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Abstract

Symmetries play a central role in physics. A Hamiltonian is said to have a given
symmetry, or is said to be invariant under transformations of a symmetry group,
when the generators of the symmetry group commute with the Hamiltonian. A
consequence of the existence of a symmetry is the occurence of degeneracies in the
spectrum of the Hamiltonian. A dynamical symmetry arises when the Hamiltonian
can be written in terms of Casimir (or invariant) operators of a chain of groups.
(Casimir operators of a group are combinations of generators of the group.) Now,
the eigenstates of the Hamiltonian are characterized by the characteristic quantum
numbers of all the symmetries of the groups involved, but the degeneracy of the
spectrum is relaxed.

Dynamical symmetries have long been used in the study of nuclear structure.
One of the first uses of dynamical symmetries was in the context of the SU(3)
Elliott model, that focused on light nonspherical nuclei in the s-d shell. In the
context of the shell model, an analogous try for the description of deformed nuclei
was achieved with the Nilsson model, which calculated binding energies of nucleons
in a deformed potential. Another characteristic and extensively used example of
dynamical symmetries is in the context of the Interacting Boson Model (IBM) or
Interacting Boson Approximation (IBA), with its three dynamical symmetries U(5),
SU(3) and O(6), which describe spherical vibrators, prolate axially symmetric nuclei
and nuclei soft with respect to axial asymmetry (γ-soft), respectively.

The breaking of a symmetry could lead to the appearence of approximate sym-
metries, which could be identified, among other methods, with chaotic measures.
The breaking of the SU(3) Elliott symmetry for heavy nuclei, has lead to the de-
velopment of a model based on an approximate SU(3) symmetry, the pseudo-SU(3)
scheme, appropriate for the description of heavy nuclei. The breaking of symmetries
in the context of the IBA, has lead to new approximate symmetries, the extended
concepts of Partial Dynamical Symmetries and Quasi Dynamical Symmetries, which
in general have to do with the persistence of a symmetry or part of a symmetry, in
spite of strong symmetry breaking interactions.

In the first part of this study, statistical measures of chaos are used, in order to
study the emergence of regularity among chaos, in the context of the IBM. Symmetry
breaking leads the IBM Hamiltonian away from its dynamical symmetries, so one
would also expect, away from regularity. However, the existence of approximate
symmetries in the parameter space of IBM, leads to the emergence of semiregular
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iv ABSTRACT

regions, based on these approximate symmetries, among totally chaotic regions. A
well known such region, based on an unknown approximate symmetry, is the the
arc of regularity. It was found that no matter how many bosons are used, a small
number, or a large one, the position of the arc of regularity is unaltered. Also, from
a study of chaos as a function of energy it was found that even for chaotic points,
as the energy increases, chaos gives its place to regularity.

Next, the nature of the approximate symmetry underlying the arc of regularity
was studied. A line of approximate SU(3) symmetry was analytically derived in
the parameter space of the IBM. The derivation of the line is based on the idea
that in order to have an SU(3) symmetry the IBM Hamiltonian has to commute
with the generators of SU(3). The line was extracted by the study of Hamiltonians
that in the large boson limit of the IBM, approximately commute with the SU(3)
generators. This line closely follows the arc of regularity and gives an explanation
to its existence.

Last, the onset of deformation in nuclei is studied, in the context of the Nilsson
model, through the calculation of the overlaps of the wavefunctions of the last filled
proton and neutron in the Nilsson diagrams. Maximum values of overlaps are related
to wavefunctions that differ by 0[110] in their Nilsson quantum numbers and also to
nuclei for which deformation has just set in. 0[110] proton-neutron partners have led
to the suggestion of a new coupling scheme, similar in spirit to the idea of pseudo-
SU(3), but different in content, based also on an approximate SU(3) symmetry.



Chapter 1

Introduction

1.1 Collectivity in nuclei

In order to understand the low energy structure of nuclei, the spherical shell model
has been extensively used. In the spherical shell model, nucleons move around a
central potential, which produces shell structure and major shell closings, which
provide the well known magic numbers. The spherical shell model can describe well
nuclei which are near closed shells. These nuclei have spherical shape. Collectivity is
interpreted as coherent motion of the nucleons. As valence nucleons are added, the
pairing interaction, which favors the spherical coupling of identical nucleons, starts
competing with the quadrupole-quadrupole interaction, between unlike nucleons,
which favors deformation. While pairing is proportional to the number of valence
nucleons, the quadrupole interaction goes as its square. So, gradually deformation
wins. Nuclei with expressed collectivity, can no longer be described by the spherical
shell model. As deformation sets in, the use of a deformed potential, instead of the
spherical potential in the shell model, has been proved probably one of the more
successful models for the description of deformed nuclei, called Nilsson model [1].
Deformed nuclei have also been described with algebraic models. It has been shown
that the spectrum of deformed light nuclei (belonging maximum to the sd shell)
resembles that of the 3D harmonic oscillator, which is known to have an SU(3)
symmetry. So, the SU(3)-Elliott [2] model, appropriate for the description of these
nuclei has been developed. For heavier nuclei, the spin-orbit coupling breaks the
SU(3) symmetry. To account for the breaking of SU(3) symmetry, the pseudo-SU(3)
[3, 4] scheme has been developed.

The collective structure of nuclear shapes at low excitation energy is dominated
by surface deformations, in which a surface layer of nucleons is vibrating around a
spherical shape or gives the nucleus a deformed shape. Deformed nuclei can also
rotate. These collective states have been described geometrically in the Bohr model
[5]. This model has two structure parameters; β, which defines the shape of the
nucleus (if β = 0, the nucleus is spherical, β > 0, corresponds to a prolate nucleus,
β < 0 to an oblate) and γ which defines whether a nucleus is axially symmetric or

1



2 CHAPTER 1. INTRODUCTION

not (γ-soft). The Bohr model has three analytical solutions. One that describes a
spherical harmonic vibrator, one that describes a triaxial, γ-soft nucleus and last,
one that describes a solid rotator.

1.1.1 Collective observables

Various features show the onset of collectivity and the resulting change of structure
in nuclei. A useful measure of collectivity is the ratio

R4/2 =
E(4+1 )

E(2+1 )
, (1.1)

where E(J+) is the energy of the level of the ground state band with spin J . In
nuclei with a small number of valence nucleons, where collectivity hasn’t appeared
yet, the ratio R4/2 is < 2. A characteristic of the spectrum of these nuclei is that
there is a large gap between the 0+ level and the first excited 2+ level. As valence
nucleons are added, collectivity sets in, in the form of collective vibrations around
a spherical shape and the ratio R4/2 becomes ≈ 2. Then, the first excited 2+ level
lowers in energy. As more nucleons are added, the nucleus becomes deformed and
its levels follow the L(L+1) rule. Then, R4/2 ≈ 3.33. Now, the 2+ level is even more
lowered in energy. In Fig. (1.1), an example is given of how the ratio R4/2 and the
characteristic features of the specta of nuclei vary between the various limits. For
nuclei transitional between these limits, intermediate values of R4/2 are encountered.
In Fig. (1.1) the B(E2; 2+1 → 0+1 ) transition is also drawn. In fact, the thickness of
the arrow is proportional to its strength. So, the B(E2; 2+1 → 0+1 ) transition can be
thought of as another measure of collectivity, since the more collective the nucleus
is, the more strong the transition.

1.2 Interacting Boson Model

The Interacting Boson Model [6, 7], introduced by Arima and Iachello [8, 9, 10, 11],
provides an algebraic framework to describe collective motion in even-even nuclei.
Only valence nucleons are taken into account, which are treated as bosons, coupled
to angular momentum 0 or 2. In this version of the model, which is the simplest
one, no distinction is made between proton and neutron bosons. The number of
bosons is half the number of valence protons and neutrons. Valence protons and
neutrons are counted from the nearest closed shell and depending on whether less
than the half of the shell or more than the half of the shell is filled, they can be
either particles or holes.

States and operators in the IBM are constructed from boson creation and an-
nihilation operators. As already mentioned, nucleons are coupled either to angular
momentum L = 0, so they create an s boson, which has no magnetical substate, or
to angular momentum L = 2, creating a d boson, with five magnetic substates. The
boson creation and annihilation operators are
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Figure 1.1: From left to right, the variation of the R4/2 ratio, for nuclei close to closed shells,
where collectivity hasn’t appeared yet, for nuclei performing collective vibrations and for deformed
nuclei. The arrow refers to the B(E2; 2+1 → 0+1 ) transition, whose strength is analogous to the
thickness of the arrow and of course to the increase of collectivity.

{

s†, d†µ (µ = 0,±1,±2),
s, dµ (µ = 0,±1,±2),

who satisfy Bose commutation relations

[s, s†] = 1, [s, s] = [s†, s†] = 0 (1.2)

[dµ, d
†
µ] = δµ,µ′ ; [dµ, dµ′ ] = [d†µ, d

†
µ′ ] = 0

[s, d†µ] = [s, dµ] = [s†, d†µ] = [s†, dµ] = 0.

For applications, boson operators need to transform like spherical tensors. While
the creation operators do have this property, the annihilation operators do not, so
new annihilation operators need to be introduced

s̃ = s, d̃µ = (−1)µd−µ. (1.3)

With spherical tensors one can form tensor products, whose use will be revealed in
the next section. The tensor product of two spherical tensors T k1

κ1
, T k2

κ2
is

T k
κ = [T k1

κ1
× T k2

κ2
]kκ =

∑

κ1κ2

(k1κ1k2κ2|Kκ)T k1
κ1
T k2
κ2
. (1.4)

When at the tensor product the spherical tensors are coupled to angular momentum
zero, one has a scalar product, defined as
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(U (k) · V (k)) = (−1)k(2k + 1)1/2[U (k) × V (k)]
(0)
0 =

∑

κ

(−1)κU (k)
κ V (k)

κ . (1.5)

1.3 U(6) algebra and Subalgebra Chains

We now introduce the operators - tensor products

G(k)
κ = [b†l × b̃l′ ]

(k)
κ , (1.6)

where l, l′ = 0, 2 ≡ s, d. The symbolization means that the objects in the square
brackets having angular momentum l and l′ respectively, are coupled to create a
spherical tensor of angular momentum k.

By writing down all the tensor products of the spherical tensors s̃, s†, d̃µ, d
†
µ, of

the form (1.6) and by using their commutation relations

[G(k)
κ (l, l′), G

(k′)
κ′ (l′′, l′′′)] =

∑

k′′,κ′′

√

(2k + 1)(2k′ + 1)(kκk′κ′|k′′κ′′)(−1)k−k
′

[

(−1)k+k
′+k′′

{

k k′ k′′

l′′′ l l′

}

δl′l′′G
(k′′)
κ′′ (l, l′′′)−

{

k k′ k′′

l′′ l′ l

}

δll′′′G
(k′′)
κ′′ (l′′, l′)

]

, (1.7)

one can see that the commutation relations of these operators are the same with the
commutation relations of the Lie algebra of the group U(6). Thus, they form the
generators of U(6). For convenience, at the tensor products, we omit the × symbol
and replace the square brackets [], by parentheses, ().

G
(0)
0 (s, s) = (s†s̃)

(0)
0 (1.8)

G
(0)
0 (d, d) = (d†d̃)

(0)
0

G(1)
µ (d, d) = (d†d̃)(1)µ

G(2)
µ (d, d) = (d†d̃)(2)µ

G(3)
µ (d, d) = (d†d̃)(3)µ

G(4)
µ (d, d) = (d†d̃)(4)µ

G(2)
µ (d, s) = (d†s̃)(2)µ

G(2)
µ (s, d) = (s†d̃)(2)µ

These 36 operators are the generators of U(6). By selecting specific tensor prod-
ucts, subalgebras of the algebra U(6) are revealed and chains of subalgebras are
constructed. For applications in nuclear physics, states should be characterized by
good angular momentum, so each chain should contain the O(3) algebra. After this
restriction is taken into account, three possible chains of subalgebras are constructed
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U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) (I) (1.9)

U(6) ⊃ SU(3) ⊃ O(3) (II)

U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) (III)

and the dynamical symmetries [12] U(5), SU(3) and O(6) are revealed, which are
the dynamical symmetries of the model.

We can see explicitly how these subalgebras are revealed, after selecting the
appropriate tensor products, whose commutation relations close under the specific
algebras. For the first chain, (I), one omits from the 36 generators of U(6) those that

contain s bosons and the remaining 25 operators, (d†d̃)
(0)
0 , (d†d̃)(1)µ , (d†d̃)(2)µ , (d†d̃)(3)µ ,

(d†d̃)(4)µ , which are obtained, have commutation relations that close under the algebra

U(5), so they are the generators of U(5). By keeping now the ten operators (d†d̃)(1)µ ,

(d†d̃)(3)µ , the orthogonal algebra in five dimensions, O(5), is obtained. Last, the three

operators (d†d̃)(1)µ , are the generators of the O(3) algebra.

For the second chain, (II), one considers the operators (s†s̃)
(0)
0 +

√
5(d†d̃)

(0)
0 ,

(d†d̃)(1)µ , (d†s̃+ s†d̃)(2)µ ± 1
2

√
7(d†d̃)(2)µ . These operators close under commutation and

form the algebra U(3). The (d†s̃+ s†d̃)(2)µ ± 1
2

√
7(d†d̃)(2)µ operator has a ± sign. The

+, corresponds to prolate nuclear shape, while the -, to oblate nuclear shape. The
operator (s†s̃)

(0)
0 +

√
5(d†d̃)

(0)
0 is the total number operator, N̂ . In the IBM, the total

N is conserved and the eigenvalues of N̂ are constant, so they can be omitted and
the remaining operators form the SU(3) algebra. Last, the rotational, O(3), algebra
is reached by keeping just the (d†d̃)(1)µ operator.

The last chain, (III), is obtained if first, one keeps the fifteen operators (d†d̃)(1)µ ,

(d†d̃)(3)µ , (d†s̃+s†d̃)(2)µ , which form the algerba O(6), then by keeping the ten operators

(d†d̃)(1)µ , (d†d̃)(3)µ the O(5) algebra is generated, which, by keeping just the (d†d̃)(1)µ
the last algebra of the chain, O(3) comes into play.

1.3.1 Construction of Bases

The construction of algebra chains allows the construction of bases in which the
Hamiltonian can be diagonalised. The bases states of each chain will be written in
terms of the quantum numbers which characterize the irreducible representations
(irreps) of the algebras which appear in the chains. One needs to know which are
the allowed quantum numbers of the irreps of an algebra G′, given the values of
the quantum numbers of the irreps of the algebra which contains it, G (G ⊃ G′).
The representations are interpreted as quantum mechanical states and the bracket
notation is used.
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Chain I

In general, the corresponding Young tableaux [13] of the representations of U(n) are
denoted as [f1, ..., fn]. The representations of U(n) which describe bosons are totally
symmetric and the corresponding Young tableaux are denoted as, [N, 0, 0, . . . , 0] ≡
[N ], where there are n-1 zeros. So, the irreps of U(6) will be denoted by

U(6) : [N, 0, 0, 0, 0, 0] ≡ [N ], (1.10)

where N is the total number of bosons. Similarly, the irreps of U(5) will be

U(5) : [nd, 0, 0, 0, 0, 0] ≡ [nd], (1.11)

where nd is the number of d bosons. The allowed values of nd are nd = N,N −
1, . . . , 0. For the general case of O(n), the number of quantum numbers needed to
describe the totally symmetric irreps is either n/2, for n=even, or (n-1)/2 for n odd.
So, the irreps of O(5) will be

O(5) : [υ, 0] ≡ [υ], (1.12)

where υ is called seniority and is the number of boson pairs not coupled to zero
angular momentum. The allowed values of υ are υ = nd, nd − 2, . . . , 1 or 0, for
nd=odd or even. The irreps of the last algebra of this chain, O(3), are denoted
by just one quantum number, the angular momentum, L. When trying to find the
allowed values of L, a problem arises, that more than one states with a given value
of L are contained in a given representation υ of O(5). An additional quantum
number is needed to characterize the states uniquely, the n∆, which is the number
of boson triplets coupled to zero angular momentum. In order to find the values of
L contained in each representation υ, first one partitions nd as nd = 2nβ + 3n∆ + λ,
where n∆ = 0, 1, . . ., and nβ = (nd − υ)/2 = 0, 1, . . . , nd

2
or nd−1

2
. Then, L =

λ, λ+ 1, . . . , 2λ− 2, 2λ. The basis will be |Nndun∆L >.

Chain II

As above, the irreps of U(6) are labelled by [N ]. The irreps of SU(3) are labelled by
the Elliott quantum numbers (λ, µ) [2].

SU(3) : (λ, µ). (1.13)

The values of (λ, µ) contained in [N ] are

(2N, 0)⊕ (2N − 4, 2)⊕ . . . ⊕
{

(0, N) N = even
(2, N − 1) N = 0dd

}

⊕ (1.14)

(2N − 6, 0)⊕ (2N − 10, 2)⊕ . . . ⊕
{

(0, N − 3) N − 3 = even
(2, N − 4) N − 3 = 0dd

}

⊕

(2N − 12, 0)⊕ (2N − 16, 2)⊕ . . . ⊕
{

(0, N − 6) N − 6 = even
(2, N − 7) N − 6 = 0dd

}

⊕ . . .
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For the last algebra in the chain, O(3), whose irreps are denoted by L, an addi-
tional quantum number is needed to find the values of L contained in each (λ, µ),
the K quantum number. Then, L = K,K + 1, K + 2, . . . , (K + max {λ, µ}),
where K = integer = min {λ, µ} ,min {λ, µ} − 2, . . . , 1or 0 and for K = 0, L =
max {λ, µ} ,max {λ, µ} − 2, . . . , 1 or 0. The basis will be |N(λ, µ)KL >.

Chain III

For the last chain, again, the irreps of U(6) are labelled by [N ]. The irreps of O(6)
are

O(6) : [σ, 0, 0, 0] ≡ σ, (1.15)

where the allowed quantum numbers of σ are σ = N,N − 2, . . . , 1 or 0. The irreps
of O(5) are

O(5) : [τ, 0] ≡ τ, (1.16)

where the allowed quantum numbers of τ are τ = σ, σ − 1, . . . , 1, 0. For the irreps
of O(3), denoted by L, again, an additional quantum number is needed to find the
allowed values of L, called ν∆. In order to find the values of L contained in each
representation τ , one partitions τ as τ = 3ν∆ + λ, where ν∆ = 0, 1, . . .. Then,
L = λ, λ+ 1, . . . , 2λ− 2, 2λ. The basis will be |Nσ τν∆L >.

1.3.2 Dynamical Symmetries

A dynamical symmetry arises when the Hamiltonian H can be written as a sum of
certain operators, called Casimir operators of a chain of algebras

G ⊃ G′ ⊃ · · · , (1.17)

i.e. H = aC(G)+a′C(G′)+ · · ·, where C(G) is a Casimir operator of the algebra G.
Casimir operators are linear or higher order combinations of the generators of the
algebra G. They also commute with all the generators of the algebra G. Casimir
operators are also diagonal in the representation of the corresponding algebra G and
have eigenvalues that are functions only of the characteristic quantum numbers of
that particular algebra. This has direct application to the algebra chains described
before. So, when the Hamiltonian is written in terms only of Casimir operators of
a complete chain of subalgebras of U(6), the Hamiltonian will be diagonal in the
basis of the corresponding chain and the eigenvalue problem of the IBM Hamiltonian
can be solved analytically. In IBM there are three algebra chains, so there are 3
dynamical symmetries.

An important property of the dynamical symmetry is that the representations
of an algebra are split in energy, but not admixed with other representations of
the algebras involved in the chain. The way the representations of an algebra are
split in energy is by moving to the next subalgebra. For example, the states of a
representation of an algebra are all characterized by the same quantum number, so
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they are degenerate. The degeneracy is broken when going to the next algebra of
the chain, where the levels are subclassified according to another quantum number.
In that way, the representations are split in energy, but not mixed. This is seen in
a characteristic way in Fig. (1.2).

Figure 1.2: Degeneracy breaking when moving to the next algebra of the chain (the example is
for the O(6) chain). The representations are split in energy, but not admixed, by the quantum
number of the next group of the chain. Figure taken by [14].

Casimir operators

The list of Casimir operators [15] of the subalgebras of U(6) are listed below

C1(U(6)) = (s†s̃)
(0)
0 +

√
5(d†d̃)

(0)
0 = n̂s + n̂d = N̂ (1.18)

C1(U(5)) =
√
5(d†d̃)

(0)
0 = n̂d

C2(U(5)) =
4
∑

k=0

(d†d̃)(k) · (d†d̃)(k) = n̂d(n̂d + 4)

C2(SU(3)) =
4

3
((d†s̃+ s†d̃)(2) −

√
7

2
(d†d̃)(2)) · ((d†s̃+ s†d̃)(2) −

√
7

2
(d†d̃)(2))

+ 5(d†d̃)(1) · (d†d̃)(1) = 4

3
Q̂ · Q̂+

1

2
L̂ · L̂
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C2(O(6)) = 2(d†s̃+ s†d̃)(2) · (d†s̃+ s†d̃)(2) + 4
∑

k=1,3

(d†d̃)(k) · (d†d̃)(k)

= 2N̂(N̂ + 4)− 8 P̂ † · P̂

C2(O(5)) = 4
∑

k=1,3

(d†d̃)(k) · (d†d̃)(k) = 2

5
L̂ · L̂+ 4 T̂3 · T̂3

C2(O(3)) = 20(d†d̃)(1) · (d†d̃)(1) = 2 L̂ · L̂,

where P̂ = 1
2
(d̃ · d̃)− 1

2
(s̃ · s̃) is the pairing operator, L̂ =

√
10(d†d̃)(1) is the angular

momentum operator, Q̂ = (d†s̃+ s†d̃)(2)−
√
7
2
(d†d̃)(2) is the quadrupole operator and

T̂3 = (d†d̃)(3) is the M3 transition operator.
The eigenvalues of Casimir operators in the representation in which they are

diagonal are

〈[N ]|C1(U(6))|[N ]〉 = N (1.19)

〈[nd]|C1(U(5))|[nd]〉 = nd

〈[nd]|C2(U(5))|[nd]〉 = nd(nd + 4)

〈(λ, µ)|C2(SU(3))|(λ, µ)〉 = λ2 + µ2 + λµ+ 3λ+ 3µ

〈(σ, 0, 0)|C2(O(6))|(σ, 0, 0)〉 = σ(σ + 4)

〈(τ, 0)|C2(O(5))|(τ, 0)〉 = τ(τ + 3)

〈(L)|C2(O(3))|(L)〉 = L(L+ 1).

Dynamical Symmetry I

So, the dynamical symmetry of the first chain of algebras U(6) ⊃ U(5) ⊃ O(5) ⊃
O(3) occurs when the Hamiltonian can be written in terms of the Casimir operators
of the algebras of the chain, that is

H(I) = E0 + ǫC1(U(5)) + aC2(U(5)) + βC2(O(5)) + γC2(O(3)). (1.20)

The eigenvalues in the basis |Nndun∆L > according to the section 1.3.2 are

E(I) = E0 + ǫnd + and(nd + 4) + βυ(υ + 3) + γL(L+ 1). (1.21)

A typical spectrum is seen in Fig. 1.3(a). The main characteristics of the spectrum,
the equispaced levels, the triplet of states with L = 0, 2, 4 at nd = 2, at about twice
the energy of the state with L = 2 with nd = 1, indicate that it is a vibrational
spectrum. This is a U(5) dynamical symmetry.

