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Abstract. Precise theoretical predictions are necessary for revealing the
nature of elementary particle interactions at the highest energies avail-
able at the LHC and the future collider FCC. I will review the scattering
amplitudes computation starting with the leading-order (LO) and the
next-to-leading-order (NLO) approximations. The recent progress at the
two-loop frontier will be discussed along with next-to-next-to-leading-
order (NNLO) results for 2→ 3 processes.
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1 Introduction

During the last decade, we have witnessed three of the most significant discover-
ies of all time in the field of fundamental interactions, which can be summarised
in the detection of the Higgs particle [1, 2] at the LHC, the detection of the
gravitational waves (GW) [3] and the event-horizon-scale image of the super-
massive black hole (BH) candidate M87* [4]. These discoveries have been made
possible due to very sophisticated and technically advanced facilities such as
the LHC accelerator, the ATLAS and CMS detectors, the Laser Interferometer
Gravitational-Wave detectors, and the Event Horizon Telescope. On the other
hand, these discoveries would have been impossible without the use of very ad-
vanced calculations and simulations regarding scattering processes in the case
of Higgs particle, the description of merging BH in the case of GW detection,
and the accretion process in the case of BH imaging, exploiting our best possible
understanding of quantum field theory, especially QCD, general relativity (GR)
and BH physics. It is fair to acknowledge that we are now better positioned to
improve our understanding of fundamental interactions, including electroweak,
strong, and gravitational interactions.

In this presentation, I will focus on the precise theoretical predictions neces-
sary to describe scattering processes at high-energy colliders.
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2 LO

Leading-order calculations refer to tree-order Feynman graphs. In the 80’s the
CALKUL collaboration [5] initiated a systematic approach to multi-particle pro-
cesses. With the introduction of spinor techniques [6] for helicity amplitude cal-
culations, analytic as well as numerical computation has been significantly ad-
vanced. MadGraph was one of the first attempts to automatise within a computer
programme the calculation of tree-order scattering amplitudes [7].

Nevertheless, calculations based on Feynman graphs suffered from the n!
growth of the number of individual graphs as a function of the number of parti-
cles, n, involved in the process. The first attempt to go beyond Feynman graphs
was the work of Berends and Giele [8]. By setting up a recursive equation they
were able to prove the surprisingly compact result of Parke and Taylor for n-
gluon amplitude [9]. Later on, the recursive equations have been extended to
deal with any quantum field theory [10–12]. The so-called Dyson-Schwinger re-
cursive equations refer to an arbitrary 1 → (n − 1) process and to all orders in
perturbation theory [13, 14], as shown below.
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The Dyson-Schwinger recursion

• Imagine a theory with 3- and 4- point vertices and just one field.

Then it is straightforward to write an equation that gives the

amplitude for 1 → n

= + +

+ + +

The first line refers to tree-order calculation (no loop involved), and it has
been implemented in a numerical code, HELAC [12, 15]. HELAC is the first com-
putational programme able to compute arbitrary n−particle scattering at LO.
Nowadays the use of recursive equations to deal with tree-order amplitudes has
become the standard procedure [16–18].

In the tables below one can see the gain in complexity achieved with the
recursive equations.

gg → ng 2 3 4 5 6 7 8 9

# FG 4 25 220 2,485 34,300 559,405 10,525,900 224,449,225

Table 1. Number of Feynman graphs contributing to n−gluon process at tree order

gg → ng 2 3 4 5 6 7 8 9

# 5 15 35 70 126 210 330 495

Table 2. Number of Berends-Giele currents needed to calculate n−gluon colour-
stripped amplitude at tree order



Higher-order corrections at the LHC 3

3 NLO

At the NLO, calculations become not only more complex but more insightful
from the physics point of view. It is the first time to encounter, the renormali-
sation of the so-call ultraviolet (UV) divergencies [19] and the application of the
factorisation of long- and short-distance physics [20].

