−2π)k

(2k − 1)!!

[
1−

k−1∑
n=0

(−1)n (2n− 1)!!

(2n)!!
RΛ
(
R2Λ2 − 1

)n]
. (T.15)

The above is clearly a polynomial of RΛ of order 2k−1 = d−2, containing only odd

powers of RΛ, except for a constant term. We can use Newton’s binomial theorem

in order to acquire an explicit form of this polynomial

A (2k + 1; Λ) =
(−2π)k

(2k − 1)!!

[
1−

k−1∑
n=0

n∑
m=0

(−1)m (2n− 1)!!

(2n)!!

n!

m! (n−m)!
(RΛ)2m+1

]

=
(−2π)k

(2k − 1)!!

[
1−

k−1∑
m=0

[
k−1∑
n=m

(2n− 1)!!

2n (n−m)!

]
(−1)m

m!
(RΛ)2m+1

]

= (−π)k
[

2k

(2k − 1)!!
− 2

k−1∑
m=0

(−1)m

(1 + 2m)m! (k −m− 1)!
(RΛ)2m+1

]
.

(T.16)

Adopting the notation (41.8) we find that

ad−2−2n =
(2π)

d−1
2

(−2)nn! (d− 2− 2n) (d− 3− 2n)!!
Rd−2−2n

=
(d− 3)!!

(−2)nn! (d− 2− 2n) (d− 3− 2n)!!

Ad−2

R2n
.

(T.17)
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For completeness, we note that the constant finite term ã equals

ã =
(−2π)

d−1
2

(d− 2)!!
=

(−1)
d−1

2 2 (d− 3)!!

(d− 2)!!

Ad−2

Rd−2
. (T.18)

For even d = 2k the iterative formula (T.13) assumes the form

A (2k; Λ) = − 2π

2 (k − 1)
A (2k − 2; Λ) +

2

2 (k − 1)

(2π)k−1

(2k − 3)!!
RΛ
(
R2Λ2 − 1

)k− 3
2 ,

(T.19)

which combined with the fact that A (2; Λ) = 2tanh−1
√

1− 1
R2Λ2 results in

A (2k; Λ) =
2(−π)k−1

(k − 1)!

[
tanh−1

√
1− 1

R2Λ2

−
k−2∑
n=0

(−1)n (2n)!!

(2n+ 1)!!
(RΛ)n+2

(
1− 1

R2Λ2

)n+ 1
2

]
. (T.20)

If one expands the square root and the inverse hyperbolic tangent in powers of RΛ,

it is evident that only even powers will appear, apart from a logarithmic term from

the expansion of the inverse hyperbolic tangent. The polynomially divergent terms,

which are denoted by A+ (2k; Λ), can be easily found, via the Taylor expansion of

(1− x)n+ 1
2 ,

(1− x)n+ 1
2 =

∞∑
m=0

(−1)m (2n+ 1)!!

m!2m (2n+ 1− 2m)!!
xm. (T.21)

Thus,

A+ (2k; Λ) = −2
(−π)k−1

(k − 1)!

k−2∑
n=0

n∑
m=0

(−1)m+n (2n)!!

m!2m (2n+ 1− 2m)!!
(RΛ)2n+2−2m

= −2
(−π)k−1

(k − 1)!

k−2∑
m=0

[
k−2∑
n=m

n!

(n−m)!

]
(−2)m

(2m+ 1)!!
(RΛ)2m+2

= −2(−π)k−1
k−2∑
m=0

(−2)m

(m+ 1) (k −m− 2)! (2m+ 1)!!
(RΛ)2m+2.

(T.22)

Adopting the same notation (41.8), as in the case of odd d, it is clear that

ad−2−2n = 2(2π)
d−2

2
1

(−2)n (d− 2− 2n)n! (d− 3− 2n)!!
Rd−2−2m

=
(d− 3)!!

(−2)n (d− 2− 2n)n! (d− 3− 2n)!!

Ad−2

R2n
.

(T.23)
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Comparing to equation (T.17) we see that when expressed in terms of the area of the

entangling surface, the coefficients an are given by the same formula for both odd

and even dimensions.