Dynamical Symmetry II

The Hamiltonian of the second chain of algebras U(6) ⊃ SU(3) ⊃ O(3) in terms of
the Casimir operators of the algebras of the chain, is written as

H(I) = E0 + κC2(SU(3)) + κ′C2(O(3)). (1.22)
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The eigenvalues in the basis |N(λ, µ)KL > are

E(II) = E0 + κ(λ2 + µ2 + λµ+ 3λ+ 3µ) + κ′L(L+ 1). (1.23)

A typical spectrum is seen in Fig. 1.3(b). It is equivalent to the spectrum of axially
symmetric rotational nuclei in the sense that the energies in each band increase
following the L(L + 1) rule. The bands which belong to the (2,2) irrep (in fact
to the (2N-4,2) irrep) with K = 0 and K = 2 are refered as β1 and γ1 bands
respectively. Bands belonging to the (2N-8,4) irrep are refered to as β2 and γ2, etc.
A characteristic of the SU(3) dynamical symmetry spectrum is that bands having
the same angular momentum, belonging to the same irrep, are degenerate. The
(2N,0) irrep, where the ground state band belongs, is called the most leading irrep,
because it maximizes the value of the C2(SU(3)), which means that the quadrupole-
quadrupole (Q̂ · Q̂) interaction is maximized for this irrep.

Dynamical Symmetry III

The Hamiltonian of the third chain of algebras U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) in
terms of the Casimir operators of the algebras of the chain, is written as

H(I) = E0 + AC2(O(6)) +BC2(SO(5)) + C C2(O(3)). (1.24)

The eigenvalues in the basis |Nσ τν∆L > are

E(III) = E0 + Aσ(σ + 4) + Bτ(τ + 3) + C L(L+ 1). (1.25)

A typical spectrum is seen in Fig. 1.3(c). A characteristic property of the O(6)
dynamical symmetry spectrum is the repeated occurence of the states 0+, 2+ and
the doublet 2+, 4+, where the energy difference between the doublet and the 0+ is
about 2.5 times as large as the energy difference between the 2+ and 0+ levels. The
spectrum corresponds to the spectrum of a γ-unstable nucleus.
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Figure 1.3: The spectra of the three dynamical symmetries of the U(6) algebra of the IBM, for
N=3. (a) is the spectrum of the U(5) dynamical symmetry U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3), (b) is the
spectrum of the SU(3) dynamical symmetry U(6) ⊃ SU(3) ⊃ O(3) and (c) is the spectrum of the
O(6) dynamical symmetry U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3). Figure taken by [15].
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1.3.3 IBM Hamiltonian

Till now we have avoided writing a general Hamiltonian for the model. Many Hamil-
tonian expressions have been proposed, but the one that is usually used for appli-
cations to nuclear strucrure has the form [16, 17]

Ĥ(ζ, χ) = c

[

(1− ζ)n̂d −
ζ

4N
Q̂χ · Q̂χ

]

, (1.26)

where the n̂d = d† · d̃ is the number of d-bosons (the first order Casimir operator
of U(5)) and Q̂χ = (d†s̃+ s†d̃)(2) + χ(d†d̃)(2) is the quadrupole operator, while N is
the number of valence bosons and c a scaling factor. This Hamiltonian satisfies the
invariance requirements of boson number conservation (the Hamiltonian commutes
with the boson number operator), by having as many creation, as annihilation oper-
atos and the angular momentum conservation (the Hamiltonian commutes with the
angular momentum operator), by coupling all the terms to zero angular momentum.
In this parametrization, which is called consistent-Q formalism, the quadrupole op-
erator used in the Hamiltonian and in the E2 transition operator, T (E2) = eBQ̂

χ,
are the same, where eB represents the boson effective charge. The Hamiltonian has
two parameters, ζ and χ, which serve for symmetry breaking. ζ ranges from 0 to 1
and χ ranges from 0 to −

√
7
2
. By varying ζ and χ, the three dynamical symmetries

of the model can be reached and nuclei with properties among the three dynamical
symmetries can be described. U(5), which describes vibrational nuclei, corresponds
to ζ = 0, SU(3), which describes axially symmetric rotational nuclei, corresponds to

(ζ, χ) = (1,−
√
7
2
) and O(6), which describes deformed γ-soft nuclei, corresponds to

(ζ, χ) = (1, 0). These dynamical symmetries are placed at the vertices of the sym-
metry triangle (Casten’s triangle) [14, 18], (Fig. 1.4) which is the parameter space
of the model. ζ augments when heading from the U(5) vertex to the O(6)-SU(3)
line of the triangle and has a constant value on the lines which are parallel to the
O(6)-SU(3) line. χ changes values when going from the SU(3) to the O(6) vetrices
of the triangle and has constant value on the lines which join the U(5) vertex to the
O(6)-SU(3) line.

An interesting subject in nuclear structure is the study of shape/phase transitions
in nuclei, which refer to the change of the structure of the ground state band of
the nucleus, from spherical to deformed. A shape/phase transition occurs when
an observable changes abruptly as a function of a control parameter. Empirically,
various observables have been examined, e.g. level energies, separation energies [19],
which show sharp discontinuities in behavior at a specific point, called critical point.

According to Ehrenfest classification, a shape/phase transition is of first order if
the first derivative of the observable is discontinuous at the critical point or of second
order if the discontinuity is presented at the second derivative. The shape/phase
transitions have been studied in the context of the IBM [20], by using the classical
limit of the model [21, 22]. According to Ehrenfest classification, it was found
that a first order shape/phase transition occurs between U(5) and SU(3) limits
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and a second order shape/phase transition between U(5) and O(6) limits. These
shape/phase transitions are placed on the symmetry triangle (Fig. 1.4). In general,
the triangle is divided into two regions, spherical and deformed, by a narrow shape
coexistence region [23] (the slanted lines shown in Fig. 1.4), extending around the
line connecting the two points where shape/phase transitions occur. Shape/phase
transitions have also been studied in a geometrical framework. The critical point
symmetries E(5) [24] and X(5) [25] have been developed to describe shape/phase
transitions, with E(5) found to correspond to the second order critical point between
U(5) and O(6) and X(5) to the first order critical point between U(5) and SU(3),
using special solutions of the Bohr Hamiltonian [5]. Although not relevant to IBM,
E(5) and X(5) are also placed on the symmetry triangle for the sake of completeness.

Arc of regularity

As already mentioned, the parameters of the Hamiltonian (1.26) serve for symmetry
breaking. The breaking of a symmetry could lead to the appearence of approximate
symmetries, which could be identified, among other methods, with chaotic measures.
Twenty years ago, Alhassid and Whelan, studied the interplay between regular and
chaotic behavior in the context of the Interacting Boson Model (IBM), using both
classical and quantum measures of chaos [26, 27, 28, 29, 30]. In their study, they
had found integrability at the three dynamical symmetry limits of the symmetry
triangle of the IBM, as well as at the O(6)-U(5) side of the triangle, while away from
these integrable regions chaos prevailed. The study of the interior of the symmetry
triangle of the IBM, brought to the surface a surprising result, a region of nearly
regular behavior [27], connecting the U(5) and SU(3) vertices, called the “Alhassid–
Whelan arc of regularity”, or simply “arc of regularity”. This semiregular region is
seen in Fig. 1.4. It is the arc moving inside the symmetry triangle, connecting the
U(5) and SU(3) vetrices.

Alhassid and Whelan used a different parametrization of the IBM Hamiltonian,
where ζ parameter is replaced by η, while χ remains the same (Fig. 1.4 (b)). In
this parametrization the IBM Hamiltonian changes form and is written as

Ĥ(η, χ) = c
[

η n̂d −
η − 1

N
Q̂χ · Q̂χ

]

, (1.27)

where η and ζ are connected through the relationship

η =
4(ζ − 1)

3ζ − 4
. (1.28)

The points on the arc are given by the relationship, χ(η) =
√
7−1
2

η−
√
7
2
[29]. Through-

out the rest of the text, we will be using this parametrization of the Hamiltonian.

1.3.4 Quasi-Dynamical and Partial Dynamical Symmetry

In the previous section, the dynamical symmetries of the U(6) symmetry were pre-
sented. The merits of having a dynamical symmetry is more than evident. The
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Figure 1.4: The symmetry triangle of the IBM in two different paramertizations. The slanted
lines close the coexistence region. The two lines become one, near the second order shape/phase
transition (X(5)). The arc moving inside the triangle, connecting the U(5) and SU(3) vertices is
the arc of regularity.

eigenstates of the dynamical symmetry are easy to obtain and analytic expressions
of energies on the dynamical symmetry limit and other observables are easy to find.
However, dynamical symmetries rarely do apply in real nuclei. For example, the
degeneracies predicted by dynamical symmetries are rarely shown in real nuclei.
While dynamical symmetries appear solely on the vertices of the symmetry triangle
of the IBM, the search of more generalized symmetries in the parameter space of
the IBM can become possible by applying symmetry breaking. In that way, the
concepts of partial dynamical symmetries (PDS) and quasi-dynamical symmetries
(QDS) are revealed.

A PDS is achieved when the symmetry breaking keeps some, but not all, of the
characteristics of a dynamical symmetry. There are three types of PDS [31, 32, 33,
34, 35]. In Type I, part of the states preserves all the dynamical symmetry. In
type II, all the states preserve part of the dynamical symmetry. In Type III, part
of the states preserve part of the dynamical symmetry. QDS [36, 37, 38, 39, 40]
are defined as the situation where, several observables associated with a particular
subset of eigenstates may be consistent with a certain symmetry, despite strong
symmetry breaking. The apparent persistence of symmetry is due to the coherent
nature of the mixing in the wave functions of these states. Recently, a link has been
found between a PDS and a QDS [41]. In [41], they found a region of almost exact
ground-state-band O(6) symmetry, away from the O(6) dynamical symmetry, by
decomposing the yrast states into O(6) basis states. At this region, the σ quantum
number is conserved. At the same time, they found that for the same states, the
decomposition of the states into SU(3) basis states, showed that the SU(3) was
broken, due to mixing of SU(3) representations, but at the same time this mixing
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was coherent (L independent), a hallmark of SU(3) quasidynamical symmetry. So,
coherent mixing of one symmetry (SU(3) here) may result in the purity of a quantum
number associated with partial conservation of a different, incompatible symmetry
(O(6) here).



16 CHAPTER 1. INTRODUCTION



Chapter 2

Random Matrix Theory and
Quantum Chaos

Before giving a definition of quantum chaos, it would be interesting to describe how
chaos reveales itself in classical mechanics. The solutions of equations of motion
for systems in classical mechanics can be visualised as trajectories which start from
specific points in phase space, at certain time t0 and then evolve with time in the
available phase space. In general, trajectories that have arbitrarily small deviations
in initial conditions should lie close in phase space.

An interesting feature of some systems with nonlinear equations of motion [42],
is that arbitrarily small deviations in initial conditions may lead to exponential
divergence in time, of their trajectories. This behavior is called chaos. The phase
space of a fully chaotic system is filled with such chaotic trajectories and is void of
islands with regular dynamics.

Quantum mechanical systems are not represented by points in phase space but,
rather, by vectors in Hilbert spaces. The time evolution of these vectors is governed
by the linear Schrödinger equation. So, the term quantum chaos could be confusing,
since the Schrödinger equation is linear and hence its solutions cannot be chaotic.
However, quantum chaos must be understood as refering to quantum systems that
are chaotic in the classical limit [43, 44].

The tools used to study quantum chaos include random matrix theory [45, 46, 47],
level dynamics [44] and periodic orbit expansions [43]. Here, we will be studying the
former method which applies well to nuclei. In particular, we will be interested in
the fluctuation properties of eigenvalues and eigenvectors of the IBM Hamiltonian.

2.1 Random Matrix Theory

Random Matrices were introduced to nuclear physics in the 1960s by Wigner, Dyson
and others to explain neutron resonances observed in the scattering of slow neutrons
by medium–weight and heavy nuclei (e.g. [48, 49]). In the absence of a dynamical
nuclear theory (the nuclear shell model had only just been discovered and had not

17
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yet found universal acceptance), emphasis was focused on the statistical aspects of
nuclear spectra as revealed in neutron scattering data.

In order to develop a statistical theory of spectra [50, 51, 52, 53, 54, 55], Ran-
dom Matrix Theory (RMT) was used. Instead of considering the actual nuclear
Hamiltonian, an ensemble of Hamiltonians was used, each given in matrix form and
each having a certain probability. The use of ensembles is a common procedure in
statistical mechanics, but differs a lot from the way the ensemble is used in RMT.
In statistical mechanics, one considers an ensemble of identical physical systems, all
governed by the same Hamiltonian, but differing in initial conditions and calculates
thermodynamic functions by averaging over this ensemble. So, while in statistical
mechanics the members of the ensemble are different states of the same Hamilto-
nian, in RMT, the members are different Hamiltonians. The Hamiltonians of the
ensemble have common symmetry properties (time invariance, rotation invariance,
half-integer total angular momentum), depending on the symmetries of the system.
RMT takes no account of the specific properties of the nuclear Hamiltonian, e.g.
its two body nature, its large pairing, the quadrupole moments, but only the in-
variances dictated by the symmetry of the matrices. So, attention is focused on the
generic properties which are common to (almost) all members of the ensemble and
which are determined by the underlying fundamental symmetries. The application
of the results obtained within this approach to individual physical systems is justi-
fied provided there exists a suitable ergodic theorem (see next section). RMT does
not aim at producing spectra for comparison with the data, but rather at calculating
spectral fluctuation measures (see next sections) as averages over the ensemble.

The ensembles of Hamiltonian matrices considered by Wigner and Dyson [56, 57,
58, 59, 60, 61, 62, 63, 64] are defined in terms of invariance requirements. With every
Hamiltonian matrix belonging to the ensemble, all matrices generated by suitable
unitary transformations of Hilbert space are likewise members of the ensemble. With
these assumptions, they introduced three ensembles of random matrices. These are
the Gaussian orthogonal ensemble (GOE), the Gaussian unitary ensemble (GUE)
and the Gaussian symplectic ensemble (GSE).

• The first, GOE, is used for time–reversal invariant systems with rotational
symmetry. For such systems, the Hamiltonian matrix can be chosen real and
symmetric. Time–reversal invariant systems with integer spin and broken
rotational symmetry also belong to this ensemble. This ensemble is used for
the study of nuclei.

• The GUE is the Gaussian ensemble of Hermitian (but not necessarily) real ma-
trices. This ensemble plays a role for systems in which time–reversal invariance
is violated.

• Last, comes the GSE, which applies to systems with half integer spin that are
invariant under time reversal, but with broken rotational symmetry. The GSE
does not apply to nuclei directly.
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All three ensembles are invariant respectively under orthogonal, unitary, and sym-
plectic transformations. They are often distinguished by the label β, which indicates
the degree of level repulsion [65], as two eigenvalues approach each other. Orthogo-
nal, unitary, and symplectic canonical transformations correspond to level repulsion
of, respectively, linear, quadratic, and quartic degree (β = 1, β = 2, β = 4). Of the
three degrees of level repulsion, only the linear and quadratic have been observed
experimentally. First experimental evidence for linear repulsion came from nuclear
physics [45, 50, 66, 67], later, confirmation came from microwaves [68, 69, 70, 71],
molecular [72, 73] and atomic [74] spectroscopy and sound waves [75, 76]. Quadratic
level repulsion hasn’t been observed to nuclei, since the breaking of time-reversal
invariance is too feeble to become visible in level spacing distributions. The first
experimental observation of quadratic level repulsion was in microwave experiments
[77, 78], while the first experimentally realizable example in a quantum system came
later [79, 80].

Since nuclei are invariant under time reversal and the nuclear Hamiltonian can
be chosen real and symmetric, the random matrix ensemble considered from now on
will be the GOE.

2.2 The Gaussian Orthogonal Ensemble

For the GOE one considers the family of real symmetric random matrices, of di-
mension N . With i, j = 1, . . . , N , the matrix elements obey Hij = Hji = H∗

ij.
Any matrix in this family depends on N(N + 1)/2 random variables, namely, the
elements Hij with i ≤ j. It is assumed that these random variables are independent
and identically distributed. The remaining elements are determined by symmetry.

What one is seeking is a probability density P (H) for the independent matrix
elements Hij normalized as

∫ ∞

−∞

∏

i≤j
dHijP (H) = 1 (2.1)

and subject to two conditions. First, P (H) must be invariant under any orthogonal
transformation, so that for any real orthogonal matrix O,

P (H) = P (OHÕ), (2.2)

where Õ = O−1.

Second, the random matrix elements Hij must be statistically independent, thus
the function P (H) must be a product of the probability densities of each Hij.

P (H) =
∏

i≤j
Pij(Hij). (2.3)
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It is found that subject to these two conditions, the matrix elements Hij must be
Gaussian distributed. The probability density can be rewritten in the form

P (H) = N0 exp



− 1

4σ2





∑

j

H2
jj + 2

∑

i<j

H2
ij









= N0 exp



− 1

4σ2

∑

i,j

H2
ij



 (2.4)

In this expression all the matrix elements have mean 0, the diagonal elements have
variance 2σ2 and the off-diagonal have variance σ2.

By observing that
∑

i,j(Hij)
2 =

∑

i,j HijHji = (H)2ii, equation (2.4) can be rewrit-
ten in the form

P (H) = N0 exp

(

− 1

4σ2

∑

i

(H2)ii

)

= N0 exp
(

− 1

4σ2
Tr(H2)

)

. (2.5)

Using (2.4) one can derive the probability distribution of the eigenvalues. Briefly,
one rewrites the Hamiltonian as H = O diag(E1, E2, . . . , EN) Õ, where O is an
orthogonal matrix which can be determined by at most N(N − 1)/2 parameters
and diag(E1, E2, . . . , EN) is a diagonal matrix containing the eigenvalues. This
Hamiltonian expresses the Hijs as a function of E1, . . . , EN . Last, by using the
Jacobian of the transformation, the distribution of the eigenvalues takes the form

P (E1, . . . , EN) = N0

∏

i<j

|Ei − Ej| · exp
(

− 1

4σ2

∑

i

E2
i

)

(2.6)

The factor
∏

i<j |Ei − Ej| gives a manifestation of level repulsion. When two eigen-
values approach each other, the distribution of eigenvalues goes to zero.

A striking feature of RMT (and of GOE of course), which also makes it suc-
cessful, is the universality of the local eigenvalue statistics. (Here, local statistics
means that one rescales the eigenvalues such that the average spacing is of order
one. This procedure is called unfolding of spectra and will be explained later.)
There is evidence that when the size of a matrix is very large, N → ∞, then the
eigenvalue distribution tends towards a limiting distribution, independently of the
initial probability law imposed on the matrix entries (e.g. the initial probability law
imposed on the matrix entries of GOE is the Gaussian distribution). In the limit
N → ∞, the spectral fluctuations are universal. By the term universal, one means
that systems that are completely different from each other (see Fig. 2.1), but are
dominated by the same symmetries and invariances, have spectral fluctuations that
show the same behavior. So, the distributions of empirically observed eigenvalues
(e.g. spectra of nuclei), obey the same statistics as random matrix models.
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Figure 2.1: Level spacing distributions for (a) the Sinai billiard [67], (b) a hydrogen atom in a
strong magnetic field [81], (c) an NO2 molecule [72], (d) a vibrating quartz block shaped like a
three dimensional Sinai billiard [82], (e) the microwave spectrum of a three-dimensional chaotic
cavity [83], (f) a vibrating elastic disk shaped like a quarter stadium [84]. Figure taken by Haake
[44].
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In RMT, the various quantities are calculated as averages over the ensemble
of Hamiltonians. However, in physical systems there is a single Hamiltonian. The
obvious question is how can GOE be applicable to individual physical systems which
have a single Hamiltonian, such as nuclei. The answer is by the property of ergodicity
of GOE. Ergodicity [85], states that the ensemble average of an observable is equal
to the running average of this observable, where the running average is the average
calculated for a single member of the ensemble.

One last question that needs to be answered is how RMT is connected with the
study of chaos in nuclei. The answer is given by the “Bohigas conjecture” which
established a link between RMT and the spectral fluctuation properties of classically
chaotic quantum systems with few degrees of freedom. It was already known that
experimental data aquiered by scattering of low energy neutrons and protons by
nuclei, that were combined to make the “Nuclear Data Ensemble”, a total of 1726
level spacings, were in agreement with the GOE [86]. In 1984, Bohigas, Giannoni and
Schmit [67] investigated the quantum spectra of the Sinai billiard [87], a classicaly
chaotic system and produced a set of data consisting of more than 700 eigenenergies,
which then compared with the GOE predictions. The good agreement between the
spectra fluctuations calculated from the data and the corresponding GOE results
caused the authors to formulate the following conjecture: “Spectra of time-reversal
invariant systems whose classical analogues are systems which exhibit strong chaos,
show the same fluctuation properties as predicted by the GOE. ”

2.3 GOE fluctuation measures, Unfolding Spec-

tra

2.3.1 Nearest neighbour spacing distribution

As already mentioned, RMT does not aim at producing spectra for comparison
with the data, but rather at calculating spectral fluctuation measures or statistics
for comparison with the data. The first statistic introduced here is the nearest
neighbour spacing distribution, commonly used to study the short range fluctuations
of the spectrum. It is denoted by P (S) and it is equal to the probability density for
two neighboring levels having a spacing S, where S is the actual level spacing over
the mean level spacing. When the Hamiltonian is integrable, but with irrational
frequencies, then the distribution gets a Poisson form [88]

PP (S) = exp(−S). (2.7)

For the GOE, P (S) cannot be determined analytically, but an excellent approx-
imation is given by Wigner, known as Wigner surmise, which is the exact spac-
ing distribution for a 2 × 2 matrix model, given by the joint distribution (2.6), if
∫

SP (S)dS = 1 = 〈S〉, with the normalization
∫∞
0 P (S)dS = 1,

PGOE(S) =
π

2
Sexp(−πS2/4). (2.8)
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Universality is evident in this relation, since the gaussian form of P (S) is not related
to the gaussian factor of the GOE joint probability, but has to do with the fact that
large and zero spacings are unlikely to occur. The exact expression for P (S) was first
derived by [53]. P (S) for the integral (Poisson form) and the chaotic case (GOE)
are displayed in Fig. 2.2.

Figure 2.2: The form of the nearest spacing distribution for the Poisson and the GOE case. The ω
corresponds to the parameter of the Brody distribution which is going to be introduced in section
2.4.

2.3.2 The ∆3 statistics

The spectral rigidity, ∆3(L), is a measure for the deviation from equal spacing and
it is used to measure long range correlations. It was introduced by Dyson and Mehta
[63], who defined the function

∆3(L) =
1

L
minA,B

〈 ∫ a+L

a
[N(E)− (AE + B)]2dE

〉

a
, (2.9)

where the constants A and B will give the best local fit to N(E) in the interval
a ≤ E < a + L. The angular brackets denote an average over a, while L is the
energy length of the interval. For a random Poisson spectrum (integral case) ∆3

takes the form

∆P
3 (L) =

L

15
. (2.10)

For the GOE case there is an approximate expression, for large L,

∆GOE
3 (L) =

1

π2
(logL− 0.0687). (2.11)
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The exact expression, good for all L, is also known [86],

∆GOE
3 (L) =

2

L4

∫ L

0
(L3 − 2L2r + r3)Σ2(r)dr. (2.12)

It is related to the fluctuation measure of number variance, Σ2(L) = n2(a, L) −
(n(a, L))2, where n(a, L) is the number of energy levels in the interval [a, a + L].
There is an analytic expression for Σ2(L) as well [86],

Σ2(L) =
2

π2

(

ln(2πL) + γ + 1 +
1

2
(Si(πL))2 − 1

2
πSi(πL)− cos(2πL)

−Ci(2πL) + π2L[1− 2

π
Si(2πL)]

)

. (2.13)

Figure 2.3 shows the form of ∆3(L) for the GOE and the Poisson case.