Schematically for a process at the parton level, the NLO cross section is given
by

σNLO =

∫
m

dΦD=4
m (|M (0)

m |2 + 2Re(M (0)∗
m M (CT )

m (εUV )))Jm(Φ) ← LO

+

∫
m

dΦD=4
m 2Re(M (0)∗

m M (1)
m (εUV , εIR))Jm(Φ) ← V irtual

+

∫
m+1

dΦD=4−2εIR
m+1 |M (0)

m+1|2Jm+1(Φ) ← Real

Jm(Φ) is the jet function satisfying Jm+1 → Jm, guaranteeing infrared safe-
ness. IR and UV refer to the infrared and ultraviolet divergencies respectively.
UV divergencies are cancelled by the Lagrangian counter-terms (CT) introduc-
ing the scale dependence on the renormalisation scale µR. IR divergencies are
cancelled by collinear counter-terms that are absorbed in the parton distribution
functions introducing the QCD factorization scale µF .

The general form of the one-loop amplitude can be written as follows:

A =
∑

I⊂{0,1,··· ,m−1}

∫
µ(4−d)ddq

(2π)d
N̄I(q̄)∏
i∈I D̄i(q̄)

where D̄i(q̄) represent inverse Feynman propagators and N̄I(q̄) is the numerator
function, with all momenta in d−dimensions.

The amplitude can be written in terms of known Feynman Integrals [21]
using either tensor-reduction [22] or unitarity methods [23].

A =
∑
di1i2i3i4 +

∑
ci1i2i3 +

∑
bi1i2 +

∑
ai1 + R

where R denotes collectively the so-called rational terms.

In contrast with the above-mentioned methods that work at the integral level,
OPP [24] for the first time introduced the reduction at the integrand level, as
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shown in the following decomposition

N(q) =

m−1∑
i0<i1<i2<i3

[
d(i0i1i2i3) + d̃(q; i0i1i2i3)

] m−1∏
i 6=i0,i1,i2,i3

Di

+

m−1∑
i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]

m−1∏
i 6=i0,i1,i2

Di

+

m−1∑
i0<i1

[
b(i0i1) + b̃(q; i0i1)

] m−1∏
i6=i0,i1

Di

+

m−1∑
i0

[a(i0) + ã(q; i0)]

m−1∏
i 6=i0

Di

by introducing the so-called spurious terms, d̃, c̃, b̃, ã, that vanish upon integra-
tion. OPP has been implemented in CutTools [25]. On the other hand, using
Dyson-Schwinger equations applied to every one-loop topology, HELAC-1LOOP [26],
based on the OPP method, was the first computational framework to numerically
evaluate the one-loop amplitude for an arbitrary scattering process. Combined
with the HELAC-DIPOLES [27] that addresses the one-parton unresolved contribu-
tion (so-called real corrections) to the NLO cross-section, the HELAC-NLO [28] was
the first computational framework to numerically evaluate NLO cross sections
for an arbitrary scattering process. It is fair to say that the so-called NLO-
revolution [29] provided the necessary tools [30–33, 18] for the physics analysis
at the LHC. It is worthwhile to mention that calculations with eight particles
attached to the loop have been recently completed [34], based on HELAC-NLO.

4 NNLO

NNLO corrections for 2→ 3 processes is the current frontier to provide precise
theoretical calculations to the LHC experiments [35]. The NNLO cross section
at the parton level can be written as follows:

σNNLO = σNLO

+

∫
m

dΦm

(
2Re(M (0)∗

m M (2)
m ) +

∣∣∣M (1)
m

∣∣∣2) Jm(Φ) V V

+

∫
m+1

dΦm+1

(
2Re

(
M

(0)∗
m+1M

(1)
m+1

))
Jm+1(Φ) RV

+

∫
m+2

dΦm+2

∣∣∣M (0)
m+2

∣∣∣2 Jm+2(Φ) RR

The V V (virtual-virtual) part includes the two-loop amplitude M
(2)
m . RV +RR

terms (real-virtual and real-real), address the one-loop one-particle-unresolved
and the tree-order two-particle-unresolved contributions, respectively. A plethora
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of methods and computer programmes have been developed to deal with RV +
RR terms, including antenna-S [36, 37], colorfull-NNLO [38], sector-improved
residue subtraction [39], nested soft-collinear [40], local analytic sector