The logarithmic term emerges from the expansion tanh−1
√

1− x2 = − lnx +

O (1). It follows that

a0 = 2
(−π)k−1

(k − 1)!
= 2

(−2π)
d−2

2

(d− 2)!!
= (−1)

d−2
2

(d− 3)!!

(d− 2)!!
Ad−2. (T.24)

Studying equation (T.17), we observe that the leading divergent terms are

ad−2 =
1

(d− 2)
Ad−2,

ad−4 = − d− 3

2 (d− 4)

Ad−2

R2
,

ad−6 =
(d− 3) (d− 5)

8 (d− 6)

Ad−2

R4
.

(T.25)

The first one is the usual “area law term”.

U Hankel Transformations

The formulae of this section can be found in volume 1, section 1.13 of [368] 27. In

everything that follows y > 0, a > 0 and b > 0 and < (ν) > −1
2∫ ∞

0

dx cos (xy) J0

(
a
√
x2 + b2

)
=

cos
(
b
√
a2 − y2

)
√
a2 − y2

θ (a− y) (U.1)

∫ ∞
0

dx cos (xy)
Jν
(
a
√
x2 + b2

)(
a
√
x2 + b2

)ν =

√
π

2

1

a

(
1− y2

a2

)ν− 1
2 Jν− 1

2

(
b
√
a2 − y2

)
(
b
√
a2 − y2

)ν− 1
2

θ (a− y)

(U.2)∫ ∞
0

dx cos (xy) J0

(
a
√
x2 − b2

)
=

cosh
(
b
√
a2 − y2

)
√
a2 − y2

θ (a− y) (U.3)

Let us calculate the integral (U.3) for arbitrary order of the Bessel function J . We

observe that the following identity

∓ 1

a2b

∂

∂b

Jν
(
a
√
x2 ± b2

)(
a
√
x2 ± b2

)ν =
Jν+1

(
a
√
x2 ± b2

)(
a
√
x2 ± b2

)ν+1 (U.4)

27The book is accessible here: https://authors.library.caltech.edu/43489/.
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holds. The right-hand-side of (U.2) satisfies

− 1

a2b

∂

∂b

(
1− y2

a2

)ν− 1
2 Jν− 1

2

(
b
√
a2 − y2

)
(
b
√
a2 − y2

)ν− 1
2

=

(
1− y2

a2

)ν+ 1
2 Jν+ 1

2

(
b
√
a2 − y2

)
(
b
√
a2 − y2

)ν+ 1
2

,

(U.5)

thus, taking into account (U.1), which serves as initial condition, we verified that the

equation (U.2) in true for arbitrary ν ∈ N. Setting b→ ib in (U.2) we obtain

∫ ∞
0

dx cos (xy)
Jν
(
a
√
x2 − b2

)(
a
√
x2 − b2

)ν =

√
π

2

1

a

(
1− y2

a2

)ν− 1
2 Iν− 1

2

(
b
√
a2 − y2

)
(
b
√
a2 − y2

)ν− 1
2

θ (a− y) .

(U.6)

Since

1

a2b

∂

∂b

(
1− y2

a2

)ν− 1
2 Iν− 1

2

(
b
√
a2 − y2

)
(
b
√
a2 − y2

)ν− 1
2

=

(
1− y2

a2

)ν+ 1
2 Iν+ 1

2

(
b
√
a2 − y2

)
(
b
√
a2 − y2

)ν+ 1
2

, (U.7)

we verify that (U.2) is true for arbitrary ν ∈ N, as (U.1) and (U.3) are related by

b→ ib. Given that the expansion of the left-hand-sides and right-hand-sides of (U.2)

and (U.6) contains only even powers of b it is expected that (U.6) is true for arbitrary

ν such that < (ν) > −1
2
. Taking the limit b→ 0 in (U.6) we obtain

∫ ∞
0

dx cos (xy)
Jν (ax)

(ax)ν
=

2−νΓ
(

1
2

)
Γ
(
ν + 1

2

) 1

a

(
1− y2

a2

)ν− 1
2

θ (a− y) . (U.8)
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