Figure 2.3: The form of the distribution of the ∆3 statistics for the Poisson and the GOE case. q
is a parameter introduced in section 2.4 which characterises the system as regular or chaotic.

2.3.3 Porter-Thomas distribution

Besides the energy level fluctuations, one can consider the fluctuations of the transi-
tion strenghts from one level of the excited nucleus to another. Porter and Thomas
assumed that the transition matrix elements connecting states of the nuclear spec-
tra, may be treated as random, identical independent variables having a Gaussian
distribution centered at zero. The resulting distribution for the GOE case is the
Porter-Thomas distribution [54]

PGOE(y) =
1√

2π < y >

1√
y
exp(−y/2 < y >), (2.14)
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where y is the relevant transition intensity considered, e.g B(E0) or B(E2). There is
no universal distribution for the regular case, but one expects to see fewer transition
strenghts compared to the chaotic case. It is very important, for the calculations to
be correct, when one compares the Porter-Thomas distribution with data, to take
into consideration the whole set of data and also to consider transitions between
states of the same angular momentum. Figure 2.4 shows the form of the Porter-
Thomas distribution.

Figure 2.4: The form of the Porter-Thomas distribution for the GOE case (ν = 1) and two cases
with less chaos. ν is a parameter introduced in section 2.4 which characterises the system as regular
or chaotic.

2.3.4 Unfolding spectra

As already mentioned in Section 2.2, the universality of the statistics is seen when
the spectra is unfolded. After a measurement or a calculation, an ordered sequence
of levels is produced (E1, E2, . . . , EN), which form the spectrum. The spectrum has
the following characteristic, the low energy levels have consistently larger spacings
than the high energy ones. This is reflected in the spectral fluctuation measures,
so one needs to unfold the spectra, that is to say, modify the spectrum so that the
average level spacing is constant and equal to one, 〈S〉 = 1.

The way unfolding is done is the following: One constructs a staircase function
of the data. A staircase function is the number of levels found below some specific
energy. It is called staircase, because it resembles a stair. Then, one fits a low order
polynomial N(E) to that function [89]. The unfolded energies, which will be called
from now on, normalized energies, are found as

ǫi = N(Ei). (2.15)
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The average level spacing of the spectrum of the normalized energies, is equal to
one. At the calculation of the spectral fluctuation measures discussed before, the
energies used are the normalized energies.

2.4 Quantum Statistical Parameters

The three statistics described in the previous section, have forms to describe either
chaotic or regular limits. However, often, the results obtained by some calculation,
have character between full chaos and integrability, so, the quantum statistical dis-
tributions produced have an intermediate form. It is obvious that it is necessary
to find forms of the three relevant statistics that, with the help of some parameter,
could fit, chaotic, integrable, as well as results of intermediate character.

For the nearest spacing distribution, the form of the function that could inter-
polate between regular and chaotic limits is the Brody distribution [45],

Pω(S) = Aα(1 + ω)Sωexp(−αS1+ω), (2.16)

where A is a scaling factor and α = Γ[(2 + ω)/(1 + ω)]1+ω. The value of ω is found
by fitting (2.16) to the data by least squares. The Brody distribution takes the form
of Poisson statistics when ω = 0 (eq. (2.7)), which characterise a regular system
and the Wigner distribution when ω = 1 (eq. (2.8)), which corresponds to a chaotic
system (Fig. 2.2). For intermediate cases, larger ω implies more chaos.

For the spectral rigidity, the form of the function should be [45]

∆q
3(L) = ∆GOE

3 (qL) + ∆P
3 ((1− q)L). (2.17)

The value of q is again found by fitting the data. For q = 0, one gets the regular
case, ∆P

3 (L), given in eq. (2.10), while for q = 1, the chaotic limit emerges, given in
eqs. (2.11), (2.12). For intermediate values of q the result is between 0 and 1, the
behavior being closer to chaos for q closer to 1.

For the last statistic, the interpolating function is [90, 91]

Pν(y) = A

(

ν

2 < y >

)ν/2
y

ν

2
−1exp(−νy/2 < y >)

Γ
(

ν
2
,
) , (2.18)

where A is again a scaling factor. ν is found by fitting the data to the interpolating
function (2.18). The expression reduces to the GOE result for ν = 1. For small
values of ν one expects regularity. There is no formal expression for the regular
case.



Chapter 3

Measure of chaos in the IBM
Hamiltonian

In this chapter, we will apply the statistical measures introduced before, in order
to study the emergence of regularity among chaos, inside the symmetry triangle
of the IBM. The interplay between regular and chaotic behavior in the context of
the IBM, has already been studied, using both classical and quantum measures of
chaos in the original work of Alhassid and Whelan [26, 27, 28, 29, 30]. However,
due to calculation limitations of the code used, the authors studied quantum chaos
for a smaller number of bosons (NB = 25) than we will do here and for angular
momentum greater than L = 2, in order to have good statistical significance of the
results. In their study, they had found integrability at the three dynamical symmetry
limits of the triangle, as well as at the O(6) − U(5) side of the triangle, due to the
O(5) subalgebra which is common in the two symmetry limits. Away from these
integrable regions, one expected to have chaotic behavior. However, the study of
the interior of the symmetry triangle of the IBM led to some puzzling results. The
study of Alhassid and Whelan brought to the surface a region inside the triangle
where regularity is emerging among chaos [27]. Recently, this region, which is called
“Alhassid–Whelan arc of regularity”, was experimentally confirmed [92]. The study
of the arc of regularity [93] and the symmetry underneath its existence is a subject
of research [94, 95, 96]. We will deal with this in the next chapter. In this chapter
we will mainly consider 0+ states and how their eigenvalues and transition strengths
behave at four different points of the Casten triangle, specifically on the SU(3)
vertex, a point on the arc of regularity and two points above and below the arc. A
study of the 0+ states was also done by Macek et al. [97], where they showed that
the bunching pattern of 0+ states in the Alhassid Whelan arc of regularity is similar
to the pattern along the O(6)− U(5) side of the triangle, implying the existence of
regularity.

27
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3.1 Numerical results

Calculations were performed at four different points, as is demonstrated in Fig.
3.1, namely on the SU(3) vertex, a point on the arc having parameters (η, χ) =
(0.632,−0.803) and at two random points at (η, χ) = (0.632,−0.7) and (η, χ) =

(0.632,−1.1). The points on the arc are given by the expression χ(η) =
√
7−1
2

η−
√
7
2

and it was found by calculating the values of χ versus η, where σ (a measure of
classical chaos) is minimized [29].

Figure 3.1: The symmetry triangle of the IBM and the four different points where calculations
were performed.

In order to have good statistics, we have used NB = 175 number of bosons, for
the measures P (S) and ∆3(L), which produced 2640 0+ states. For the statistical
measure P (y), we used NB = 50 number of bosons, which produced 54756 possible
transition strengths, B(E0)s, between the 234 0+ states. The reason for selecting
NB = 50 number of bosons instead of NB = 175, was that in the latter case there
are more than 6000000 possible B(E0)s between the 2640 0+ states, something that
makes the calculation impossible to run in terms of time, while for NB = 50 number
of bosons, the run time is logical and the number of produced B(E0)s is already
more than enough. The allowed B(E0)s differ from point to point in the symmetry
trangle of the IBM and their number gets larger, as the point gets more chaotic.
Figure 3.2 shows the results for the four points illustrated in Figure 3.1, for the
three statistical measures P (S), ∆3(L) and P (y). All three different measures of
fluctuations show the same consistent results. The SU(3) vertex is the more regular
point, followed by the point on the arc of regularity, which appears to also have
regular behavior. Then come, the points labelled χ = −0.7, χ = −1.1 which are
indeed chaotic, with the χ = −0.7 being less chaotic than the χ = −1.1 point. The
fitting of the interpolating function of the last statistic, P (y), on the SU(3) vertex



3.1. NUMERICAL RESULTS 29

is rather poor, which reflects the fact that the expression (2.18) does not reduce to
the regular case for any value of ν.

Figure 3.2: Results for the four points shown in Fig. 3.1, for NB = 175 number of bosons and
L = 0 states, using the fluctuation measures P (S), ∆3(L) and for NB = 50 number of bosons and
L = 0 states, for the fluctuation measure P (y). The black line shows the regular limit, the red line
describes the chaotic limit, while the blue line is the fit to the distribution. It is evident from the
values of ω, q and ν, that the SU(3) vertex and the point on the arc are regular compared to the
other two random points above and below the arc.
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3.2 Study of chaos in 0+ states

3.2.1 Chaos in 0+ states as a function of energy

The study of chaos as a function of energy has already been performed classically
[30], but not quantum mechanically, since the small number of bosons used, produced
a small number of states, which didn’t allow for good statistics. For NB = 175
number of bosons and L = 0, the number of states is 2640, so one can divide the
spectrum and study each part quantum mechanically, without worrying about the
statistics. In Figures 3.3 and 3.4 the spectrum is divided in 8 parts of 330 states
each. The division of the spectrum in parts of equal number of states, is the same
as the division of the spectrum in parts having equal energy difference, due to the
normalization of the spectrum which has led to neighboring energies differing by 1.
The results for ω and q are displayed in Tables 3.1 and 3.2.

The results show a surprising similarity with the expectations of the classical
case and there is also consistency, once again, between the fluctuation measures.
Indeed, at the low part of the spectrum (at the first interval), the results are almost
the same as these expected for the whole spectrum. As the energy increases, there
is a big jump, where the motion becomes chaotic, while at even larger energies the
amount of chaos decreases significantly, even for the chaotic points, a behavior which
is also evident for the classical results. The SU(3) point, which is of course regular,
seems not to follow the behavior of the other points. Indeed, if one observes the
results of the SU(3), these display chaos, for large energies.

The points above and bellow the arc, even if they obey at the same behavior, as
the one described above, increase of chaoticity as the energy increases, decrease of
chaoticity for even larger values of energy, they still have chaotic behavior spread
all over the spectrum. However, chaotic behavior is confined to less intervals at the
arc or the SU(3) vertex.
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Table 3.1: Numerical values of ω, for the 8 parts of each spectrum. The states 1-330 are labelled
as interval 1, the states 2311-2640 are labelled as interval 8.

interval SU(3) arc χ = −0.7 χ = −1.1
P(S) ω ω ω ω

1 0.30 0.26 0.51 0.54
2 0.17 0.50 0.67 0.82
3 0.14 0.31 0.67 1.02
4 0.00 0.16 0.39 0.85
5 0.06 0.10 0.18 0.54
6 0.10 0.22 0.22 0.35
7 0.14 0.04 0.23 0.18
8 0.32 0.03 0.10 0.16

Table 3.2: Numerical values of q, for the 8 parts of each spectrum. The states 1-330 are labelled
as interval 1, the states 2311-2640 are labelled as interval 8.

interval SU(3) arc χ = −0.7 χ = −1.1
∆3(L) q q q q

1 0.01 0.43 0.67 0.86
2 0.48 0.84 0.91 0.92
3 0.52 0.57 0.79 1.94
4 0.26 0.32 0.64 0.97
5 0.40 0.27 0.37 0.77
6 0.51 0.41 0.53 0.60
7 0.54 0.002 0.53 0.45
8 0.66 0.26 0.46 0.44
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Figure 3.3: Results obtained for the nearest spacing distribution, P(S), for each of the cases shown
in Fig. 3.1, for N=175 number of bosons and, when the set of L = 0 states is divided into 8 sets
of 330 states each. The states 1-330, (labelled as interval 1 in Table 3.1) appear on the top, the
states 2311-2640 (labelled as interval 8 in Table 3.1) appear at the bottom.
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Figure 3.4: Results obtained for the spectral rigidity measure, ∆3(L), for each of the cases shown
in Fig. 3.1, for N=175 number of bosons and, when the set of L = 0 states is divided into 8 sets
of 330 states each. The states 1-330, (labelled as interval 1 in Table 3.2) appear on the top, the
states 2311-2640 (labelled as interval 8 in Table 3.2) appear at the bottom.
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3.2.2 Chaos in 0+ states as a function of the parameter χ

The results of the quantum statistical parameters, ω and q, as a function of the
parameter χ, along the η = 0.632 line of the triangle are seen in Fig. 3.5. First, being
on the SU(3)–U(5) line of the triangle ((η, χ) = (0.632,−1.32)) chaotic behavior is
displayed, which keeps diminishing as one reaches the arc of regularity ((η, χ) =
(0.632,−0.803)), where there is a minimum. Then, as one moves to greater values
of χ, chaoticity emerges again, but again gives its place to regular behavior as one
reaches the O(6)–U(5) line of the triangle ((η, χ) = (0.632, 0)), where the O(5)
symmetry causes integrability. These results, for the 0+ states, are in complete
agreement with the work of Alhassid and Whelan, who found the existence of the
arc of regularity at the same point using N = 25 number of bosons and L = 10
angular momentum.

Figure 3.5: Results obtained for the quantum statistical parameters ω and q, for various values of
χ along the η = 0.632 line of the triangle. The calculations were performed for N = 175 number
of bosons and L = 0.

3.2.3 Chaos in 0+ states as a function of the number of
bosons N

The results of the quantum statistical parameters, ω and q, as a function of the
number of bosons N are seen in Fig. 3.6. The first observation one can make,
is that there is a quick drop of the values of the measured quantum statistical
parameters as the number of bosons N increases, while for much larger values of N
(larger than N = 175 bosons), the drop is very small and the quantum statistical
parameters seem to have reached steady values. The reason for this drop, at small
values of bosons, is that the number of states is small compared to larger values of
bosons, something that affects the statistical results. For example, at N = 25 there
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are only 65 number of states, while for N = 175 there are 2640 number of states,
so statistical analysis of eigenvalues has more value at the second case. The second
observation, is that despite the, large or much smaller, drop of quantum statistical
parameters, as the number of bosons N increases, the point on the arc always has
the least values compared with the other two points χ = −0.7 and χ = −1.1 and
the point χ = −0.7 is always less chaotic than χ = −1.1. So, as the number of
bosons increases, the arc of regularity survives and is stable when changing N .

Figure 3.6: Results obtained for the quantum statistical parameters ω and q, for various values of
N at the three points mentioned before inside Casten’s triangle.

3.3 Study of chaos in the BE0 intensities

In addition to the spectral fluctuations, the transition from chaos to regularity and
vice versa, can be studied using transition intensities, whose statistical fuctuations
provide an equally sensitive measure of chaos. In this section the B(E0) intensities
are analysed using the statistical measure P (y).

3.3.1 Chaos in the BE0 intensities as a function of the pa-
rameter χ

The results of the quantum statistical parameter ν, as a function of the parameter
χ, along the η = 0.632 line of the triangle are seen in Fig. 3.7. For these calculations
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we used NB = 50 number of bosons, which gave 54756 BE0s between the 234 0+

states.

The results show the same general behavior, as these of the statistics of the
eigenvalues of the 0+ states. Once again the regularity of the point on the arc is
made evident from the minimum of the curve at χ = −0.8. Chaotic behavior is
encountered at the regions before and after the arc of regularity, while at the O(6)–
U(5) line of the triangle ((η, χ) = (0.632, 0)), regularity emerges again. The study
of chaoticity of the BE0 intensities distribution gives results which are in complete
agreement with the study of chaoticity of the BE2 intensities distribution of the
work of Alhassid and Whelan.

Figure 3.7: Results obtained for the quantum statistical parameter ν, for various values of χ along
the η = 0.632 line of the triangle. The calculations were performed for N = 50 number of bosons
and L = 0.

3.3.2 Chaos in the B(E0) intensities as a function of energy

The study of chaos in the B(E0) intensities as a function of energy was done in the
following way. The 234 0+ states were divided into 7 parts of 30 states each and one
part of 24 states. For the first 30 0+ states, the statistical measure P (y) was applied
to the B(E0) intensities, produced by these 30 0+ states, the same for the next 30 0+

states and so on. The results are displayed in Table 3.3. The SU(3) point is missing
from the Table. As already mentioned, points possessing some dynamical symmetry,
as the SU(3) point which is characterized by regularity, have a smaller number of
B(E0) intensities compared to other points characterized by chaotic dynamics. In
addition to the great dispersion of these few B(E0) intensities, the study of chaos
as a function of energy at the SU(3) limit, using NB = 50 number of bosons, was
impossible statistically.

At the low part of the spectrum (at the first interval), the statistics of the B(E0)
intensities show intermediate chaoticity, which is increased as the energy increases.
At even larger energies, the amount of chaos decreases significantly, even for the
chaotic points. The points above and bellow the arc, show more chaotic behavior,
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compared to the point on the arc, in all the energy intervals. The point χ = −1.1
is definitely more chaotic than the other two points.

The most fascinating observation though, is that both the statistics of the B(E0)
intensities and those of eigenvalues, show consistency in the degree of chaos as a
function of energy. In all cases, there is a jump in the degree of chaoticity as one
passes the low part of the spectum, which is replaced by regularity as one gets at
the upper part of the spectrum. These results are in accordance with those found
in [94], where the authors, using spectral lattices, observed that regularity is not
restricted to low energies, but is found also in high energies.

Table 3.3: Numerical values of ν, for the 8 parts of each spectrum. The states 1-30 are labelled as
interval 1, the states 211-234 are labelled as interval 8.

interval arc χ = −0.7 χ = −1.1
P(y) ν ν ν

1 0.40 0.62 0.44
2 0.48 0.81 0.84
3 0.39 0.60 0.87
4 0.32 0.49 0.77
5 0.29 0.35 0.54
6 0.23 0.26 0.37
7 0.21 0.21 0.30
8 0.21 0.27 0.22
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Figure 3.8: Results obtained for the statistical measure, P (y), for each of the cases shown in Fig.
3.1, for N=50 number of bosons and, when the set of 234 L = 0 states is divided into 7 sets of 30
states and one set of 24 states. The states 1-30, (labelled as interval 1 in Table 3.3) appear on the
top, the states 211-234 (labelled as interval 8 in Table 3.3) appear at the bottom.



Chapter 4

Analytic derivation of an
approximate SU(3) symmetry
inside the symmetry triangle of
the IBM

In the previous chapter we studied the emergence of regularity among chaos inside
the symmetry triangle of the IBM, by applying statistical measures of chaos at
points around the arc of regularity. As already mentioned, the arc of regularity is
a semiregular region inside the symmetry triangle, found by Alhassid and Whelan
[98, 99], using both classical and quantum measures of chaos, whose underlying
symmetry was unknown.

The authors of [100] have used the notion of wave-function entropy, to quantify
the departure of transitional IBM-1 Hamiltonians from the particular dynamical
symmetries of the model. (In the context of IBM-1, the wave-function entropy is a
measure that quantifies the eigenstate localisation of a particular transitional IBM-1
Hamiltonian in a given dynamical symmetry basis. Chaos is established as the degree
of eigenstate localisation in the given dynamical symmetry basis decreases.) They
have found that on the arc of regularity, there is indeed an increased localisation in
the symmetry bases. However, they couldn’t give an explanation of this behavior.
From the empirical point of view, it has been found [92] that the line corresponding
to the degeneracy of the β1 and γ1 bandheads (2+γ1 = 0+β1) closely follows the arc of
regularity and 12 nuclei closely exhibiting this behavior have been located. Recently,
it has been realized [101] that the locus of the 2+γ1 = 0+β1 degeneracy closely follows
the line of change of stability of γ vibrations at low energies.

The presence of (near) regularity presupposes the existence of some underly-
ing (approximate) symmetry. From the extensive analysis of the low part of the
spectrum in [95], it was suggested that the underlying symmetry of the arc is an
SU(3)-QDS. A hallmark of SU(3) is the degeneracies between the levels of the β
band and those, with the same even L, of the γ band. The authors, by keeping η
constant and varying χ, they tried to find the point where E(2+β ) = E(2+γ ). With

39
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this procedure they found a locus of points where not only the E(2+β ) = E(2+γ )
condition was met, but at this locus simultaneously one also had E(L+

β ) = E(L+
γ ),

that is the same degeneracies that characterise SU(3). Also, not only the β and γ
bands, but all low lying bands had the same degeneracies as in SU(3), to an excel-
lent approximation. This locus of points lies very close to the arc and for N=250 it
ranges from (η, χ) ∼ (0.8, -0.5) to (0, -1.32) at SU(3), with weak dependence on N,
except near the coexistence region [102] (separating spherical from prolate deformed
shapes). This result extends the notion of quasidynamical symmetry (QDS), origi-
nally introduced [103, 104, 105, 106, 107] for describing the persistence of limiting
symmetries along the U(5)-O(6) and U(5)-SU(3) legs of the IBA, to the interior of
the triangle. The domain of validity of the SU(3) QDS inside the IBA symmetry
triangle has also been considered by mean field techniques [108]. The analysis of
Ref. [95] was limited to the low-lying part of the spectrum, while regularity in the
midst of chaoticity was discovered by Alhassid and Whelan and was studied in the
previous section, through the study of the whole spectrum [98, 99]. The properties
of high-lying rotational bands built on axially deformed ground states have been
studied recently [109] in the IBA, showing signatures of an SU(3) QDS extending
to the highest part of the IBA spectrum. The authors have studied the occurence
of rotational bands at low, intermediate and high energy domains and how this is
related with the appearence of regularity. They have found that the regular part of
the spectrum is inhabited by SU(3)-like rotational bands. At the arc of regularity
they found increased regularity, even for the highest accessible energies E ≈ Emax,
accompanied by the highest occurence of rotational bands.

In the present chapter, we will analytically derive a line of approximate SU(3)
symmetry inside the symmetry triangle of the IBM. The derivation of the line is
based on this idea: In order to have an SU(3) symmetry, the IBM Hamiltonian has
to commute with the generators of SU(3). The line will be extracted by the study of
Hamiltonians that, in the large-boson-limit of the IBA, approximately commute with
the SU(3) generators. The analytical identification of an approximate symmetry
takes advantage of the well known contraction [110] of the SU(3) algebra to the
[R5]SO(3) algebra [111, 112]. Furthermore, using the contraction of O(6) to the
[R5]SO(5) algebra [113, 114] of the γ-unstable rotator, we prove that no line related
to the O(6) symmetry exists in the triangle. For a detailed analysis of the İnőnű -
Wigner contraction method and the analytic derivation of the contractions of the
SU(3) algebra to the [R5]SO(3) algebra and the O(6) to the [R5]SO(5) algebra, the
reader is referred to the appendices E, F, G.