subtraction [41], projection to born [42], qT -subtraction [43] and N-jetiness [44].
Besides non-trivial performance issues regarding the immense computer re-

sources necessary for the numerical evaluation of RV +RR terms [45], it is fair
to say that the main bottleneck for NNLO calculations is the computation of
two-loop amplitudes (V V terms). In fact, due to the advancement of two-loop
amplitude and FI computations over the last few years, NNLO QCD calculations
for a few 2 → 3 processes have been completed, including pp → γγγ + X [46,
47], pp → 3 jets + X [48, 49] and pp → Wbb̄ + X [50], with the last one being
the only NNLO calculation with one external massive leg.

In contrast to the one-loop case, the computation of the two-loop amplitude
necessitates Feynman Integrals which are not known analytically yet whereas the
automation of the integral-level amplitude reduction is limited for the moment
to 2→ 2 and 2→ 3 processes with gluons and quarks [51].

4.1 Two-loop Feynman Integrals

Beyond one loop, integration-by-part-identities (IBPI) [52, 53] are indispensable
for the calculation of Feynman Integrals. Multi-loop FI can be defined as

F [a1, . . . , aN ] = CL

∫
1

Da1
1 . . . DaN

N

L∏
i=1

[
ddki

]
with ai being zero, positive or negative integers and CL a proper normalisation.
In writing the above equation we assume that the family of FIs depend on m
independent external momenta and therefore the number of independent scalar
products between external and loop-momenta is given by N = L(L+1)/2+Lm.

Inverse propagators, D1 . . . DN , Di = ({k1, k2}+ pi)
2 −M2

i form a basis that
allows to express all N scalar products.

IBP identities express the fact that the total derivative of a regulated FI
vanishes, which in the case of two loops can be written as,∫

ddkddl
∂

∂ {kµ, lµ}

( {kµ, lµ, υµ}
Da1

1 . . . DaN
N

)
= 0

IBPI equations reduce all FI to a finite subset of Master Integrals (MI), G,

F [a1, . . . , aN ] =
∑
i

Ri ({p} , d)Gi [a′1, . . . , a
′
N ]

where Ri ({p} , d) are rational coefficients of the kinematical invariants formed by
the external momenta and the dimension d. Now the problem has been reduced
in calculating a finite set of MI.

MI can be evaluated by Feynman parameters using the sector decomposition
method [54–56], or Mellin-Barnes [57] representation. Nevertheless, the Differ-
ential Equations (DE) method [58] proved the most efficient one in obtaining
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analytic or semi-analytic results for multi-loop FI. Since the MI is a function of
external momenta, one can set up differential equations by differentiating and
using IBPI to bring FI to MI.

pµj
∂

∂pµi
G[a1, . . . , an]→

∑
Cb1,...,bnF [b1, . . . , bn]→

∑
Ca′1,...,a′nG[a′1, . . . , a

′
n]

By using a proper basis of MI, one can bring the system of equations in a
so-called canonical form [59],

∂mf (ε, {xi}) = εAm ({xi}) f (ε, {xi})
∂mAn − ∂nAm = 0 [Am, An] = 0

This allows to express the result in terms of iterated integrals [60] and in many
cases of interest in terms of a particular class of functions, the Goncharov Poly-
logarithms [61]

G (an, . . . , a1;x) =

x∫
0

dt
1

t− an
G (an−1, . . . , a1, t)

Boundary conditions for the system of DE can be obtained either by the
expansion by regions method [62] or regularity conditions.

Fully numerical approaches to solve the system of DE have also been devel-
oped [63, 64] over the last few years.

Five-point two-loop integrals with one off-shell leg are the current frontier.
In Figs (1) and (2), the top-sector representative integral is presented.

Fig. 1. The three planar pentaboxes of the families P1 (left), P2 (middle) and P3 (right)
with one external massive leg.