4.1 The SU(3) symmetry

In this section we will try to find the locus of points where the IBA Hamiltonian
commutes with the generators of SU(3). For convenience the IBA Hamiltonian is
given again



4.1. THE SU(3) SYMMETRY 41

Ĥ(η, χ) = Ĥ1 + Ĥ2 = c
[

ηn̂d −
η − 1

N
Q̂(2)
χ · Q̂(2)

χ

]

, (4.1)

where the operators n̂d and Q̂(2)
χ are given by

n̂d = d† · d̃ =
√
5(d†d̃)(0), (4.2)

Q̂
(2)
χ,ξ = (s†d̃+ d†s)

(2)
ξ + χ(d†d̃)

(2)
ξ . (4.3)

The SU(3) algebra [6] is generated by the angular momentum operators

L̂ξ =
√
10(d†d̃)

(1)
ξ , (4.4)

and the quadrupole operators

Q̂
(2)
SU(3),ξ = (s†d̃+ d†s)

(2)
ξ −

√
7

2
(d†d̃)

(2)
ξ . (4.5)

4.1.1 Commutation relations

The first step is to see whether the Hamiltonian commutes with the angular mo-
mentum operators, L̂ξ. The Hamiltonian does commute with L̂ξ, by construction.
The next step is to examine the special conditions under which the Hamiltonian also
commutes (approximately) with the quadrupole operators. In order to calculate the
commutation relations, a special expression is used, found in [6], Eq. (2.6) or in [15],
Eq. (7.51). The products of boson creation (b†l ) and annihilation (b̃l′) operators are
written in coupled form, as

G(k)
κ (l, l′) = [b†l × b̃l′ ]

(k)
κ , (l, l′ = 0, 2). (4.6)

For reasons of convenience, usually the symbol × is omitted and the brackets are
replaced by parentheses, so one has, G(k)

κ (l, l′) = (b†l b̃l′)
(k)
κ . Then, the commutation

relations of the operators of Eq. (4.6) are

[G(k)
κ (l, l′), G

(k′)
κ′ (l′′, l′′′)] =

∑

k′′,κ′′

√

(2k + 1)(2k′ + 1)(kκk′κ′|k′′κ′′)(−1)k−k
′

[

(−1)k+k
′+k′′

{

k k′ k′′

l′′′ l l′

}

δl′l′′G
(k′′)
κ′′ (l, l′′′)−

{

k k′ k′′

l′′ l′ l

}

δll′′′G
(k′′)
κ′′ (l′′, l′)

]

. (4.7)

The commutation relations needed for this task, as well as some examples of
calculating commutation relations are listed in the appendix B. The commutator of
the first term of the Hamiltonian with the quadrupole operators gives

[Ĥ1, Q̂
(2)
SU(3),ν ] = cη[n̂d, Q̂

(2)
SU(3),ν ] = cη(d†s− s†d̃)(2)ν . (4.8)

For the commutator of the second term of the Hamiltonian with the quadrupole
operators,
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[Ĥ2, Q̂
(2)
SU(3),ν ] = c

η − 1

N
[Q̂(2)

χ · Q̂(2)
χ , Q̂

(2)
SU(3),ν ], (4.9)

one rewrites the scalar product Q̂(2)
χ · Q̂(2)

χ as ([6], Eq. (1.14))

Q̂
(2)
χ,ξ · Q̂

(2)
χ,ξ =

∑

ξ

(−1)ξ Q̂
(2)
χ,ξ Q̂

(2)
χ,−ξ (4.10)

and also uses the

Q̂
(2)
χ,ξ = Q̂

(2)
SU(3),ξ +

(

χ+

√
7

2

)

(d†d̃)
(2)
ξ (4.11)

and of course,

Q̂
(2)
χ,−ξ = Q̂

(2)
SU(3),−ξ +

(

χ+

√
7

2

)

(d†d̃)
(2)
−ξ (4.12)

in order to get the intermediate result

[Q̂(2)
χ · Q̂(2)

χ , Q̂
(2)
SU(3),ν ] =

∑

ξ

(−1)ξ
{

[Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ]Q̂

(2)
χ,−ξ + Q̂

(2)
χ,ξ[Q̂

(2)
SU(3),−ξ, Q̂

(2)
SU(3),ν ]

+

(

χ+

√
7

2

)

{

[(d†d̃)
(2)
ξ , Q̂

(2)
SU(3),ν ]Q̂

(2)
χ,−ξ + Q̂

(2)
χ,ξ[(d

†d̃)
(2)
−ξ , Q̂

(2)
SU(3),ν ]

}

}

. (4.13)

By calculating explicitly the commutators of (4.13) and by using the tensor product

[T (k1) × T (k2)](k)q =
k1
∑

q1=−k1

k2
∑

q2=−k2
< k1q1k2q2|kq > T (k1)

q1
T (k2)
q2

, (4.14)

(for details on the calculation see appendix D), equation (4.13) can be rewritten in
the form

[Q̂(2)
χ · Q̂(2)

χ , Q̂
(2)
SU(3),ν ] =

3
√
15

4
[((d†d̃)(1)Q̂(2)

x )(2)ν − (Q̂(2)
x (d†d̃)(1))(2)ν ]

+

(

χ+

√
7

2

)

[((d†s− s†d̃)(2)Q̂(2)
χ )(2)ν + (Q̂(2)

χ (d†s− s†d̃)(2))(2)ν ]

+

(

χ+

√
7

2

)

∑

k=1,3

√

35(2k + 1)
{

2 2 k
2 2 2

}

[((d†d̃)(k)Q̂(2)
χ )(2)ν − (Q̂(2)

χ (d†d̃)(k))(2)ν ].

(4.15)
In order to obtain the conditions under which the Hamiltonian of Eq. (4.1)

commutes with the generators of SU(3), we exploit a simplification of Eq. (4.13)
that occurs in the large-N limit. In this limit, the eigenvalue expression for the
second-order Casimir of SU(3) [see Eq. (77)] reduces to just the λ2 term for SU(3)-
irreducible representations (irreps) (λ, µ) with λ >> µ. Then, the ground state
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band, which belongs to the (2N,0) irrep, becomes energetically isolated from all the
other excitations. This situation is formally known as the contraction of SU(3) to

R5[SO(3)] [111, 112] and it occurs when the Q
(2)
SU(3) operators are replaced by quan-

tities that are mutually commuting. (For a detailed explanation, see in appendix F

the discussion leading to Eq. (80).) If the Q
(2)
SU(3) operators can be approximated by

mutually commuting quantities, Eq. (4.13) and Eq. (4.15) greatly simplify.
In the large-N limit, where contraction occurs, the commutators in the first two

terms in Eq. (4.13) vanish. Also, the first term of Eq. (4.15) vanishes as well, as it
comes from these commutators. This can be better justified, since, in the large-N
limit, the vanishing of the commutator

[Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ] =

15

4
(2ξ2ν|1ξ + ν)(d†d̃)

(1)
ξ+ν (4.16)

implies that the terms containing (d†d̃)(1) can be ignored. This fact can be under-
stood qualitatively as a consequence of the relevant dominance of s bosons over d
bosons within the ground-state band, especially for relatively low-lying states in the
large boson number limit.

Another simplification that occurs in the large-N limit is that the terms contain-
ing (d†d̃)(k) can be omitted. Furthermore, Q̂(2)

χ can be replaced by Q̂
(2)
SU(3), since, as

seen from Eq. (4.11), they differ by the terms (d†d̃)(2), which are small. In addition,

in this limit, Q̂
(2)
SU(3) can be replaced by the intrinsic quadrupole moment, which is

a scalar, which is N
√
2 in the present case (see appendix F). This result is perhaps

familiar in the context of the well-known property of SU(3), that B(E2 : 2+1 → 0+1 )
increases with N2 [6]-that is the collectivity of yrast transition strengths increases
quadratically with boson number. Then, in the large-N limit, one is left with

[Q̂(2)
χ · Q̂(2)

χ , Q̂
(2)
SU(3),ν ] = 2

√
2N

(

χ+

√
7

2

)

(d†s− s†d̃)(2)ν . (4.17)

So, in the large-N limit, the commutator for the second part of the Hamiltonian
reads

[Ĥ2, Q̂
(2)
SU(3),ν ] = c(η − 1)2

√
2

(

χ+

√
7

2

)

(d†s− s†d̃)(2)ν . (4.18)

In total, the commutator of the first and the second part of the Hamiltonian
with the quadrupole operators gives

[Ĥ, Q̂
(2)
SU(3),ν ] = [Ĥ1 + Ĥ1, Q̂

(2)
SU(3),ν ]

=

(

cη + c(η − 1)2
√
2

(

χ+

√
7

2

))

(d†s− s†d̃)(2)ν . (4.19)

In order to get a vanishing commutator, the coefficients should cancel, leading
in the large-N limit to the condition
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χ(η) =
1

2
√
2

η

(1− η)
−

√
7

2
. (4.20)

When χ takes values between−
√
7/2 and 0, the parameter η takes values between

1 and 0.789. From the formulas reported in Ref. [92] and [115] it is clear that
the critical line in the large-N limit corresponds to ηcrit = 0.8 for χ = 0 and to
ηcrit = 9/11 = 0.818 for χ = −

√
7/2. Thus, the line described by Eq. (4.20) cannot

reach the critical line, confined in the region between the critical line and the SU(3)
vertex.

It should be reminded that the arc of regularity found in Refs. [27, 29] has been
approximately described in Ref. [93]:

χ(η) =

√
7− 1

2
η −

√
7

2
. (4.21)

The similarity between the lines described in Eqs. (4.20) and (4.21) can be seen
in Fig. 4.1. Indeed, the two equations give very similar predictions for values of η
between 0 and 0.6 - that is, from the SU(3) vetrex until quite close to the critical
line.

Figure 4.1: Location of the arc of regularity, as described by the original Eq. (4.21) and as
predicted by the findings of the present work, Eq. (4.20). The η axis has been reversed, in order
to correspond directly to Fig. 4.2.

The symmetry triangle of IBA in the Alhassid-Whelan parametrization is shown
in Fig. 4.2(a), together with the arc corresponding to Eq. (4.21) and the line of Eq.
(4.20). The degeneracy line corresponding to E(2+β ) = E(2+γ ), found in Ref. [95], is
also shown (to the right of the critical line) for comparison.

We see that the present line remains very close to both the E(2+β ) = E(2+γ )
degeneracy line and the original arc line from the SU(3) vertex till quite close to the
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critical region, where both the E(2+β ) = E(2+γ ) degeneracy line and the present line
turn upward, avoiding meeting the critical line.

In Figs. 4.2(b) and 4.2(c), the ν and λ (ν is the quantum statistical parameter
introduced in Section 2.4 and λ is the average leading Lyapunov exponent, used to
quantify the degree of classical chaos) diagrams are reproduced from Ref. [29], with
the lines of Fig. 4.2(a) plotted in them. We see that the present line remains within
the valley corresponding to the arc of regularity for most of the way from the SU(3)
vertex toward the critical line, turning upward a little before reaching the critical
line.

It should be noted that the present study is greatly facilitated by the fact that
the position of the arc of regularity appears to be practically independent of the
number of bosons, as already seen numerically in the previous chapter, using quan-
tum statistical measures of chaos and as already remarked in Refs. [27, 29] and
corroborated in Ref. [95].

In summary, we have achieved by now two goals:
(1) To prove analytically the existence of a line in the parameter space of the IBA,

along which the Hamiltonian approximately commutes with the SU(3) generators
in the large-N limit.

(2) To prove that this line closely follows the Alhassid-Whelan arc of regular-
ity in the region between the SU(3) vertex and the critical line of the first-order
shape/phase transition.
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Figure 4.2: The IBA symmetry triangle in the parametrization of Eq. (4.1), with the three
dynamical symmetries, the Alhassid-Whelan arc of regularity, Eq. (4.21) and the present line of
Eq. (4.20) labeled as analytic. The shape coexistence region between spherical and deformed
shapes is shown by slanted lines, near the U(5) vertex. In addition, the loci of the degeneracies
E(2+β ) = E(2+γ ) is shown, which is the black dashed line on the right, corresponding to the SU(3)

quasidynamical symmetries discussed in Ref. [95]. In panels (b) and (c), the ν and λ diagrams,
respectively, are shown, based on Ref. [99].

4.2 The SU(3) symmetry

The question is now raised about what happens in the triangle formed by U(5),
O(6), and SU(3) [6]– the latter of which is the algebra containing the quadrupole
operators with χ = +

√
7/2, which is known to correspond to oblate nuclei, while

SU(3) is related to prolate nuclei.
It turns out that the relevant calculation follows the same steps, with two notable

differences:
1) −

√
7/2 is replaced by +

√
7/2 everywhere.

2) The intrinsic quadrupole moment changes sign (see Appendix BBB), in agree-
ment to the well known fact that the intrinsic quadrupole moment has positive values
for prolate nuclei and negative values for oblate nuclei [14].

As a result of these two changes, Eq. (4.20) takes the form

χ(η) = − 1

2
√
2

η

1− η
+

√
7

2
. (4.22)
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It then becomes clear that for a given η, in this case χ acquires the opposite value
from the one it gets within the U(5)-O(6)-SU(3) triangle. This is in agreement with
the well known fact that properties within the U(5)-O(6)-SU(3) triangle are mirror
images of the properties appearing within the U(5)-O(6)-SU(3) triangle [6].

4.3 The O(6) symmetry

The successful determination of a line in the symmetry triangle characterized by
approximate SU(3) symmetry raises the question of whether a similar line related
to the O(6) symmetry can be determined. The O(6) algebra [6] is generated by the

angular momentum operators of Eq. (4.4) and the operators (d†d̃)
(3)
ξ , which together

form the O(5) subalgebra, plus the quadrupole operators

Q̂
(2)
O(6),ξ = (s†d̃+ d†s)

(2)
ξ . (4.23)

Following the same procedure as in Section 3, we are going to examine the conditions
under which the Hamiltonian commutes with the generators of the O(6) algebra.
The needed commutation relations are listed in appendix B. We already know that
the angular momentum operators of Eq. (4.4) commute with the Hamiltonian, so
we will proceed with the calculation of the commutator of the Hamiltonian with
the quadrupole operators of Eq. (4.23). We shall leave for the next section the

commutator of the Hamiltonian with the (d†d̃)
(3)
ξ operators.

4.3.1 Commutation relations

The first term of the Hamiltonian gives

[Ĥ1, Q̂
(2)
O(6),ν ] = cη[n̂d, Q̂

(2)
O(6),ν ] = cη[(d†s− s†d̃)](2)ν , (4.24)

which is similar to Eq. (4.8).
Using

Q̂
(2)
χ,ξ = Q̂

(2)
O(6),ξ + χ(d†d̃)

(2)
ξ , (4.25)

in the second term of the Hamiltonian, one gets the intermediate result

[Q̂(2)
χ · Q̂(2)

χ , Q̂
(2)
O(6),ν ] =

∑

ξ

(−1)ξ
{

[Q̂
(2)
O(6),ξ, Q̂

(2)
O(6),ν ]Q̂

(2)
χ,−ξ + Q̂

(2)
χ,ξ[Q̂

(2)
O(6),−ξ, Q̂

(2)
O(6),ν ]

+χ
{

[(d†d̃)
(2)
ξ , Q̂

(2)
O(6),ν ]Q̂

(2)
χ,−ξ + Q̂

(2)
χ,ξ[(d

†d̃)
(2)
−ξ , Q̂

(2)
O(6),ν ].

}}

(4.26)

Eq. (4.26) can be rewritten, without using any approximations yet, as

[Q̂(2)
χ · Q̂(2)

χ , Q̂
(2)
O(6),ν ] =

∑

k=1,3

2

√

2k + 1

5
[((d†d̃)(k)Q̂(2)

χ )(2)ν − (Q̂(2)
χ (d†d̃)(k))(2)ν ]
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+χ[((d†s− s†d̃)(2)Q̂(2)
χ )(2)ν + (Q̂(2)

χ (d†s− s†d̃)(2))(2)ν ]. (4.27)

Again, the expressions (4.26), (4.27) can be simplified in the large-N limit, since
in this limit the contraction of O(6) to R5[SO(5)] [113, 114] takes place (see appendix
G). This means that the commutators in the first two terms of (4.26) will vanish.
Since

[Q̂
(2)
O(6),ξ, Q̂

(2)
O(6),ν ] = 2(2ξ2ν|1ξ + ν)(d†d̃)

(1)
ξ+ν + 2(2ξ2ν|3ξ + ν)(d†d̃)

(3)
ξ+ν , (4.28)

the vanishing of this commutator implies that terms of the form (d†d̃)(k) can be

ignored. In addition, at this limit, Q̂
(2)
O(6) can be replaced by the intrinsic quadrupole

moment (a scalar), which is N in the present case (see appendix G). Then, in the
large-N limit one is left with

[Q̂(2)
χ · Q̂(2)

χ , Q̂
(2)
O(6),ν ] = 2Nχ[(d†s− s†d̃)](2)ν . (4.29)

The commutator for the second part of the Hamiltonian in the large-N limit then
reads

[Ĥ2, Q̂
(2)
O(6),ν ] = −2c(1− η)χ[(d†s− s†d̃)](2)ν . (4.30)

In order to get a vanishing commutator, the coefficients of (d†s − s†d̃)(2)ν in Eqs.
(4.24) and (4.30) should cancel, leading in the large-N limit to the condition

χ(η) =
η

2(η − 1)
. (4.31)

However, this does not yet suffice yet to guarantee the existence of a line corre-
sponding to the O(6) symmetry. One has also to consider the commutators of the

Hamiltonian with the (d†d̃)
(3)
ξ generators of O(5), to be considered in the next sec-

tion.

4.4 The O(5) symmetry

As has already been mentioned, the O(5) algebra is generated by the angular mo-

mentum operators of Eq. (4.4) and the operators (d†d̃)
(3)
ξ . We should examine the

conditions under which the commutator of the Hamiltonian with (d†d̃)(3)µ vanishes.
In this case, the first term of the Hamiltonian makes no contribution, since n̂d is

known to be an O(5) scalar [116]. Taking advantage of the fact that Q̂
(2)
O(6) · Q̂

(2)
O(6) is

also an O(6) scalar [116] in order to simplify the calculation, one obtains

[Ĥ, (d†d̃)(3)ν ] =
15

7
χ[((d†d̃)(2)(s†d̃+ d†s)(2))(3)ν − ((s†d̃+ d†s)(2)(d†d̃)(2))(3)ν ]

−3

7

√
10χ[((d†d̃)(4)(s†d̃+ d†s)(2))(3)ν − ((s†d̃+ d†s)(2)(d†d̃)(4))(3)ν ]
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−3

7

√
10χ2[((d†d̃)(4)(d†d̃)(2))(3)ν − ((d†d̃)(2)(d†d̃)(4))(3)ν ]. (4.32)

In this case, no simplification due to contractions can be made. In order to get a
vanishing commutator, one needs to put χ = 0, thus being confined on the U(5)-
O(6) side of the triangle. This finding is in agreement with the known existence of
an O(5) subalgebra along the U(5)-O(6) side of the triangle [116].

Going back to the question of the existence of a line related to the O(6) symmetry,
we see that in Eq. (4.31) one has to put χ = 0, as required by the O(5) subalgebra.
Then one ends up with η = 0, which represents the O(6) vertex alone. Thus, no line
related to the O(6) symmetry exists within the triangle.

This finding, at first seems to be in contrast with the recent work of Kremer et
al. [41], where the authors found a line based on O(6) symmetry, extending from
the O(6) vertex, till the U(5)-SU(3) line of the triangle. However, a closer look
at their work reveals that with the method used here, no O(6) line could be found.
Namely, in [41], by using a measure of σ fluctuations (σ is the quantum number that
describes the O(6) symmetry), called, ∆σψ, they found a valley of almost vanishing
∆σg.s. fluctuations, that is, a valley where the ground state wavefunctions have a
high degree of purity with respect to the σ quantum number. However, at the
same valley the O(5) symmetry is broken. So, in their work, Kremer et al. had a
way of dividing the O(6) and O(5) symmetry, by using their characteristic quantum
numbers and in that way, they could find a line, based only on O(6) symmetry and
not on O(5). A similar division of these two symmetries is not possible in the present
case, since the O(6) and O(5) algebras have common generators and so, when one
studies the commutators of the O(6) algebra with the Hamiltonian, immediately
also studies the commutators of the O(5) algebra with the Hamiltonian. So, since
the last one is broken, no line can be found, except the one already known on the
U(5)-O(6) line of the triangle.
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Chapter 5

Proton-neutron interaction and
emergent collectivity in nuclei

The unique role of the residual p-n (proton-neutron) interaction and its relation to
the deviation from spherical symmetry of nuclei has long been known [117, 118,
119, 120, 121, 122, 123, 124]. Spherical symmetry is driven by the J = 0 pairing
interaction between pairs of protons and pairs of neutrons with T = 1 (see Fig.
5.1), while deformation is driven by the valence T = 0 p-n interaction [125]. In
general, the T = 0 interaction is nearly always attractive and stronger than the
T = 1 interaction, which is attractive at the J = 0 state, but becomes repulsive
as the J value increases. The emergence of collective phenomena is connected to
a competition between the pairing and the p-n interactions. If one assumes, in
a simplified picture, that the pairing interaction scales as the number of valence
protons and neutrons, Np + Nn, while the p-n interaction scales as the valence
nucleon product, NpNn, a measure which indicates the competition between pairing
and p-n interaction can be constructed, P = NpNn/(Np+Nn) [126]. P ≈ 5 signifies
the change between spherical and axially deformed shapes.

T=1, s=0

T=0, s=1

nn np pp
Tz: +1 0 -1

Figure 5.1: The allowed intrinsic angular momentum couplings in the A=2 isobaric triplet. Only
a p-n pair is capable of coupling to T = 0, s = 1. Figure taken by [127].

In this chapter we will suggest a simple interpretation of the strong p-n interac-
tion in terms of large spatial overlaps of the wavefunctions of the last proton and

51
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neutron orbitals of a nucleus, in the context of the modified shell model, which
describes deformed nuclei, the Nilsson model. We will also show that these pairs
of orbitals, that have large spatial overlaps, are nearly synchronously filled in the
Nilsson diagram and exactly when they are filled, deformation sets on. This leads
to the suggestion of a new coupling scheme, analogous to the pseudo-SU(3) model
[3, 4].

5.1 Nilsson Model

In the Spherical Shell Model, a Hamiltonian of the form

H =
∑

i=1

[Ti + Ui] +
1

2

∑

i 6=j
vij (5.1)

is used, where vij is the two-body residual interaction, which when acting on the un-
perturbed Hamiltonian H0 =

∑

i=1[Ti+Ui] it breaks its symmetries. When applying
the Shrödinger equation to this Hamiltonian, but with no residual interaction, ac-
companied with a spin-orbit coupling term li · si [128] and an appropriate potential,
the independent single-particle levels and the observed magic numbers are observed.

An analogous try was done by Nilsson, in the context of the shell model, to
describe deformed nuclei. The Nilsson Hamiltonian reads

H = H0 + Cl · s+Dl2, (5.2)

where

H0 = − h̄2

2m
∇2 +

m

2
(ω2

x(x
2 + y2) + ω2

zz
2), (5.3)

where x, y, z are the coordinates in the system fixed to the nucleus. We have
assumed axial symmetry around the z axis (ωx = ωy) and a small deviation from
the spherical shape given by a small parameter δ. The oscillator frequencies are
defined as ω2

x = ω2
y = ω2

0

(

1 + 2
3
δ
)

and ω2
z = ω2

0

(

1− 2
3
δ
)

. The l · s and l2 terms are
there to ensure that in the spherical limit, the energies and the order of the levels
will be correct. For large deformations, the influence of the l · s and l2 terms is
less important, so one can solve the Hamiltonian as a 3D oscillator with cylindrical
symmetry, with eigenvalues given by

E(nx, ny, nz) = h̄ωx(N − nz + 1) + h̄ωz(nz +
1

2
), (5.4)

where N = nx + ny + nz. The introduction of the parameter δ enables to write the
Hamiltonian in terms of the spherical harmonic Y20 as

H =
1

2
h̄ω0(−∇2 + r2)− δh̄ω0

4

3

√

π

5
r2Y20 + Cl · s+Dl2 (5.5)

= H̄0 +Hδ + Cl · s+Dl2
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The deformation parameter δ and the analogous parameter of the Bohr Hamiltonian
are connected by

δ ≃ 3

2

√

5

4π
β ≃ 0.95β. (5.6)

It has been customary to label the Nilsson levels with the set of symbolsKπ[N nz Λ].
One can visualize a valence nucleon orbiting around a deformed nucleus, or around
a prolate deformed potential (Fig. 5.2). Then, K is the projection of the total
angular momentum on the symmetry axis, N is the principal quantum number
N = nx + ny + nz, nz is the number of nodes in the wavefunction in the z direction
and Λ is the component of the orbital angular momentum on the symmetry axis
(the z-axis). By definition, K = Λ + Σ = Λ ± 1

2
, where Σ is the projection of the

intrinsic nucleon spin on the symmetry axis.
The approximate eigenstates of the full Hamiltonian can be expanded as [129]

χNΩ =
∑

lΛ

aΩlΛ|NlΛΣ〉. (5.7)

The coefficients aΩlΛ have been calculated for different values of the parameter

η =
2h̄ω0

C
δ (5.8)

and are tabulated in Table I of Ref. [1]. These expansions can then be used for
calculating overlaps.

Figure 5.2: A single particle orbiting around a deformed core and the and the resulting Nilsson
numbers.

5.1.1 Wave functions in configuration space

The full wave functions corresponding to the vectors |NlΛΣ〉 are
ΨNlΛΣ = RnlYlΛfsΣ, (5.9)
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where YlΛ are the usual spherical harmonics, fsΣ are the spinors
(

1
0

)

and
(

0
1

)

for
spin up and spin down respectively, and Rnl is the radial wave function of the 3D
harmonic oscillator in spherical coordinates, given by [130] (in units in which the
mass and the frequency of the oscillator, as well as h̄, are 1)

Rnl =

√

√

√

√

2(n!)

Γ
(

n+ l + 3
2

)e−r
2/2rlL

l+ 1

2
n (r2), (5.10)

where Γ(x) is the Gamma function, Lln(r
2) are the Laguerre polynomials, and N =

2n+ l.
These wave functions can be connected to these appearing in Eq. (8) of Ref. [1]

through the relation connecting confluent hypergeometric functions and Laguerre
polynomials (p. 149 [131])

1F1(−n;m+ 1; z) =
n!m!

(n+m)!
L(m)
n (z), (5.11)

leading in the present case to

1F1

(

−n; l +
3

2
; r2
)

=
n!
(

l + 1
2

)

!
(

n+ l + 1
2

)

!
L
l+ 1

2
n (r2). (5.12)

An alternative basis (|NljΩ〉) is discussed in the appendix H.

5.2 Empirical p-n interactions

Since the residual p-n interaction is connected with the onset of deformation, one
wants to find measures of the strength of the residual p-n interaction that would
connect the maximum strength with the change between spherical and deformed
shapes. As already mentioned before, a simplified estimation of the p-n strength
is the product of the number of valence protons and neutrons, NpNn [132], which
assumes that the p-n interaction is orbit independent. Orbit dependence gets into
play with a refinement of the NpNn product, introduced in [133], the integrated
quadrupole p-n interaction, |Spn|.

Another way of extracting the average p-n interaction of the last nucleons, is
by using a specific double difference of binding energies, called δVpn [134]. This is
defined for even-even nuclei by

|δV ee
pn (Z,N)| = 1

4
[(BZ,N − BZ,N−2)− (BZ−2,N − BZ−2,N−2)]. (5.13)

A schematic illustration of the binding energy differencies of eq. (5.13) is shown
in Fig. 5.3, taken by [134]. The first binding energy difference gives the interaction
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of the last two neutrons with all the Z protons and with each other, plus the con-
tribution to the average spherical field. The situation is analogous for the second
binding energy difference, which is the interaction of the last two neutrons with Z-2
protons and with each other and their contribution to the average spherical field.
The double difference of the binding energies results in the subtraction of the p-p,
n-n interactions and the contribution to the average spherical field and by dividing
with four, one gets the average interaction of each of the last two protons with each
of the last two neutrons. Double differences of binding energies for even-odd and
odd-odd nuclei have also been defined [135, 136].

π ν π ν

(Ζ) [(Ν)-(Ν-2)] (Ζ-2) [(Ν)-(Ν-2)]

Figure 5.3: Schematic illustration of the binding energy differencies of eq. (5.13). Figure taken by
[134].

It is apparent from the previous schematic and mathematical explanation of δVpn,
that this measure works in the following way: when the average p-n interaction is
strong, δVpn should have a high value. The behavior of δVpn has been studied much
[135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145]. In Ref. [146] it was found
that when the empirical δVpn values were plotted as a function of neutron number
for light nuclei, these had characteristic peaks exactly at N = Z for even-even nuclei
and at N = Z − 1 for even-Z, odd-N nuclei. The peaking of the δVpn values in the
vicinity of N ≃ Z, which of course signifies strong p-n interaction, was justified by
the strong overlaping [117] between neutron and proton orbitals. For N = Z nuclei,
protons and neutrons are filling exactly the same orbits, therefore there is strong
spatial overlap between the proton and neutron wavefunctions, which leads to large
δVpn values. The phenomenon was explained theoritically in terms of Wigner SU(4)
supermultiplet theory [135].

One would expect that the characteristic peaking of δVpn values would dissipate
for heavier nuclei, since there are no N = Z nuclei beyond A ∼ 100 and also spin
orbit and Coulomb forces grow in importance, so, protons and neutrons start filling
different shells, something that would lead to poor overlaping between proton and
neutron orbits. However, it was found [146, 147] that heavy nuclei also show similar
peaks at the δVpn values, though, while in light nuclei peaks were in anMeV scale, in
heavy nuclei the scale moves to keV . In heavy nuclei, δVpn values reach a maximum
when the number of valence neutrons equals the number of valence protons, Nval =
Zval, or late in the shells, slightly exceeds the valence proton number. For example,
at the left panel of Fig. 5.4, one can see the empirical δVpn values of isotopic chains
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of even-Z, even-N nuclei. The elements Sm, Er, Yb and W have maximum δVpn
values exactly when Nval = Zval [(Nval, Zval) = (12, 12), (18, 18), (20, 20), (24, 24),
respectively].

Figure 5.4: (a) Empirical δVpn values for even-Z, even-N nuclei. (b) Empirical δVpn values for
odd-Z nuclei.

For the elements Gd and Dy, δVpn increases until Nval = Zval, however, for both
elements, this is the last known value of δVpn, so one needs to know the next δVpn
value, in order to conclude whether there is a maximum there or not. Last, Hf is
the only element which breaks slightly the previous pattern, since δVpn peaks for
(Nval, Zval) = (22, 24). However, this is not surprising and as we will see later, this
has to do with the way protons and neutrons fill the shells. In general, even-even
nuclei have a characteristic peak in δVpn for Nval ≃ Zval.

The same trend is seen in odd-Z, even-N and odd-Z, odd-N nuclei, as seen in
the right panel of Fig. 5.4. The phenomenon is more pronounced in odd-odd nuclei,
because here the p-n interaction can be better expressed, due to the lack of the
pairing force between the two last protons and neutrons of even-even nuclei. The
effects of pairing force can even be seen in odd-Z, even-N nuclei, whose δVpn values
are always smaller compared to the ones of odd-odd nuclei.

An even more characteristic plot can be seen in Fig. 5.5. This is a color plot of
R4/2 ≡ E(4+1 )/E(2+1 ), in the Z=50-82, N=82-126 shells, which varies from < 2 near
closed shells to ∼ 3.33 for well deformed axial rotors. The black line represents the
line where Nval = Zval, while the white circles are the isotopes of the isotopic chains
shown in Fig. 5.4 for which maximum δVpn values are observed. Only the isotopes
with confirmed maximum δVpn values are presented. It is observed that both even-
even and odd-odd nuclei follow the Nval ≃ Zval line, while a possible explanation for
the isotopes that slightly deviate from this line, will be given later. What is more
impressive is that the line of Nval ≃ Zval and the maximum δVpn values are found
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exactly there where the onset of deformation occurs for R4/2 > 3.3, highlighting the
link to the evolution and saturation of collectivity.

Figure 5.5: Color plot of empirical R4/2 values in the Z=50-82, N=82-126 shells. The black line
is the locus of points, where Nval = Zval. The white circles are the nuclei where the largest δVpn

is observed.

What was also found [146], is that for the isotopes that had the largest δVpn
values, there was a characteristic relationship between the quantum numbers of the
orbits occupied by the last protons and neutrons. These nuclei are all well-deformed
(except the lighter Sm and Gd isotopes), so a Nilsson description is appropriate.
The quantum numbers stated above refer to the Nilsson quantum numbers. For
example, the Er isotopes, shown in Fig. 5.4 , have 18 valence protons and 10-20
valence neutrons. If one consults the Nilsson diagram of Fig. 5.6 , it is obvious that
the last proton will occupy the 7/2[523] orbital of the h11/2 orbit, an intruder orbit
in the 50-82 shell, stemming from the upper shell, with an opposite parity compared
to the other orbits of the 50-82 shell. Consulting again the Nilsson diagram, one can
see that the 10-20 valence neutrons occupy the orbitals, 3/2[651], 3/2[521], 5/2[642],
5/2[523], 7/2[633] and 1/2[521]. The isotope that gives the peaking in δVpn is the
one with N=100, whose last neutron, according to the order of the orbitals we just
wrote, occupies the 7/2[633] orbital, stemming from the i13/2 orbit, which is again
an intruder orbit in the 82-126 shell, with an opposite parity compared to the other
orbits of this shell. A more careful look at Fig. 5.6, will reveal, that the 7/2[523]
and the 7/2[633] orbital, where the last proton and neutron sit on respectively, are
like sister orbitals and they also differ by ∆K[∆N∆nz∆Λ] = 0[110]. Physically,
this difference means that the wavefunctions of the proton and the neutron have
equal numbers of quanta in the x-y plane (the same nx+ny values) and protons and
neutrons have the same projection of the angular momentum on the symmetry axis.
The peaking of δVpn for a specific isotope and the occupancy, by the last proton
and neutron of this isotope, of orbitals which differ by ∆K[∆N∆nz∆Λ] = 0[110]
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characterize and the other isotopes of the even-even nuclei studied (Yb, Hf, W). So,
protons and neutrons, occupying sister orbitals, linked by the 0[110] relationship,
imply a high overlap of their wavefunctions which results in strong p-n interaction.

Figure 5.6: Nilsson diagrams of the Z = 50 − 82 and N = 82 − 126 shells. Different colors are
used to indicate sister orbits, pairs of orbits differing by ∆K[∆N∆nz∆Λ] = 0[110]. For most
deformations, the sequential filling of 0[110] pairs of orbits is closely followed. Neutron orbitals
without 0[110] proton partners (they have nz = 0) are shown as black dashed lines in the neutron
82-126 shell.

5.3 A simple model for the p-n interactions

How can one try to understand the origin and implications of these results? Ac-
cording to Federman and Pittel [119], the criterion for strong p-n correlations to
occur, is that protons and neutrons should occupy orbitals with good overlap. And
the overlap between two orbitals (nN lNjN), (nP lP jP ) is maximum if nN = nP and
lN = lP ± 1. Strong correlations into the rare earth region were expected to occur
between 1h11/2 protons and 1i13/2 neutrons. This could explain a part of the results.
Another way of studying the results is through large scale computationally intensive
methods. In Ref. [141], the authors have used density functional theory in order to
calculate δVpn values (see Fig. 5.9, right panel). The comparison with the empirical
δVpn values of Z = 50 − 82, N = 82 − 126 shells gives good agreement, however
it doesn’t reveal the underlying origin of the behavior of δVpn. Here we investigate
these interactions from a simpler theoretical perspective, by directly calculating the
overlap of proton and neutron Nilsson wavefunctions. Our approach obtains similar
results, but now in a way that explicitly exposes, in a physically intuitive way, the
underlying origins of the emergent collectivity. It will be apparent that collectivity
emerges through the roles of specific orbitals in p-n interactions.
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Nilsson wavefunctions in the form [1] χNΩ =
∑

lΛ α
Ω
lΛ|NlΛΣ〉 were used, where

Ω, Λ, Σ are the projections of the total particle angular momentum j, the orbital
angular momentum l and the spin s on the z axis, while the coefficients αΩ

lΛ were
calculated by solving the Nilsson Hamiltonian with the standard parameter values,
κ = 0.0637 and µ = 0.42 for neutrons and κ = 0.0637 and µ = 0.6 for protons.
For axially symmetric nuclei, which we will deal here, K, the projection of the total
(particle and the rest of the nucleus) angular momentum on the z axis and Ω are
the same (K = Ω). In order to calculate spatial overlaps of Nilsson wavefunctions
two different expressions were used. The first expression

∫

√

χ∗
N1Ω1

χN1Ω1

√

χ∗
N2Ω2

χN2Ω2
r2 sin θ dr dθ dφ (5.14)

was also tested on hydrogen atom wavefunctions and for orbitals with quantum
numbers (n1l1m1) and (n2l2m2) it was found that all overlaps with ∆n = 0 are larger
than the ∆n = 1 overlaps and all overlaps with ∆n = 1 are larger than the ∆n = 2
ones. This is in accordance with [119] and it shows that the n quantum number
is the most important one in deciding how large the overlap of two wave functions
is. Note that the expression (5.14) is normalised and when χN1Ω1

= χN2Ω2
, (5.14)

is equal to one, while the more the two wavefunctions deviate from each other, the
smaller the integral will be.
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Eq. (5.14) is not the only possibility for estimating spatial overlaps of the Nilsson
orbitals. Overlaps can also be estimated using the integral

∫

χ∗
N1Ω1

χN1Ω1
χ∗
N2Ω2

χN2Ω2
dV

√

∫

χ∗
N1Ω1

χN1Ω1
χ∗
N1Ω1

χN1Ω1
dV
√

∫

χ∗
N2Ω2

χN2Ω2
χ∗
N2Ω2

χN2Ω2
dV

, (5.15)

where dV = r2 sin θ dr dθ dφ. The normalization factors in the denominator guaran-
tee that the overlap of a wave function with itself is unity. Overlaps were calculated
for three different values of the deformation ǫ=0.05, 0.22 and 0.3, allocating nuclei
to these categories according to R4/2 and extending these choices to unknown nuclei
using the P-factor [126]. Expressions (5.14) and (5.15) give identical results, so we
will restrict ourselves to the second overlap. Overlaps of the proton orbitals appear-
ing in the 50-82 shell with the neutron orbitals appearing in the 82-126 shell are
shown in Tables 5.1, 5.2, 5.3 for the three different values of deformation.

It is instructive to look globally at the overlaps. Fig. 5.7 shows their behavior
against correlated differences in K and nz, as well as against differences in each of
the Nilsson quantum numbers. In Fig. 5.7(a) the spatial overlaps are highest when
∆K = 1 and ∆nz = 0, which includes the 1[000] case. However, large overlaps also
occur for ∆K = 0 and ∆nz = 1 characteristic of the 0[110] transformation and for
neighboring values of ∆K and ∆nz. The overlaps generally fall off for larger ∆K
and ∆nz values.

One, can note two outlying pink boxes at the upper left of Fig. 5.7(a). These
occur for large ∆K differences (3 and even 6), such as for the orbital pair 1/2[431]
and 13/2[606] and were at first rather puzzling. To understand these and the other
patterns, a further analysis of the overlaps, like the one shown in Fig. 5.7(b) to
5.7(f) is needed. Each point is an average of all the overlaps for that value of the
difference in the particular quantum number. In each case, the overlaps fall off
steeply as the particular quantum number between the two orbits differs by larger
and larger amounts. The overlaps peak either when the difference between the
quantum numbers is 0 (∆K for antiparralel spin, ∆nz, ∆nρ) or when it is 1 (∆N ,
∆K for parallel spin and ∆Λ). Note that the steepest difference is for the ∆nρ
plot at bottom left, where ∆nρ is the difference in the number of radial nodes with
nρ = (N − nz − Λ)/2. Also, the peak at ∆N = 1 is interesting. Given that the
maximum overlaps occur for ∆nz and ∆nρ = 0, the peak at ∆N = 1 implies a
corresponding peak at ∆Λ = 1, which is indeed seen. Now, one can understand the
pink boxes with large ∆K in Fig. 5.7(a). They all correspond to cases of ∆nρ = 0,
for which the large ∆nρ overlaps compensate for the large ∆K and ∆nz differences.
However, such orbit pairs form the ground states only in neutron rich nuclei, not
currently accessible.
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Figure 5.7: Calculated average spatial overlaps (for a deformation ǫ = 0.22) for proton and neutron
orbitals in the Z = 50−82, N = 82−126 shells against the differences (neutron orbit minus proton
orbit) in their K and nz values in a color code. Other panels show average overlaps as a function of
differences [(b) ∆N , (c) ∆K, (d) ∆nz, (e) ∆nρ, (f) ∆Λ] in individual Nilsson quantum numbers.
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In Fig. 5.8, one can see empirical values of δVpn compared to calculated overlaps
for the Z = 50 − 82, N = 82 − 126 shells. The left black line corresponds to the
place where the number of valence protons equals the number of valence neutrons,
while the right black line is the line of equal fractional filling of shells. Overall, the
agreement is quite good given the simplicity and the parameter free nature of the
approach. In both images, large values are found near the two lines and between
them, while small values are found away from the diagonal. There is also a region
of large values early in the shells. There are occasional pink boxes to the upper left
that disagree with the data. They correspond to very neutron deficient isotopes for
Z ∼ 72 − 76. Also, the blue box for Pb at N = 124 would be light pink were zero
deformation (instead of 0.05) to be used.

Figure 5.8: Comparison of empirical δVpn values for the Z = 50 − 82, N = 82 − 126 shells with
calculated overlaps. Blue color corresponds to low δVpn values and low spatial overlaps, while red
color corresponds to large δVpn values and large spatial overaps.
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Calculated overlaps were not limited to known nuclei. Fig. 5.9, left panel, shows
overlaps for the whole Z = 50 − 82, N = 82 − 126 shells compared with δVpn
values calculated from density functional theory (DFT) [141]. Highly complicated
calculations of δVpn values and very simple calculations of integrals of wavefunctions
show an overall agreement. They also reveal a region of large p-n interaction in
neutron rich nuclei in the regions Z ∼ 52 − 64 and N ∼ 92 − 108. Here, pairs
of orbitals, such as 5/2[413] with 5/2[512] and 1/2[420] with 1/2[521], coupled to
S = 0, are filling (near 168Gd and 162Nd, respectively), that do not satisfy 0[110],
which implies S = 1.

Figure 5.9: Comparison of calculated spatial overlaps, now for the whole Z = 50−82, N = 82−126
shells (left panel) with δVpn values from density functional theory (DFT) calculations [141].
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Table 5.1: Spatial overlaps [Eq. (5.15)] of Nilsson orbitals in the 50–82 proton shell (listed in the first line, in the order appearing in Fig. 5.6)
with orbitals in the 82–126 neutron shell (listed in the first column, in the order appearing in Fig. 5.6). a) For deformation ǫ2 = 0.22 .

1

2
[431] 3

2
[422] 5

2
[413] 7

2
[404] 1

2
[420] 3

2
[411] 5

2
[402] 1

2
[550] 3

2
[541] 5

2
[532] 7

2
[523] 9

2
[514] 11

2
[505] 1

2
[411] 3

2
[402] 1

2
[400]

1

2
[541] 0.691 0.455 0.489 0.310 0.653 0.500 0.347 0.535 0.535 0.409 0.405 0.464 0.266 0.561 0.362 0.461

3

2
[532] 0.791 0.790 0.606 0.488 0.504 0.636 0.463 0.634 0.714 0.818 0.589 0.440 0.500 0.638 0.482 0.451

5

2
[523] 0.582 0.901 0.879 0.514 0.408 0.605 0.495 0.621 0.682 0.740 0.941 0.674 0.502 0.606 0.507 0.278

7

2
[514] 0.595 0.616 0.885 0.671 0.414 0.332 0.519 0.568 0.594 0.642 0.705 0.987 0.627 0.362 0.511 0.132

1

2
[530] 0.720 0.639 0.532 0.427 0.712 0.509 0.383 0.841 0.694 0.557 0.572 0.409 0.436 0.541 0.398 0.467

3

2
[521] 0.632 0.665 0.561 0.432 0.664 0.673 0.447 0.619 0.720 0.700 0.446 0.470 0.381 0.682 0.470 0.501

5

2
[512] 0.461 0.597 0.644 0.368 0.390 0.841 0.550 0.425 0.479 0.555 0.635 0.445 0.287 0.828 0.579 0.357

1

2
[660] 0.701 0.593 0.524 0.335 0.676 0.437 0.328 0.964 0.784 0.651 0.564 0.482 0.393 0.462 0.338 0.423

3

2
[651] 0.725 0.653 0.564 0.359 0.583 0.501 0.346 0.837 0.911 0.726 0.601 0.515 0.415 0.511 0.359 0.409

5

2
[642] 0.690 0.732 0.627 0.385 0.400 0.557 0.366 0.672 0.872 0.853 0.666 0.540 0.437 0.549 0.381 0.345

7

2
[633] 0.575 0.770 0.714 0.421 0.299 0.534 0.396 0.641 0.608 0.903 0.782 0.596 0.461 0.530 0.534 0.257

9

2
[624] 0.462 0.697 0.770 0.485 0.339 0.401 0.434 0.548 0.645 0.557 0.931 0.707 0.509 0.424 0.435 0.165

11

2
[615] 0.523 0.472 0.702 0.602 0.376 0.217 0.452 0.527 0.523 0.594 0.537 0.950 0.612 0.256 0.442 0.091

1

2
[521] 0.586 0.500 0.351 0.280 0.701 0.667 0.344 0.518 0.545 0.485 0.331 0.226 0.215 0.722 0.372 0.581

3

2
[512] 0.413 0.516 0.562 0.343 0.464 0.851 0.577 0.369 0.412 0.466 0.504 0.435 0.240 0.861 0.607 0.428

1

2
[510] 0.463 0.300 0.185 0.120 0.592 0.437 0.261 0.507 0.427 0.266 0.138 0.096 0.091 0.471 0.280 0.595

7

2
[503] 0.412 0.359 0.438 0.555 0.589 0.416 0.855 0.310 0.325 0.340 0.380 0.472 0.472 0.470 0.848 0.138

9

2
[505] 0.607 0.554 0.600 0.948 0.273 0.146 0.418 0.472 0.499 0.509 0.546 0.623 0.999 0.140 0.411 0.051

13

2
[606] 0.578 0.491 0.491 0.820 0.116 0.226 0.398 0.460 0.483 0.474 0.507 0.518 0.957 0.102 0.392 0.0432

3

2
[501] 0.344 0.397 0.391 0.200 0.355 0.488 0.536 0.287 0.325 0.356 0.348 0.274 0.154 0.517 0.546 0.617

5

2
[503] 0.403 0.339 0.403 0.530 0.575 0.439 0.854 0.289 0.302 0.314 0.349 0.412 0.456 0.486 0.851 0.148

1

2
[501] 0.357 0.383 0.364 0.192 0.376 0.463 0.520 0.306 0.331 0.342 0.321 0.253 0.152 0.497 0.529 0.638
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Table 5.2: (continued) b) For deformation ǫ2 = 0.05 .

1

2
[431] 3

2
[422] 5

2
[413] 7

2
[404] 1

2
[420] 3

2
[411] 5

2
[402] 1

2
[550] 3

2
[541] 5

2
[532] 7

2
[523] 9

2
[514] 11

2
[505] 1

2
[411] 3

2
[402] 1

2
[400]

1

2
[541] 0.563 0.447 0.379 0.254 0.817 0.597 0.436 0.468 0.456 0.375 0.342 0.318 0.208 0.672 0.485 0.534

3

2
[532] 0.453 0.568 0.380 0.319 0.719 0.738 0.490 0.408 0.459 0.508 0.433 0.254 0.278 0.741 0.556 0.490

5

2
[523] 0.346 0.449 0.576 0.335 0.504 0.805 0.597 0.395 0.349 0.410 0.485 0.508 0.249 0.742 0.662 0.353

7

2
[514] 0.286 0.321 0.397 0.571 0.492 0.439 0.839 0.418 0.275 0.301 0.336 0.399 0.563 0.581 0.821 0.175

1

2
[530] 0.936 0.718 0.563 0.435 0.533 0.387 0.288 0.730 0.863 0.674 0.611 0.514 0.433 0.430 0.315 0.359

3

2
[521] 0.828 0.860 0.641 0.476 0.473 0.470 0.319 0.539 0.937 0.914 0.622 0.586 0.460 0.469 0.355 0.347

5

2
[512] 0.631 0.880 0.764 0.526 0.344 0.522 0.365 0.498 0.711 0.876 0.953 0.579 0.499 0.481 0.403 0.283

1

2
[660] 0.788 0.583 0.457 0.345 0.533 0.377 0.271 0.756 0.762 0.627 0.533 0.453 0.366 0.420 0.298 0.367

3

2
[651] 0.778 0.681 0.510 0.380 0.513 0.438 0.298 0.546 0.927 0.727 0.594 0.500 0.401 0.457 0.332 0.373

5

2
[642] 0.676 0.762 0.569 0.407 0.428 0.489 0.322 0.440 0.884 0.877 0.667 0.538 0.425 0.472 0.360 0.338

7

2
[633] 0.557 0.770 0.656 0.444 0.341 0.503 0.356 0.553 0.635 0.919 0.812 0.599 0.457 0.471 0.392 0.282

9

2
[624] 0.476 0.653 0.751 0.510 0.297 0.451 0.401 0.408 0.585 0.629 0.935 0.733 0.509 0.444 0.426 0.213

11

2
[615] 0.449 0.456 0.750 0.629 0.300 0.328 0.448 0.444 0.493 0.548 0.581 0.950 0.626 0.384 0.451 0.143

1

2
[521] 0.358 0.378 0.290 0.116 0.618 0.513 0.235 0.432 0.342 0.345 0.299 0.201 0.074 0.673 0.291 0.508

3

2
[512] 0.329 0.400 0.470 0.448 0.542 0.730 0.646 0.648 0.328 0.372 0.409 0.432 0.390 0.762 0.695 0.533

1

2
[510] 0.543 0.396 0.227 0.283 0.739 0.555 0.411 0.588 0.474 0.332 0.209 0.178 0.256 0.639 0.457 0.569

7

2
[503] 0.537 0.617 0.911 0.648 0.325 0.422 0.463 0.468 0.570 0.645 0.770 0.978 0.544 0.447 0.475 0.189

9

2
[505] 0.461 0.507 0.565 0.948 0.284 0.208 0.208 0.430 0.458 0.497 0.542 0.659 0.998 0.309 0.455 0.091

13

2
[606] 0.385 0.422 0.426 0.815 0.274 0.177 0.459 0.402 0.409 0.440 0.476 0.538 0.957 0.287 0.443 0.079

3

2
[501] 0.349 0.443 0.449 0.231 0.476 0.650 0.576 0.613 0.370 0.421 0.421 0.341 0.160 0.614 0.618 0.618

5

2
[503] 0.276 0.321 0.398 0.535 0.518 0.509 0.851 0.419 0.275 0.306 0.345 0.410 0.478 0.634 0.842 0.207

1

2
[501] 0.321 0.342 0.315 0.229 0.432 0.476 0.504 0.695 0.315 0.317 0.296 0.256 0.191 0.529 0.526 0.639
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Table 5.3: (continued) c) For deformation ǫ2 = 0.30 .

1

2
[431] 3

2
[422] 5

2
[413] 7

2
[404] 1

2
[420] 3

2
[411] 5

2
[402] 1

2
[550] 3

2
[541] 5

2
[532] 7

2
[523] 9

2
[514] 11

2
[505] 1

2
[411] 3

2
[402] 1

2
[400]

1

2
[541] 0.752 0.514 0.520 0.333 0.621 0.487 0.351 0.631 0.640 0.453 0.481 0.493 0.315 0.528 0.362 0.451

3

2
[532] 0.828 0.807 0.549 0.505 0.452 0.605 0.452 0.701 0.752 0.900 0.600 0.512 0.530 0.601 0.465 0.605

5

2
[523] 0.556 0.914 0.766 0.521 0.388 0.556 0.471 0.637 0.700 0.727 0.972 0.647 0.527 0.555 0.477 0.251

7

2
[514] 0.605 0.582 0.941 0.650 0.414 0.302 0.494 0.581 0.584 0.641 0.682 0.994 0.606 0.322 0.486 0.116

1

2
[530] 0.649 0.563 0.428 0.400 0.742 0.540 0.373 0.776 0.625 0.502 0.519 0.376 0.383 0.575 0.386 0.492

3

2
[521] 0.606 0.596 0.437 0.423 0.662 0.683 0.453 0.560 0.640 0.631 0.401 0.408 0.359 0.695 0.471 0.532

5

2
[512] 0.414 0.557 0.569 0.330 0.376 0.845 0.543 0.392 0.436 0.502 0.581 0.425 0.241 0.840 0.566 0.352

1

2
[660] 0.710 0.594 0.473 0.334 0.673 0.433 0.343 0.957 0.781 0.648 0.568 0.483 0.401 0.454 0.350 0.429

3

2
[651] 0.736 0.645 0.503 0.351 0.580 0.498 0.357 0.831 0.900 0.725 0.595 0.518 0.415 0.508 0.367 0.410

5

2
[642] 0.693 0.722 0.534 0.376 0.394 0.555 0.373 0.667 0.862 0.834 0.661 0.532 0.437 0.550 0.385 0.342

7

2
[633] 0.559 0.767 0.615 0.412 0.301 0.532 0.403 0.657 0.584 0.897 0.767 0.594 0.460 0.529 0.412 0.248

9

2
[624] 0.441 0.697 0.719 0.477 0.360 0.387 0.440 0.547 0.664 0.533 0.929 0.697 0.509 0.405 0.439 0.152

11

2
[615] 0.566 0.446 0.778 0.594 0.381 0.197 0.451 0.556 0.519 0.611 0.520 0.949 0.607 0.221 0.441 0.078

1

2
[521] 0.590 0.495 0.291 0.321 0.690 0.676 0.367 0.533 0.562 0.500 0.327 0.243 0.252 0.713 0.388 0.590

3

2
[512] 0.404 0.516 0.540 0.320 0.428 0.852 0.557 0.370 0.408 0.464 0.509 0.426 0.215 0.860 0.581 0.405

1

2
[510] 0.437 0.277 0.141 0.100 0.567 0.423 0.241 0.484 0.410 0.257 0.132 0.087 0.071 0.446 0.255 0.603

7

2
[503] 0.436 0.342 0.424 0.543 0.570 0.399 0.855 0.321 0.323 0.328 0.362 0.446 0.462 0.429 0.851 0.124

9

2
[505] 0.608 0.561 0.542 0.948 0.261 0.131 0.406 0.486 0.509 0.511 0.547 0.612 0.999 0.113 0.399 0.042

13

2
[606] 0.579 0.506 0.422 0.821 0.205 0.100 0.384 0.488 0.508 0.483 0.518 0.512 0.957 0.074 0.378 0.036

3

2
[501] 0.351 0.395 0.355 0.190 0.341 0.475 0.530 0.294 0.325 0.354 0.345 0.266 0.148 0.498 0.537 0.614

5

2
[503] 0.431 0.337 0.403 0.528 0.560 0.422 0.855 0.312 0.315 0.318 0.350 0.413 0.451 0.447 0.852 0.135

1

2
[501] 0.362 0.386 0.336 0.184 0.359 0.459 0.519 0.309 0.331 0.346 0.326 0.252 0.145 0.484 0.527 0.633
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5.4 0[110] pairs and development of collectivity

and deformation

Proton - neutron orbital pairs of the type ∆K[∆N∆nz∆Λ] = 0[110] can be related
to the development of collectivity and deformation in nuclei. In order to make this
clear we will be using Fig. 5.6 and Table 5.4, which show a schematic illustration
of the proton and neutron orbitals of the Z = 50 − 82 and N = 82 − 126 shells
and a list of proton and neutron Nilsson orbitals appearing in different major shells
of the nuclear shell model, respectively. Fig. 5.6 was used in Section 3.1 to show
that the peaking of δVpn in specific isotopes of Er, Yb, Hf and W, took place when
the last proton and last neutron of these nuclei occupied orbitals which differed by
∆K[∆N∆nz∆Λ] = 0[110]. The peaking of δVpn was also related through Fig. 5.5
to the onset of deformation. Here, we shall take these findings a little further.

From Fig. 5.6 we first note that every one of the 16 Nilsson proton orbitals,
including the unique parity orbitals (here, the orbitals that stem from the h11/2 or-
bit), has a 0[110] neutron partner. Proton and neutron 0[110] partners are colored
the same way and appear to have the same behavior. In Table 5.4, to exhibit the
correspondence between 0[110] partner orbitals, the proton orbitals are numerically
labelled by their order and the number which preceds the neutron orbitals indicates
the neutron partner. A more critical look at Fig. 5.6, reveals a general pattern, not
heretofore recognized, namely that these 0[110] pairs fill almost synchronously as
the protons and neutrons shells fill. Also, since the behavior of partners is similar
in the two shells, ie, similar up- and down- sloping orbits and orbit crossings, the
synchronous filling persists both for small and large deformations. For example,
for small deformations, one has the successive p-n combinations: 1/2[431]-1/2[541],
3/2[422]-3/2[532], 5/2[413]-5/2[523], 1/2[420]-1/2[530] and so on. For larger defor-
mations, eg for ǫ ∼ 0.3, near midshell, for example for the 168

68 Er100, which was
used again before, the 18 valence protons and neutrons, except some interchanges
of adjacent orbits, fill highly overlapping 0[110] combinations. The same happens
for 172

70 Yb102. From Table 5.4 and Fig. 5.6 it is clear that the 20 valence protons
and neutrons occupy the lowest 10 proton and neutron orbitals, all of them forming
0[110] pairs. It should be emphasized that proton and neutron orbitals might not
be filled in exactly the same order, but once they are filled for a given nucleus, the
order is not important any more.
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Table 5.4: Nilsson orbitals appearing in different major shells of the nuclear shell model.

p:28-50 n:50-82 p:50-82 n:82-126 p:82-126 n:126-184
1 1/2[321] 1 1/2[431] 1 1/2[431] 1 1/2[541] 1 1/2[541] 1 1/2[651]
2 3/2[312] 3 1/2[420] 2 3/2[422] 3 1/2[530] 2 3/2[532] 2 3/2[642]
3 1/2[310] 2 3/2[422] 3 1/2[420] 2 3/2[532] 3 1/2[660] 4 1/2[640]
4 3/2[301] 7 1/2[550] 4 1/2[550] 4 1/2[660] 4 1/2[530] 6 5/2[633]
5 5/2[303] 8 3/2[541] 5 3/2[541] 5 3/2[651] 5 3/2[651] 8 3/2[631]
6 1/2[301] 4 3/2[411] 6 5/2[532] 6 5/2[642] 6 5/2[523] 3 1/2[770]
7 1/2[440] 9 5/2[532] 7 5/2[413] 8 3/2[521] 7 5/2[642] 5 3/2[761]
8 3/2[431] 5 5/2[413] 8 3/2[411] 7 5/2[523] 8 3/2[521] 7 5/2[752]
9 5/2[422] 6 1/2[411] 9 7/2[523] 9 7/2[633] 9 7/2[633] 12 5/2[622]
10 7/2[413] 5/2[402] 10 1/2[411] 10 1/2[521] 10 7/2[514] 17 1/2[631]
11 9/2[404] 7/2[404] 11 7/2[404] 12 5/2[512] 11 9/2[624] 9 7/2[743]

10 7/2[523] 12 5/2[402] 11 7/2[514] 12 5/2[512] 10 7/2[624]
1/2[400] 13 9/2[514] 7/2[503] 13 9/2[505] 15 7/2[613]

11 9/2[514] 14 11/2[505] 9/2[505] 14 11/2[615] 11 9/2[734]
3/2[402] 15 3/2[402] 13 9/2[624] 15 7/2[503] 13 9/2[615]
11/2[505] 16 1/2[400] 16 1/2[510] 16 13/2[606] 19 1/2[620]

15 3/2[512] 17 1/2[521] 18 3/2[622]
14 11/2[615] 18 3/2[512] 14 11/2[725]

13/2[606] 19 1/2[510] 9/2[604]
3/2[501] 20 5/2[503] 16 13/2[716]
5/2[503] 21 3/2[501] 11/2[606]
1/2[501] 22 1/2[501] 21 3/2[611]

20 5/2[613]
15/2[707]
5/2[602]

22 1/2[611]
7/2[604]
1/2[600]
3/2[602]
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Past midshell, neutron orbitals start to occur, that do not have a 0[110] partner.
These are the orbitals that are shown as black dashed lines in the neutron Nilsson
diagram of Fig. 5.6. The characteristic of these orbitals is that they all have an
up-sloping behavior and they are characterized by nz = 0, that is, they are oblate
orbitals that do not contribute to prolate deformation. These nz = 0 neutron
orbitals explain the white dots that lie away from the Zval = Nval line, in Fig. 5.5
or better they explain the shifts in peaks in δVpn to Nval = Zval + 2. For example,
176
72 Hf104, has 22 valence protons and neutrons. From Table 5.4 and Fig. 5.6 it is
seen that the lowest 10 proton and neutron orbitals are occupied by forming 0[110]
pairs. However, the last protons occupy the 7/2[404] orbital and the last neutrons
the 5/2[512] orbital, which do not make a 0[110] pair. Thus, no maximum δVpn
appears for this nucleus. The maximum appears for the 178

72 Hf106 nucleus (22 valence
protons, 24 valence neutrons), where the neutron orbital 7/2[514] is filled, which
makes a 0[110] partner with the 7/2[404] proton orbital.

5.5 Possible new pseudoshell approach to heavy

nuclei

The synchronous filling of 0[110] pairs in proton and neutron shells is not a charac-
teristic just of the Z = 50− 82 and N = 82− 126 shells, but, as it can be seen from
Table 5.4, this characterizes Nilsson orbitals appearing in different major shells of
the nuclear shell model. This characteristic may suggest a new coupling scheme,
similar in spirit to the idea of pseudo-SU(3) [3, 4], but different in content.

5.5.1 Pseudo-SU(3) model

As has already been mentioned, nuclear shell structure, at least for light nuclei be-
longing to the sd shell, is not much different from that of the harmonic oscillator
which is characterized by SU(3) symmetry. So, the SU(3) model was proposed by
Elliott [2] for the description of light nuclei, belonging maximum to the sd shell.
However, as the nucleus becomes larger, the spin orbit interaction completely de-
stroys the harmonic oscillator shell structure and new major shells are constructed.
The new major shells have the same subshells as the corresponding harmonic os-
cillator major shells, but the subshell with the largest j is moved to the lower
major shell and is “replaced” by the subshell with the largest j of the next har-
monic oscillator shell. The subshells in the new major shell which are the same
as the corresponding subshells in the harmonic oscillator major shells, are called
normal parity orbitals of the new shell. The subshell that comes from the next
major shell is called intruder level or abnormal parity level, because it has par-
ity opposite to the other levels in the major shell. For example, the N=3 major
shell of the harmonic oscillator (or 28-50 major shell) has the degenerate subshells
2p1/2, 2p3/2, 1f5/2, 1f7/2, the N=4 major shell (or 50-82 major shell) has the degen-
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erate subshells 3s1/2, 2d3/2, 2d5/2, 1g7/2, 1g9/2, the N=5 major shell (or 82-126 major
shell) has the degenerate subshells 3p1/2, 3p3/2, 3f5/2, 3f7/2, 1h9/2, 1h11/2, the N=6
major shell (or 126-184 major shell) has the degenerate subshells 4s1/2, 3d3/2, 3d5/2,
2g7/2, 2g9/2, 1i11/2, 1i13/2 and so on. After the spin orbit coupling is applied, the sub-
shells are split in energy. The N=3 major shell loses the 1f7/2 subshell which makes
its own 20-28 major shell and takes the intruder level 1g9/2 from the N=4 shell.
The N=4 shell having lost the 1g9/2 subshell, has it replaced by the 1h11/2 subshell
from the N=5 shell. The N=5 shell loses the 1h11/2 subshell and replaces it by the
intruder level 1i13/2 of the next major shell and so on. The new major shells that
are contructed are the 20-28 major shell, comprised by the 1f7/2 subshell, the 28-50
major shell, comprised by the 2p1/2, 2p3/2, 1f5/2, 1g9/2 subshells, the 50-82 major
shell, comprised by the 3s1/2, 2d3/2, 2d5/2, 1g7/2, 11h11/2 subshells, the 82-126 major
shell, comprised by the 3p1/2, 3p3/2, 3f5/2, 3f7/2, 1h9/2, 1i13/2 subshells, the 126-184
major shell, comprised by the 4s1/2, 3d3/2, 3d5/2, 2g7/2, 2g9/2, 1i11/2, 1j15/2 and so on.
In an effort to describe this movement of subshells beyond the sd shell, the pseudo
SU(3) scheme was developed.

It was observed that the normal parity subshells in the new major shells, those
that would belong to the N major shell of the harmonic oscillator, have the same
j values as the subshells belonging to the N-1 major shell of the harmonic oscil-
lator. For example, the normal parity orbits of the 50-82 major shell, 3s1/2, 2d3/2,
2d5/2, 1g7/2, which would belong to the N=5 harmonic oscillator major shell, have
the same j values as the subshells belonging to the N=4 major shell of the har-
monic oscillator, 2p1/2, 2p3/2, 1f5/2, 1f7/2. This suggests a mapping of the values of

the l and s of the normal parity orbits 3s1/2, 2d3/2, 2d5/2, 1g7/2 onto pseudo l̃ and

s̃, by keeping j constant, i.e. j = l + s → l̃ + s̃ = j, so as to get the subshells
of the major oscillator shell. For example s1/2, d3/2, d5/2, g7/2 → p̃1/2, p̃3/2, f̃5/2, f̃7/2.
The opposite parity orbital, coming from the next major shell is not taken into ac-
count in this mapping. So, in total, for the 28-50 shell, one has the mapping 2p1/2,

2p3/2, 1f5/2 → s̃1/2, d̃3/2, d̃5/2. For the 50-82 shell, one has the mapping 3s1/2, 2d3/2,

2d5/2, 1g7/2 → p̃1/2, p̃3/2, f̃5/2, f̃7/2. For the 82-126 shell, the mapping is 3p1/2, 3p3/2,

3f5/2, 3f7/2, 1h9/2 → s̃1/2, d̃3/2, d̃5/2, g̃7/2, g̃9/2. For the 126-184 shell, the mapping

is 4s1/2, 3d3/2, 3d5/2, 2g7/2, 2g9/2, 1i11/2 → p̃1/2, p̃3/2, f̃5/2, f̃7/2, h̃9/2, h̃11/2. From the
mapping, the angular momentum changes by one and the spin is inverted. In terms
of Nilsson quantum numbers, the new Nilsson orbitals would have Λ changed by one
unit, either positive or negative, the Σ quantum number would be inverted, but the
projection of the total angular momentum, K would be the same. In the Nilsson
diagram, the Nilsson levels with their new pseudo symbols, Ω̃[Ñ ñzΛ̃], are grouped
into pseudo spin orbit doublets having Ω̃ = Λ̃ ± 1/2. This implies that the pseudo
spin-orbit splitting is small, so the SU(3) symmetry of the harmonic oscillator is
back. It should be noticed that this is applied separately to the proton and neutron
major shells.

Without wanting to get into details, in order to apply the pseudo-SU(3) to real
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nuclei, one needs to know the symmetry of each shell. For example, if one wanted
to apply the pseudo-SU(3) scheme to rare earth nuclei, one should consider the
following. The positive parity protons occupy the pseudo-pf shell, which has a U(10)
symmetry, possessing an SU(3) subalgebra. The negative parity protons occupy the
1h11/2 orbital, which has a U(12) symmetry, possessing an Sp(12) subalgebra. The
negative parity neutrons occupy the pseudo-sdg shell, which has a U(15) symmetry,
possessing an SU(3) subalgebra, while the positive parity neutrons occupy the 1i13/2
orbital, which has a U(14) symmetry, possessing an Sp(14) subalgebra. Finding the
basis states and by selecting an appropriate Hamiltonian, the energies and other
observables can be derived for comparison with the experiment.

5.5.2 Approximate SU(3) symmetry

In the new coupling scheme, the idea of 0[110] partners is exploited. In order to
understand this idea, one can follow Tables 5.5, 5.6, where the Nilsson orbitals of
the major shells created after the spin-orbit interaction and the Nilsson orbitals of
the harmonic oscillator major shells, N, are listed. For example, comparing the
Nilsson orbitals of the 28-50 major shell with those of the N=3 harmonic oscillator
shell, one sees that all orbitals are the same, except for those of the 1g9/2 and 1f7/2
subshells, whose orbitals differ by 0[110]. So, one can replace the Nilsson orbitals of
the 1g9/2 subshell with their 0[110] counterparts of the 1f7/2 subshell of the harmonic
oscillator, leaving out the single orbital, 9/2[404], which lies highest in energy and
has no 0[110] partner. Then, the 28-50 major shell can be approximated as a pf
shell. A similar approximation can also be made in the other major shells as well.
So, the 50-82 major shell can be approximated as an sdg shell, plus the single
orbital 11/2[505] which stays out. The 82-126 major shell can be considered as an
approximate pfh shell, ruling out the single orbital 13/2[606]. The 126-184 major
shell can be considered as an approximate sdgi shell, ruling out the single orbital
15/2[707].

In the new coupling scheme, it is clear that the Nilsson orbitals of the normal
parity orbits are mapped onto themselves, in other words, they remain intact and
those that change are the Nilsson orbitals of the abnormal parity subshell. By this
mapping parity is changed, but the projections of angular momentum Λ, spin, Σ
and total angular momentum K remain intact. Also, nz is changed by one unit.
As before, one needs to know the symmetries of each approximate shell in the new
coupling scheme. The approximate pf shell has a U(10) symmetry, the approximate
sdg shell has a U(15) symmetry, the pfh shell has a U(21) symmetry and the sdgi
shell has a U(28) symmetry. All algebras have an SU(3) subalgebra. For example,
for the rare earth nuclei, in the new coupling scheme, protons occupy the approxi-
mate sdg shell, having a U(15) symmetry, and neutrons the approximate pfh shell,
having U(21) symmetry. Both symmetries possess SU(3) subalgebras, which can be
combined into an SU(3) algebra for the system. Thus, one can work in the scheme

Up(15)× Un(21) ⊃ SUp(3)× SUn(3) ⊃ SU(3). (5.16)
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Table 5.5: Nilsson orbitals appearing in different major shells of the nuclear shell model and in
different shells of the 3D harmonic oscillator.

28-50 N=4 50-82 N=5
2p1/2 1/2[301] 2p1/2 1/2[301] 3s1/2 1/2[411] 3s1/2 1/2[411]
2p3/2 1/2[321] 2p3/2 1/2[321] 2d3/2 1/2[400] 2d3/2 1/2[400]

3/2[312] 3/2[312] 3/2[402] 3/2[402]
1f5/2 1/2[310] 1f5/2 1/2[310] 2d5/2 1/2[431] 2d5/2 1/2[431]

3/2[301] 3/2[301] 3/2[422] 3/2[422]
5/2[303] 5/2[303] 5/2[413] 5/2[413]

1g9/2 1/2[440] 1f7/2 1/2[330] 1g7/2 1/2[420] 1g7/2 1/2[420]
3/2[431] 3/2[321] 3/2[411] 3/2[411]
5/2[422] 5/2[312] 5/2[402] 5/2[402]
7/2[413] 7/2[303] 7/2[404] 7/2[404]
9/2[404] 1h11/2 1/2[550] 1g9/2 1/2[440]

3/2[541] 3/2[431]
5/2[532] 5/2[422]
7/2[523] 7/2[413]
9/2[514] 9/2[404]
11/2[505]

So, in the new coupling scheme one has two different algebras involved. The existence
of an SU(3) subalgebra for the total system allows for an analytical solution relevant
to deformed nuclei.

As an example, 154Sm is considered, for which the Nilsson deformation parameter
is ǫ ≈ 0.95, β2 ≈ 0.32 [1, 148]. From Fig. 5.6 it is clear that 6 out of 12 valence
protons occupy normal parity orbitals in the 50-82 shell, while the other six occupy
1h11/2 orbitals. In addition, six out of ten valence neutrons occupy normal parity
orbitals in the 82-126 shell, while the other four occupy 1i13/2 orbitals. In the new
coupling scheme all valence protons are accomodated within the [222222] irrep of
U(15), while all valence neutrons are accomodated within the [22222] irrep of U(21).
The most leading SU(3) irrep of U(15) is the (24,0) irrep, while the most leading
SU(3) irrep of U(21) is the (30,4) irrep. Then, the total SU(3) irrep for the system
will be (54,4). This symmetry involves all valence protons and all valence neutrons,
not only the normal parity ones.

To proceed further, one has to choose a Hamiltonian containing, in addition to
the usual quadrupole-quadrupole and the angular momentum terms, SU(3) symme-
try preserving third-order and/or fourth-order terms [4, 149].
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Table 5.6: Nilsson orbitals appearing in different major shells of the nuclear shell model and in
different shells of the 3D harmonic oscillator.

82-126 N=6 126-184 N=7
3p1/2 1/2[501] 3p1/2 1/2[501] 4s1/2 1/2[611] 4s1/2 1/2[611]
3p3/2 1/2[521] 3p3/2 1/2[521] 3d3/2 1/2[600] 3d3/2 1/2[600]

3/2[512] 3/2[512] 3/2[602] 3/2[602]
2f5/2 1/2[510] 3f5/2 1/2[510] 3d5/2 1/2[631] 3d5/2 1/2[631]

3/2[501] 3/2[501] 3/2[622] 3/2[622]
5/2[503] 5/2[503] 5/2[613] 5/2[613]

2f7/2 1/2[541] 3f7/2 1/2[541] 2g7/2 1/2[620] 2g7/2 1/2[620]
3/2[532] 3/2[532] 3/2[611] 3/2[611]
5/2[523] 5/2[523] 5/2[602] 5/2[602]
7/2[514] 7/2[514] 7/2[604] 7/2[604]

1h9/2 1/2[530] 1h9/2 1/2[530] 2g9/2 1/2[651] 2g9/2 1/2[651]
3/2[521] 3/2[521] 3/2[642] 3/2[642]
5/2[512] 5/2[512] 5/2[633] 5/2[633]
7/2[503] 7/2[503] 7/2[624] 7/2[624]
9/2[505] 9/2[505] 9/2[615] 9/2[615]

1i13/2 1/2[660] 1h11/2 1/2[550] 1i11/2 1/2[640] 1i11/2 1/2[640]
3/2[651] 3/2[541] 3/2[631] 3/2[631]
5/2[642] 5/2[532] 5/2[622] 5/2[622]
7/2[633] 7/2[523] 7/2[613] 7/2[613]
9/2[624] 9/2[514] 9/2[604] 9/2[604]
11/2[615] 11/2[505] 11/2[606] 11/2[606]
13/2[606] 1j15/2 1/2[770] 1i13/2 1/2[660]

3/2[761] 3/2[651]
5/2[752] 5/2[642]
7/2[743] 7/2[633]
9/2[734] 9/2[624]
11/2[725] 11/1[615]
13/2[716] 13/2[606]
15/2[707]
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Conclusions

The search for approximate symmetries in collective models of nuclear structure has
lead to many different methods by which an approximate symmetry can emerge,
their common characteristic being the breaking of a symmetry. We have presented
the application of statistical measures of chaos on the energy spectrum and the
transition strengths of exhited 0+ states, for N=175 bosons, in the context of the
IBM, around the arc of regularity. The statistical measures of chaos reveal regularity
on the U(5)-O(6) leg, due to the common O(5) subalgebra of the two limits and also
minimum chaoticity on the arc of regularity, which is in agreement with previous
studies performed with much smaller number of bosons and levels with angular
momentum L > 2. Chaotic behavior dominates in all the other calulated points.
As the number of bosons gets larger, the quantum statistical parameters seem to
reach steady values, however they always show qualitatively the same results; that
the point on the arc of regularity is always more regular than the points away from
the arc. The study of chaos as a function of energy showed that the degree of chaos
reduces significantly as one moves to the high part of the spectrum, or in other
words, as the energy increases. The arc of regularity obviously exists due to some
underlying approximate symmetry, which lowers the degree of chaos.

A possible explanation for the existence of the arc of regularity is given by the
analytical derivation of a line based on an approximate SU(3) symmetry. This
line is extracted by the study of Hamiltonians that in the large boson limit of the
IBM, approximately commute with the SU(3) generators. The approximate SU(3)
symmetry found, extends from the SU(3) vertex until close to the critical line,
following the Alhassid-Whelan arc of regular behavior amidst chaotic regions. That
was also the first analytical evidence for the existence of an approximate symmetry
inside the symmetry triangle of the IBM. The method can be in general used for
algebraic Hamiltonians known to possess symmetries due to existing subalgebras.

The last approximate symmetry, an SU(3) approximate symmetry, was derived
in the context of the Nilsson model, with the help of which a new coupling scheme
for shell model calculations can be developed, which bears many similarities to the
pseudo-SU(3) scheme, though it is much more inclusive. The thought of an ap-
proximate SU(3) symmetry came up, after the study of enhanced proton-neutron
interactions and their possible explanation as having wavefunctions that greatly
overlap. These highly interacting pairs of protons and neutrons, which are responsi-
ble for the saturation of deformation in nuclei, have a special relation characterizing
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their Nilsson quantum number. They are pairs differing by 0[110]. A closer look
at the Nilsson orbitals of the 3D harmonic oscillator shells and those of the nuclear
shell model, reveals that Nilsson orbitals are either the same, or differ by 0[110].
A whole new coupling scheme can be developed when the Nilsson orbitals of the
nuclear shell model are replaced by their 0[110] counterparts of the 3D harmonic
oscillator.
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Appendix A

Application of statistical measures
on energy eigenvalues

The program used for the production of eigenvalues and transition strenghts
between the states of the IBM Hamiltonian is the IBAR of R. J. Casperson, which
can handle up to 1000 bosons [150]. Once the energies are calculated using IBAR,
they need to be unfolded in order to apply the statistical measures, P (S), ∆3(L) and
P (y). As already mentioned, the statistical measures P (S) and ∆3(L) are used for
the statistical analysis of the eigenvalues produced by IBAR, while P (y) is used for
the statistical analysis of the transition strengths. The way the statistical analysis
is performed, is described in this appendix. The puprose, is to find, by fitting,
the quantum statistical parameters ω, q, ν of each statistic, which will reveale the
amount of chaos of each point studied on the symmetry triangle.

First, one constructs a staircase function of the data, which is the number of
energies versus the energies. Then, one fits a sixth order polynomial N(E) to the
staircase function. The normalised energies are found as

ǫi = N(Ei). (17)

Now, one applies the statistical measures P (S) and ∆3(L) to the normalised energies.
For the statistical measure P (S), one first finds the normalised spacings Si =

ǫi+1 − ǫi and then puts them to bins, so an histogram of normalised spacings is
produced. Then, one fits the Brody distribution, which is multiplied by a factor
A, for scaling reasons (Pω(S) = Aα(1 + ω)Sωexp(−αS1+ω)), to the histogram, by
minimising the function

χ2(ω) =
∑

i∈bins

(

Pbin(Si)− Pω(Si)

σi

)2

, (18)

in order to find the best value of ω. Pbin(Si) is the total number of normalised
spacings in the i’th bin and σi is the statistical error of the number of elements in
each bin, given by σi =

√
ni, where ni is the number of spacings at the i’th bin.
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In order to calculate the ∆3 statistics, in terms of the normalised energies
E1, E2, . . . , En, one uses the function of ∆3(L) given in eq. (22) in [89],

∆3(α, L) =
n2

16
− 1

L2

(

n
∑

i=1

ǫi

)2

+
3n

2L2

(

n
∑

i=1

ǫ2i

)

− 3

L4

(

n
∑

i=1

ǫ2i

)2

+
1

L

(

n
∑

i=1

(n− 2i+ 1)ǫi

)

, (19)

where ǫi = Ei − (α + L/2) is the measure of the normalised energies with respect
to the center of energy interval (α, α + L). One calculates the ∆3(L) in the energy
intervals of length L = 0.5, 1, 1.5, . . . , 10, which span the whole normalised spectrum,
once for energy intervals that start from α = 0 and once for energy intervals that
start from α = L/2. Then, the ∆3(L) is found as the average over all the ∆3(α, L).
In order to find the best value of q, one minimizes the function

∆(q) =
∑

Lvalues

[∆3(L)−∆q
3(L)]

2, (20)

where ∆3(L) is the value for each energy interval of length L, calculated with the
procedure described before, while ∆q

3(L) is the expression given by eq. (2.17).
For the last statistical measure, P (y), one needs first to normalize the transition

strengths to the local average strengths. The local average strengths are found by
using Gaussians of width γ, centered around each level Ei [89, 90, 91, 29],

ȳ(E,E ′) =

∑

k,l | 〈k|T |l〉 |2 exp[−(E − Ek)
2/2γ2] exp[−(E ′ − El)

2/2γ2]
∑

k,l exp[−(E − Ek)2/2γ2] exp[−(E ′ − El)2/2γ2]
. (21)

The width γ was chosen to be 2. Then, the normalised transition strengths are
defined as

yfi =
| 〈f |T |i〉 |2

ȳ(E = Ei, E ′ = Ef )
. (22)

In order to calculate the local average strengths and the normalized transition
strenghts, one should use the unfolded energies, computed for the statistical mea-
sures, P (S) and ∆3(L). Then, one should approximate the logarithms of the normal-
ized transition strengths to bins and produce an histogram of normalized transition
strengths. Then, the interpolating function

Pν(y) = A

(

ν

2 < y >

)ν/2
y

ν

2
−1exp(−νy/2 < y >)

Γ
(

ν
2

) , (23)

where A is a factor added for scaling reasons, is fitted to the histogram, by mini-
mizing the function

χ2(ν) =
∑

i∈bins

(

Pbin(yi)− Pν(yi)

σi

)2

(24)
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in order to find the best value of ν. However, since the yfis are the logarithms of the
normalized transition strengths, one should change the variable y of the intepolating
function (7) to z = log10(y) and use for the fitting the form of the interpolating
function after the change of variable. Pbin(yi) is the total number of the logarithms
of the normalized transition strengths in the i’th bin and σi is, as already explained
for the statistical measure P (S), the statistical error of the number of elements in
each bin.



82 APPENDIX A



Appendix B

Commutation Relations

We list here the commutation relations needed for obtaining the results of Sec-
tions 3–6. They are obtained through standard angular momentum coupling tech-
niques [151].

[n̂d, (d
†s+ s†d̃)

(2)
ξ ] = (d†s− s†d̃)

(2)
ξ , (25)

[(d†d̃)
(2)
ξ , (d†s+ s†d̃)(2)ν ] = (2ξ2ν|2ξ + ν)(d†s− s†d̃)

(2)
ξ+ν , (26)

[n̂d, (d
†d̃)

(k)
ξ ] = 0, k = 0, 1, 2, 3, 4, (27)

[(d†d̃)
(2)
ξ , (d†d̃)(2)ν ] = −10

∑

k=1,3

(2ξ2ν|kξ + ν)
{

2 2 k
2 2 2

}

(d†d̃)
(k)
ξ+ν , (28)

[(d†s+ s†d̃)
(2)
ξ , (d†s+ s†d̃)(2)ν ] = 2

∑

k=1,3

(2ξ2ν|kξ + ν)(d†d̃)
(k)
ξ+ν , (29)

[(d†s+ s†d̃)
(2)
ξ , (d†d̃)(1)ν ] = −

√

3

5
(2ξ1ν|2ξ + ν)(d†s+ s†d̃)

(2)
ξ+ν , (30)

[(d†s+ s†d̃)
(2)
ξ , (d†d̃)(3)ν ] = −

√

7

5
(2ξ3ν|2ξ + ν)(d†s+ s†d̃)

(2)
ξ+ν , (31)

[(d†d̃)
(1)
ξ , (d†d̃)(1)ν ] = − 1√

5
(1ξ1ν|1ξ + ν)(d†d̃)

(1)
ξ+ν , (32)

[(d†d̃)
(2)
ξ , (d†d̃)(1)ν ] = 2

√
15(2ξ1ν|2ξ + ν)

{

2 2 1
2 2 2

}

(d†d̃)
(2)
ξ+ν , (33)

[(d†d̃)
(2)
ξ , (d†d̃)(3)ν ] = 2

√
35

∑

k=2,4

(2ξ3ν|kξ + ν)
{

2 3 k
2 2 2

}

(d†d̃)
(k)
ξ+ν . (34)
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Appendix C

Calculation of commutators of IBA
generators

As already mentioned in Section 4.1.1, in order to calculate the commutation
relations, the expression found in [6], Eq. (2.6) or in [15], Eq. (7.51) is used

[G(k)
κ (l, l′), G

(k′)
κ′ (l′′, l′′′)] =

∑

k′′,κ′′

√

(2k + 1)(2k′ + 1)(kκk′κ′|k′′κ′′)(−1)k−k
′

[

(−1)k+k
′+k′′

{

k k′ k′′

l′′′ l l′

}

δl′l′′G
(k′′)
κ′′ (l, l′′′)−

{

k k′ k′′

l′′ l′ l

}

δll′′′G
(k′′)
κ′′ (l′′, l′)

]

, (35)

where,
G(k)
κ (l, l′) = (b†l b̃l′)

(k)
κ , (l, l′ = 0, 2). (36)

In this expression, one needs to calculate Glebsch-Gordan coefficients, (l1m1l2m2|l3m3),
which are related to 3-j symbols through the relation

(

l1 l2 l3
m1 m2 m3

)

=
(−1)l1−l2−m3

√
2l3 + 1

(l1m1l2m2|l3m3) (37)

and 6-j symbols
{

l1 l2 l3
m1 m2 m3

}

. (38)

If one wants, for some reason, to do the calculations ”the hard way”, then
the symmetry relations of the Glebsch-Gordan coefficients, 3-j and 6-j symbols are
needed, as well as the expressions given on pages 125-127 and 130-132 of Ref. [151]
for the calculation of 3-j and 6-j symbols. For the sake of completeness we give the
symmetry relations mentioned before.

The symmetry relations for the Glebsch-Gordan coefficients are:

< l1m1l2m2|lm >= (−1)l1+l2−l < l2m2l1m1|lm >, (39)

< l1m1l2m2|l3m3 >= (−1)l2+m2

√

2l3 + 1

2l1 + 1
< l2 −m2l3m3|l1m1 >, (40)
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< l1m1l2m2|l3m3 >= (−1)l1−m1

√

2l3 + 1

2l2 + 1
< l3m3l1 −m1|l2m2 > . (41)

The symmetry relations for the 3-j symbols are:

(

l1 l2 l3
m1 m2 m3

)

=
(

l2 l3 l1
m2 m3 m1

)

=
(

l3 l1 l2
m3 m1 m2

)

(42)

which means that the 3-j symbol remains invariant by an even permutation of its
columns and

(−1)l1+l2+l3
(

l1 l2 l3
m1 m2 m3

)

=
(

l2 l1 l3
m2 m1 m3

)

=
(

l1 l3 l2
m1 m3 m2

)

=
(

l3 l2 l1
m3 m2 m1

)

(43)

so that every odd permutation of its columns introduces a factor (−1)l1+l2+l3 .
Last, the symmetry relations of the 6-j symbols have the following characteristics,

{

l1 l2 l3
l4 l5 l6

}

=
{

l2 l3 l1
l5 l6 l4

}

=
{

l3 l1 l2
l6 l4 l5

}

=
{

l2 l1 l3
l5 l4 l6

}

=
{

l1 l3 l2
l4 l6 l6

}

=
{

l3 l2 l1
l6 l5 l4

}

. (44)

The 6-j symbol remains invariant by an even or odd permutation of its columns and

{

l1 l2 l3
l4 l5 l6

}

=
{

l1 l5 l6
l4 l2 l3

}

(45)

also remains invariant if two columns get upside down simultaneously.
As an example, we are going to explicitly derive Eq. (4.8). The commutator of

the first part of the Hamiltonian with the quadrupole operators is

[Ĥ1, Q̂
(2)
SU(3),ν ] = cη[n̂d, Q̂

(2)
SU(3),ν ] = cη[

√
5(d†d̃)

(0)
0 , Q̂

(2)
SU(3),ν ]

= cη[
√
5(d†d̃)

(0)
0 , (s†d̃)(2)ν + (d†s̃)(2)ν −

√
7

2
(d†d̃)(2)ν ]

= cη
√
5[(d†d̃)

(0)
0 , (s†d̃)(2)ν ] + cη

√
5[(d†d̃)

(0)
0 , (d†s̃)(2)ν ]

− cη

√
35

2
[(d†d̃)

(0)
0 , (d†d̃)(2)ν ]. (46)

In this form, we can directly apply Eq. (35) to the three terms of (46). For the

first term, [(d†d̃)
(0)
0 , (s†d̃)(2)ν ], one has k = 0, k′ = 2, k′′ = 2, κ = 0, κ′ = ν, κ′′ = ν,

l = l′ = l′′′ = 2, l′′ = 0 and δl′l′′ = 0, δll′′′ = 1, so that

[(d†d̃)
(0)
0 , (s†d̃)(2)ν ] =

∑

ν

√
5(002ν|2ν)

[

−(−1)2+0+0+2
{

0 2 2
0 2 2

}

G(2)
ν (0, 2)

]

, (47)
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where we have applied the fact that κ+ κ′ = κ′′ and that when one couples angular
momentum 2 with angular momentum 0, G(0, 2), the only possible result is that
they couple to angular momentum 2, k′′ = 2, so that finaly one has,

[(d†d̃)
(0)
0 , (s†d̃)(2)ν ] = − 1√

5
(s†d̃)(2)ν . (48)

The second term, [(d†d̃)
(0)
0 , (d†s̃)(2)ν ], has k = 0, k′ = 2, k′′ = 2, κ = 0, κ′ = ν, κ′′ = ν,

l = l′ = l′′ = 2, l′′′ = 0 and δl′l′′ = 1, δll′′′ = 0, so that

[(d†d̃)
(0)
0 , (d†s̃)(2)ν ] =

∑

ν

√
5(002ν|2ν)(−1)2+0+2

{

2 0 2
2 0 2

}

G(2)
ν (2, 0)

=
1√
5
(d†s̃)(2)ν . (49)

Then for the third and last term, [(d†d̃)
(0)
0 , (d†d̃)(2)ν ], one has k = 0, k′ = 2, k′′ = 2,

κ = 0, κ′ = ν, κ′′ = ν, l = l′ = l′′ = l′′′ = 2 and δl′l′′ = 1, δll′′′ = 1, so that

[(d†d̃)
(0)
0 , (d†s̃)(2)ν ] =

∑

ν

√
5(002ν|2ν)

[

(−1)2+2+2
{

2 2 2
2 0 2

}

G(2)
ν (2, 2)

−(−1)2+2+0+2
{

2 2 2
0 2 2

}

G(2)
ν (2, 2)

]

= 0. (50)

In total, all three terms of Eq. (46) give

cη[n̂d, Q̂
(2)
SU(3),ν ] = −cη

√
5

1√
5
(s†d̃)(2)ν + cη

√
5

1√
5
(d†s̃)(2)ν

= cη(d†s̃− s†d̃)(2)ν , (51)

which is indeed Eq. (4.8).
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Appendix D

Analytic derivation of Eq. (4.15)

We will show the analytic derivation of Eq. (4.15) from Eq. (4.13), which we
rewrite here for convenience,

[Q̂(2)
χ · Q̂(2)

χ , Q̂
(2)
SU(3),ν ] =

∑

ξ

(−1)ξ
{

[Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ]Q̂

(2)
χ,−ξ + Q̂

(2)
χ,ξ[Q̂

(2)
SU(3),−ξ, Q̂

(2)
SU(3),ν ]

+

(

χ+

√
7

2

)

{

[(d†d̃)
(2)
ξ , Q̂

(2)
SU(3),ν ]Q̂

(2)
χ,−ξ + Q̂

(2)
χ,ξ[(d

†d̃)
(2)
−ξ , Q̂

(2)
SU(3),ν ]

}

}

. (52)

Eq. (4.13) has four terms which need to be ”expanded” in order to get Eq. (4.15).

For the first term, [Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ]Q̂

(2)
χ,−ξ, we first need to calculate the commutator

[Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ], which is

[Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ] =

[(s†d̃+ d†s̃)
(2)
ξ −

√
7
2
(d†d̃)

(2)
ξ , (s†d̃+ d†s̃)(2)ν −

√
7
2
(d†d̃)(2)ν ] =

[(s†d̃)
(2)
ξ , (s†d̃)(2)ν ] + [(s†d̃)

(2)
ξ , (d†s̃)(2)ν ]−

√
7
2
[(s†d̃)

(2)
ξ , (d†d̃)(2)ν ]

+[(d†s̃)
(2)
ξ , (s†d̃)(2)ν ] + [(d†s̃)

(2)
ξ , (d†s̃)(2)ν ]−

√
7
2
[(d†s̃)

(2)
ξ , (d†d̃)(2)ν ]

−
√
7
2
[(d†d̃)

(2)
ξ , (s†d̃)(2)ν ]−

√
7
2
[(d†d̃)

(2)
ξ , (d†s̃)(2)ν ] + 7

4
[(d†d̃)

(2)
ξ , (d†d̃)(2)ν ]. (53)

With the help of (35) we have

[Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ] =√

5(2ξ2ν|0ξ + ν)(s†s̃)
(0)
ξ+ν −

∑

k′′(−1)k
′′

(2ξ2ν|k′′ξ + ν)(d†d̃)
(k′′)
ξ+ν

−
√
7
2
(2ξ2ν|2ξ + ν)(s†d̃)

(2)
ξ+ν +

∑

k′′(2ξ2ν|k′′ξ + ν)(d†d̃)
(k′′)
ξ+ν

+
√
7
2
(2ξ2ν|2ξ + ν)(d†s̃)

(2)
ξ+ν −

√
5(2ξ2ν|0ξ + ν)(s†s̃)

(0)
ξ+ν
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+
√
7
2
(2ξ2ν|2ξ + ν)(s†d̃)

(2)
ξ+ν −

√
7
2
(2ξ2ν|2ξ + ν)(d†s̃)

(2)
ξ+ν

−7
4
10
∑

k′′=1,3(2ξ2ν|k′′ξ + ν)
{

2 2 2
k′′ 2 2

}

(d†d̃)
(k′′)
ξ+ν =

∑

k′′(2ξ2ν|k′′ξ + ν)(d†d̃)
(k′′)
ξ+ν (1− (−1)k

′′

)

−35
2

∑

k′′=1,3(2ξ2ν|k′′ξ + ν)
{

2 2 2
k′′ 2 2

}

(d†d̃)
(k′′)
ξ+ν . (54)

From the first sum one has k′′ = 1, 3, due to the (1−(−1)k
′′

) term. After calculating
the 6-j symbol one is left with

[Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ] =

15

4
(2ξ2ν|1ξ + ν)(d†d̃)

(1)
ξ+ν . (55)

However, we need the product [Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ]Q̂

(2)
χ,−ξ, which is

[Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ]Q̂

(2)
χ,−ξ =

15

4
(2ξ2ν|1ξ + ν)(d†d̃)

(1)
ξ+νQ̂

(2)
χ,−ξ. (56)

For this, we need to recouple the angular momentums by using the tensor product
(4.14)

[T (k1) × T (k2)](k)q =
k1
∑

q1=−k1

k2
∑

q2=−k2
< k1q1k2q2|kq > T (k1)

q1
T (k2)
q2

. (57)

In our case, it is obvious that, k1 = 1, q1 = ξ + ν, k2 = 2, q2 = −ξ, so one needs to
use Eq. (41) in order to rearrange in a desired way the Glebsch-Gordan coefficients,
so as to get

[Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ]Q̂

(2)
χ,−ξ =

15

4
(−1)−ξ

√

3

5
(1 ξ + ν 2 − ξ|2 ν)(d†d̃)

(1)
ξ+νQ̂

(2)
χ,−ξ

= (−1)−ξ
3

4

√
15
(

(d†d̃)(1)Q̂(2)
χ

)(2)

ν
. (58)

The case of Q̂
(2)
χ,ξ[Q̂

(2)
SU(3),−ξ, Q̂

(2)
SU(3),ν ] is exactly the same as the one just examined, if

we replace ξ by −ξ, so it is

Q̂
(2)
χ,ξ[Q̂

(2)
SU(3),−ξ, Q̂

(2)
SU(3),ν ] =

15

4
(2 − ξ 2 − ν|1 − ξ + ν)Q̂

(2)
χ,ξ(d

†d̃)
(1)
−ξ+ν

= −(−1)ξ
√

3

5

15

4
(2 ξ 1 − ξ + ν|2 ν)Q̂

(2)
χ,ξ(d

†d̃)
(1)
−ξ+ν

= −(−1)ξ
3

4

√
15
(

Q̂(2)
χ (d†d̃)(1)

)(2)

ν
. (59)

We see that if we add Eqs. (58) and (59) and replace them to (4.13), we take one
part of Eq. (4.15). By applying the same method, as above, to the other two terms

of Eq. (4.13), [(d†d̃)
(2)
ξ , Q̂

(2)
SU(3),ν ]Q̂

(2)
χ,−ξ and Q̂

(2)
χ,ξ[(d

†d̃)
(2)
−ξ , Q̂

(2)
SU(3),ν ], one gets the full

Eq. (4.15).
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İnőnű - Wigner contraction

İnőnű and Wigner [110] had described the contraction as the operation of ob-
taining a new group (or a new algebra associated with the group), by a singular
transformation of the generators (or basis vectors of the algebra) of the old group.
The Xi’s, i = 1, 2, . . . , n can either be refered to as the generators of a group G,
where n is the number of generators, or as the basis vectors of the associatied with
the group G, algebra g [152]. From now on we will be sticking with the first meaning.

Let Xi be the generators of the group G, which obey the commutation relations

[Xi, Xj ] = cki,jXk. (60)

If one subjects theXi to a nonsingular transformation U , one obtains new generators
Yi,

Yi = U j
iXj. (61)

U has the form

U =
(

I 0
0 ǫI

)

, (62)

with

U−1 =
(

I 0
0 I/ǫ

)

, (63)

where I, ǫI and I/ǫ are r × r and (n − r) × (n − r) matrices respectively. As
long as 0 < ǫ < ǫ0, the determinant of U will be different from zero and thus, the
transformation will be non-singular.

The generatos Yi will have the same commutation relations as the Xi’s, but with
different structure constants, Ck

ij, up to a constant. The structure constants with
respect to the new basis will be

[Yi, Yj] = Ck
i,jYk ⇒

[

Um
i Xm, U

n
j Xn

]

= Ck
i,jU

l
kXl ⇒

Um
i Un

j c
l
mn(U

−1)kl = Ck
i,j. (64)
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But, what happens of U is singular, that is, if ǫ → 0? In this limit we have
contraction and the transformation U leads to a new group, the contacted group
G′. For convenience, it is useful to symbolise the operators that transform using the
upper left part, I, of the the tranformation matrix U , as Xα, Xβ, Xγ , . . . and those
that transform from the lower right part, ǫI, as Xi, Xj, Xk,. . .. Then, one has

UXα = Xα = Yα

UXi = ǫXi = Yi. (65)

From (62), (63) and (64), one can find the relationship between the old and the new
structure constants. Since, only the diagonal elements of U are diffenent from zero,
the relationship between the old and the new structure constants becomes

Cλ
µ,ν = Uµ

µU
ν
ν c

λ
µ,ν(U

−1)λλ. (66)

It turns out that the result depends only on where µ, ν and λ belong, that is to
the upper left or lower right part of U . Then, one has the following cases at the
contraction limit.

Ck
ij = ǫǫckijǫ

−1 = ǫckij → 0 (67)

Cα
ij = ǫǫcαij1 = ǫ2cαij → 0 (68)

Cj
αi = 1ǫcjαiǫ

−1 = cjαi (69)

Cβ
αi = 1ǫcβαi1 = ǫcβαi → 0 (70)

Cγ
αβ = 11cγαβ1 = cγαβ (71)

C i
αβ = 11ciαβǫ

−1 =
1

ǫ
ciαβ. (72)

The last one converges only if ciαβ = 0, so, C i
αβ = 0. From the above series of

equations, the last two say that the Xα and Yα which are closed under commutation
span sugroups of G and G′ respectively. The third from the end sais that the Yi span
an invariant subgroup of G′, which is also abelian, (derived by the first equation).

The contractions of SU(3) to R5[SO(3)] and O(6) to R5[SO(5)] are based on the
idea of contraction of groups of İnőnű and Wigner and are discussed in more detail
in appendices F and G, respectively.



Appendix F

The SU(3)→ [R5]SO(3) contraction

The SU(3)→ [R5]SO(3) contraction has been studied in Refs. [111, 112]. It
is a procedure in which the full SU(3) algebra, consisting of eight noncommuting
generators, is reduced into an SO(3) algebra (consisting of three noncommuting
generators), accompanied by five mutually commuting operators (the quadrupole
operators). This simplification occurs in the limit of large boson number, in which,
in SU(3), all intrinsic excitations rise in energy, isolating the ground state band
so that SU(3) goes over, approximately, into a simple rigid rotator. The resulting
algebraic structure is, indeed, known [153] to be the algebra of the rigid rotator.
The scaling of Ref. [6] is used here. (The quadrupole operator in Refs. [111, 112] is
2
√
2 times the quadrupole operator of Ref. [6].)
The SU(3) commutation relations read

[L̂ξ, L̂ν ] = −
√
2(1ξ1ν|1ξ + ν)L̂ξ+ν , (73)

[L̂ξ, Q̂
(2)
SU(3),ν ] = −

√
6(1ξ2ν|2ξ + ν)Q̂

(2)
SU(3),ξ+ν , (74)

[Q̂
(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ] =

3

4

√

5

2
(2ξ2ν|1ξ + ν)L̂ξ+ν . (75)

The second order Casimir operator is

Ĉ2[SU(3)] =
2

3

[

2Q̂SU(3) · Q̂SU(3) +
3

4
L̂ · L̂

]

, (76)

while its eigenvalues in the Elliott basis, (λ, µ), are

C2(λ, µ) =
2

3
(λ2 + µ2 + λµ+ 3λ+ 3µ). (77)

If we consider, for example, SU(3) irreducible representations (irreps) with large
values of C2(λ, µ) - that is, for large boson numbers- we can rescale the quadrupole
operator as

q̂
(2)
SU(3),ξ =

Q̂
(2)
SU(3),ξ

√

C2(λ, µ)
. (78)
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The first two commutation relations remain unchanged by the rescaling, while the
last one becomes

[q̂
(2)
SU(3),ξ, q̂

(2)
SU(3),ν ] =

3

4

√

5

2
(2ξ2ν|1ξ + ν)

L̂ξ+ν
C2(λ, µ)

. (79)

Then, in the limit of large values of C2(λ, µ), one gets

[q̂
(2)
SU(3),ξ, q̂

(2)
SU(3),ν ] = 0. (80)

This result, which is obtained for large boson numbers, is called the contraction
of SU(3) to [R5]SO(3), where [R5]SO(3) is the algebra of the rigid rotator[153],
generated by the angular momentum operators of SO(3) and the five commuting

operators q̂
(2)
SU(3),ξ, ξ = −2,−1, 0, 1, 2.

An immediate consequence of Eqs. (76) and (77) is that, in the contraction
limit, terms propotional to the angular momentum L̂ can be ignored. In the IBA
framework, in which L̂ is proportional to (d†d̃)(1), as seen in Eq. (4.4), this implies
that (d†d̃)(1) terms can be ignored.

In the limit of large values of C2(λ, µ) and λ ≥ µ, the intrinsic quadrupole
moments become [112, 154]

q0 =
1

2
√
2
(2λ+ µ+ 3), q2 =

1

4

√

3(µ−K)(µ+K + 2), (81)

where K is the eigenvalue of the angular momentum projection on the body-fixed z-
axis, for whichK ≤ L is valid, as one can see from the algorithm of the SU(3)⊃SO(3)
reduction [6]. (Remember at this point, that the quadrupole operator used in Refs.
[111, 112, 154] is 2

√
2 times the quadrupole operator used in the present work.) For

states with λ ≫ L (and therefore also λ ≫ K) and λ ≫ µ, one then obtains [111]

q0 =
λ√
2
, (82)

while q2 becomes negligible. Since the ground-state band belongs to the (2N, 0)
irrep of SU(3), while other low-lying bands belong to irreps (2N − 4i − 6j, 2i),
i = 0, 1, 2, . . ., j = 0, 1, 2, . . ., with relatively low i, j, the contraction occurs in
the large-N limit. Thus, in the case of interest, the intrinsic quadrupole moment
becomes

q0 = N
√
2. (83)

An equivalent statement is that one can approximately replace the operator Q̂
(2)
SU(3)

by the scalar λ/
√
2, as one can see from Eq. (76) and (77), since the terms containing

L̂ and µ are negligible in this limit, having as a consequence that only the first term
in the rhs of these equations survives.

It should be noticed that the above results have been obtained in irreps with
λ ≫ L and thus, they regard the low-lying part of the spectrum.
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In the SU(3), the irreps are built out of the (2,0) irrep, while in the case of SU(3)
the irreps are built out of the (0,2) irrep [6]. As a result, in the SU(3) framework
one is interested in states with large values of C2(λ, µ) and λ < µ, in which the
intrinsic quadrupole moments become [111, 112]

q0 = − 1

2
√
2
(2λ+ µ+ 3), q2 = −1

4

√

3(µ−K)(µ+K + 2), (84)

For states with µ ≫ L and µ ≫ λ, one then obtains

q0 = − µ√
2
, (85)

while q2 becomes negligible. Since the ground-state band belongs to the (0, 2N)
irrep of SU(3), while other low-lying bands belong to irreps (2i, 2N − 4i − 6j),
i = 0, 1, 2, . . ., j = 0, 1, 2, . . . with relatively low i, j, the contraction does occur in
the large-N limit, the intrinsic quadrupole moment becoming

q0 = −N
√
2. (86)

Since SU(3) is associated with prolate shapes, while SU(3) is related to oblate shapes,
the signs in Eqs. (83) and (86) are consistent with the fact that intrinsic quadrupole
moments are known to be positive for prolate nuclei and negative for oblate nuclei
[14].
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Appendix G

The O(6)→ [R5]SO(5) contraction

A similar procedure to that of appendix F is followed in the contraction of O(6)
to [R5]SO(5) [113, 114]. This is a procedure in which the full O(6) algebra, consisting
of 15 noncommuting generators, is reduced into an SO(5) algebra (consisting of 10
noncommuting generators), accompanied by 5 mutually commuting operators (the
quadrupole operators). The resulting algebraic structure is known [114] to be the
algebra of the γ-unstable rotator.

The commutation relation for the quadrupole operators reads

[Q̂
(2)
O(6),ξ, Q̂

(2)
O(6),ν ] = 2

∑

k=1,3

(2ξ2ν|kξ + ν)(d†d̃)
(k)
ξ+ν . (87)

The second order Casimir operator is [6]

Ĉ2[O(6)] = 2Q̂
(2)
O(6) · Q̂

(2)
O(6) + 4

∑

k=1,3

(d†d̃)(k) · (d†d̃)(k). (88)

Its eigenvalues are
C2(σ) = 2σ(σ + 4), (89)

where σ is the quantum number characterizing the irreps of O(6).
If we consider O(6) irreps with large σ, we can rescale the quadrupole operator

as

q̂
(2)
O(6),ξ =

Q̂
(2)
O(6)),ξ

√

C2(σ)
. (90)

Then the commutation relation for the quadrupole operators becomes

[q̂
(2)
O(6),ξ, q̂

(2)
O(6),ν ] = 2

∑

k=1,3

(2ξ2ν|kξ + ν)
(d†d̃)

(k)
ξ+ν

C2[σ]
. (91)

Then, in the limit of large σ (and small τ , where τ is the quantum number charac-
terizing the irreps of O(5) ) [114] one gets

[q̂
(2)
O(6),ξ, q̂

(2)
O(6),ν ] = 0. (92)
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This procedure is called the contraction of O(6) to [R5]SO(5), where [R5]SO(5) is
the algebra of the γ-unstable rotator, generated by the operators of SO(5) and the

five commuting operators q
(2)
O(6),ξ, ξ = −2,−1, 0, 1, 2, which are the coordinates [114].

An immediate consequence of Eqs. (88) and (89) is that, in the contraction limit,
terms proportional to (d†d̃)(k) can be ignored.

The most leading O(6) irrep, to which the ground state band belongs, is (N).
Thus, in the large-boson number limit, it is appropriate to use this contraction. The
intrinsic quadrupole moment will then be

q′0 = σ, (93)

as can be seen from Eqs. (88) and (89). Thus, in the case of interest, the intrinsic
quadrupole moment becomes

q′0 = N. (94)

It should be noticed that the above results have been obtained in irreps with σ >> τ ,
and thus they regard the low lying part of the spectrum (since L ≤ 2τ , as seen from
the algorithm of the SO(5)⊃SO(3) reduction [6]).



Appendix H

An alternative basis

The Nilsson vectors used in Eq. (5.7) can easily be expressed in terms of the
total angular momentum j

|NlΛΣ〉 =
∑

j

(lΛ
1

2
Σ|jΩ)|NljΩ〉, (95)

where a Clebsch–Gordan coefficient appears in the rhs.
Then the expansion of Eq. (5.7) can be written as

χNΩ =
∑

lj

[

ΣΛa
Ω
lΛ(lΛ

1

2
Σ|jΩ)

]

|NljΩ〉. (96)

Actually the sum over l can be omitted. This can be seen as follows. The wave
function χNΩ is assumed to have a definite parity. As seen from Eq. (5.9), the
parity of the vectors in the rhs of Eq. (5.7) is dictated by the spherical harmonic.
As a consequence, only even or only odd values of l can occur in the expansion.
Since j = l ± 1

2
, we see that j and the parity of χNΩ fix which of the two possible

values of l will contribute.
The expansion of Eq. (95) can be easily inverted

|NljΩ〉 =
∑

Σ

(lΛ
1

2
Σ|jΩ)|NlΛΣ〉, (97)

where there is no summation over Λ since Ω = Λ + Σ.
An example is provided of how one goes from one basis to the other. In the

Nilsson code used, results are found in the |NljΩ〉 basis, for deformation ǫ2 = 0.22 .
The expansion obtained for the 1

2
[550] level is

∣

∣

∣

∣

1

2
[550]

〉

= −0.0132
∣

∣

∣

∣

51
1

2

1

2

〉

+ 0.0692
∣

∣

∣

∣

51
3

2

1

2

〉

− 0.0179
∣

∣

∣

∣

53
5

2

1

2

〉

+0.2966
∣

∣

∣

∣

53
7

2

1

2

〉

− 0.0258
∣

∣

∣

∣

55
9

2

1

2

〉

+ 0.9519
∣

∣

∣

∣

55
11

2

1

2

〉

. (98)

99



100 APPENDIX H

The orbital
∣

∣

∣

1
2
[550]

〉

has odd parity. Therefore, only odd values of l will appear

in the rhs. For example, in the term with j = 5/2, the possible l values are l = 2,
3, since s = 1/2. Out of these, only l = 3 is eligible. Thus the relevant vector reads
∣

∣

∣535
2
1
2

〉

.

On the other hand, in the original Nilsson paper [1] the same orbital 1
2
[550] is

expanded in terms of |NlΛΣ〉 vector as
∣

∣

∣

∣

1

2
[550]

〉

η=4
= 1.000

∣

∣

∣

∣

550
1

2

〉

+ 0.479
∣

∣

∣

∣

530
1

2

〉

+ 0.183
∣

∣

∣

∣

510
1

2

〉

+0.843
∣

∣

∣

∣

551− 1

2

〉

+ 0.343
∣

∣

∣

∣

531− 1

2

〉

+ 0.071
∣

∣

∣

∣

511− 1

2

〉

. (99)

The numerical coefficients correspond to η = 4. For η = 2 the expansion reads

∣

∣

∣

∣

1

2
[550]

〉

η=2
= 1.000

∣

∣

∣

∣

550
1

2

〉

+ 0.237
∣

∣

∣

∣

530
1

2

〉

+ 0.046
∣

∣

∣

∣

510
1

2

〉

+0.888
∣

∣

∣

∣

551− 1

2

〉

+ 0.192
∣

∣

∣

∣

531− 1

2

〉

+ 0.024
∣

∣

∣

∣

511− 1

2

〉

. (100)

In order to compare the two results, and in order to be able to use the configu-
ration space wave functions described in Section 2, we have to expand the vectors
appearing in Eq. (98) in terms of the vectors appearing in Eqs. (99) and (100). For
example, one has

∣

∣

∣

∣

55
11

2

1

2

〉

= (50
1

2

1

2
|11
2

1

2
)
∣

∣

∣

∣

550
1

2

〉

+ (51
1

2
− 1

2
|11
2

1

2
)
∣

∣

∣

∣

551− 1

2

〉

. (101)

The reasoning behind writing this equation is the following. From the lhs we know
that N = 5, j = 11/2, Ω = 1/2. Since the parity has to be odd, from the possible
values of l = 5, 6, only l = 5 is allowed. Then in the rhs the summation is limited only
over Σ. Since Ω = Λ + Σ and Ω = 1/2, we have only two terms: (Λ = 0,Σ = 1/2)
and (Λ = 1,Σ = −1/2).

In the same way one finds

∣

∣

∣

∣

55
9

2

1

2

〉

= (50
1

2

1

2
|9
2

1

2
)
∣

∣

∣

∣

550
1

2

〉

+ (51
1

2
− 1

2
|9
2

1

2
)
∣

∣

∣

∣

551− 1

2

〉

, (102)

∣

∣

∣

∣

53
7

2

1

2

〉

= (30
1

2

1

2
|7
2

1

2
)
∣

∣

∣

∣

530
1

2

〉

+ (31
1

2
− 1

2
|7
2

1

2
)
∣

∣

∣

∣

531− 1

2

〉

, (103)

∣

∣

∣

∣

53
5

2

1

2

〉

= (30
1

2

1

2
|5
2

1

2
)
∣

∣

∣

∣

530
1

2

〉

+ (31
1

2
− 1

2
|5
2

1

2
)
∣

∣

∣

∣

531− 1

2

〉

, (104)

∣

∣

∣

∣

51
3

2

1

2

〉

= (10
1

2

1

2
|3
2

1

2
)
∣

∣

∣

∣

510
1

2

〉

+ (11
1

2
− 1

2
|3
2

1

2
)
∣

∣

∣

∣

511− 1

2

〉

, (105)
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∣

∣

∣

∣

51
1

2

1

2

〉

= (10
1

2

1

2
|1
2

1

2
)
∣

∣

∣

∣

510
1

2

〉

+ (11
1

2
− 1

2
|1
2

1

2
)
∣

∣

∣

∣

511− 1

2

〉

. (106)

Then one finds
∣

∣

∣

∣

55
11

2

1

2

〉

= 0.7385
∣

∣

∣

∣

550
1

2

〉

+ 0.6742
∣

∣

∣

∣

551− 1

2

〉

, (107)

∣

∣

∣

∣

55
9

2

1

2

〉

= −0.6742
∣

∣

∣

∣

550
1

2

〉

+ 0.7385
∣

∣

∣

∣

551− 1

2

〉

, (108)

∣

∣

∣

∣

53
7

2

1

2

〉

= 0.7559
∣

∣

∣

∣

530
1

2

〉

+ 0.6547
∣

∣

∣

∣

531− 1

2

〉

, (109)

∣

∣

∣

∣

53
5

2

1

2

〉

= −0.6547
∣

∣

∣

∣

530
1

2

〉

+ 0.7559
∣

∣

∣

∣

531− 1

2

〉

, (110)

∣

∣

∣

∣

51
3

2

1

2

〉

= 0.8165
∣

∣

∣

∣

510
1

2

〉

+ 0.5774
∣

∣

∣

∣

511− 1

2

〉

, (111)

∣

∣

∣

∣

51
1

2

1

2

〉

= −0.5774
∣

∣

∣

∣

510
1

2

〉

+ 0.8165
∣

∣

∣

∣

511− 1

2

〉

. (112)

Substituting these results in Eq. (98) we get

∣

∣

∣

∣

1

2
[550]

〉

= 0.7204
∣

∣

∣

∣

550
1

2

〉

+ 0.2359
∣
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∣

∣
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1

2

〉

+ 0.0641
∣

∣

∣

∣

510
1

2

〉

+0.6227
∣

∣

∣

∣

551− 1

2

〉

+ 0.1806
∣

∣

∣

∣

531− 1

2

〉

+ 0.0292
∣

∣

∣

∣

511− 1

2

〉

. (113)

The vector of Eq. (113) is normalized to 1, while the vectors of Eq. (99), (100)
are not (they are normalized to the coefficient of the first vector in the expansion
instead). In order to facilitate comparisons, we normalize (113) in the same way (by
dividing all coefficients by 0.7204), obtaining

∣

∣

∣

∣

1

2
[550]

〉

= 1.000
∣

∣

∣

∣

550
1

2

〉

+ 0.327
∣

∣

∣

∣

530
1

2

〉

+ 0.089
∣

∣

∣

∣

510
1

2

〉

+0.864
∣

∣

∣

∣

551− 1

2

〉

+ 0.251
∣

∣

∣

∣

531− 1

2

〉

+ 0.040
∣

∣

∣

∣

511− 1

2

〉

. (114)
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