The P1 family has been computed analytically in terms of GP already in
2015 [65]. The full set of planar families has been computed analytically [66]
and numerically [67] based on generalised power series expansion [68], in 2020.
The non-planar family N1 has been computed in terms of GP whereas N2, N3 in
terms of GP including one-dimensional integral representations [69]. N1, N2, N3

have also been computed numerically [70] based on generalised power series
expansion.

In 2014, I introduced the so-called Simplified Differential Equations approach
(SDE) [71]. Based on SDE we have been able to compute all MI up to five-point
two-loop integrals with one off-shell leg. To describe briefly the SDE approach, let
us denote by g the set of MI, Wa the so-called letters in the canonical form which
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Fig. 2. The five non-planar families with one external massive leg. In the upper line the
hexabox families N1, N2, N3 are shown. In the lower line the double-pentagon families
N4, N5 are shown.

are functions of the external momenta and M̃a the matrices whose elements are
rational numbers.

dg = ε
∑
a

d log (Wa) M̃ag

The canonical DE above is still a multi-variate equation with the Wa functions
being algebraic functions of the kinematical invariants in general, and as such it
is not straightforward to express the result in terms of GPs.

The SDE approach provides a factorisation of the canonical form, in terms of
a univariate DE that is straightforwardly solvable in terms of GPs, in most cases.
More specifically it accounts for the parametrisation of the external momenta,
so that n momenta, with at least one of them being off-shell, are mapped to n
momenta with one less off-shell momentum plus the x variable. For instance in
the P1 planar family with q2i = 0 for i = 1, 2, 4, 5 and q23 6= 0,

xp1

xp2

−p1234

p123 − xp12

p4

the mapping {q1, q2, q3, q4, q5} → {p1, p2, p3, p4, p5, x} defined by (all p2i = 0)

q1 → xp1, q2 → xp2, q3 → p1 + p2 + p3 − x(p1 + p2), q4 → p4, q5 → p5

explicitly separates or factorises the dependence on x. In fact, by expressing the
initial invariants qi · qj in terms of the new invariants pi · pj and the variable x,
and then differentiating with respect to x the DE takes the form

dg

dx
= ε

∑
b

1

x− `b
Mbg
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where `b depends on the new invariants pi · pj , but are independent of x and
Mb are just matrices of rational numbers. The fact that the DE has now simple
poles in the variable x allows for a straightforward expression of its solution in
terms of GP

g = ε0b
(0)
0 + ε

(∑
GaMab

(0)
0 + b

(1)
0

)
+ ε2

(∑
GabMaMbb

(0)
0 +

∑
GaMab

(1)
0 + b

(2)
0

)
+ ε3

(∑
GabcMaMbMcb

(0)
0 +

∑
GabMaMbb

(1)
0 +

∑
GaMab

(2)
0 + b

(3)
0

)
+ ε4

(∑
GabcdMaMbMcMdb

(0)
0 +

∑
GabcMaMbMcb

(1)
0

+
∑
GabMaMbb

(2)
0 +

∑
GaMab

(3)
0 + b

(4)
0

)
+ ...

Gab... := G(`a, `b, . . . ;x)

where b
(i)
0 are the boundary constants1.

4.2 Two-loop Amplitude Reduction

A generic two-loop amplitude can be decomposed following an OPP-type ap-
proach

N (l1, l2; {pi})
D1D2 . . . Dn

=

min(n,np)∑
m=1

∑
Sm;n

∆i1i2...im (l1, l2; {pi})
Di1Di2 . . . Dim

(1)

where Sm;n denotes the subsets of m out of n elements, and np = 8 or np = 11
depending if the reduction is performed in 4 or in d dimensions. The residues
∆i1i2...im (l1, l2; {pi}) are composed by terms corresponding to irreducible inte-
grals and spurious terms that vanish upon integration. As usual, the determina-
tion of the residue terms proceeds through the cut equations Di1 = Di2 = . . . =
Dim = 0. Irreducible integrals are expressed in terms of MI through IBPI.

The left-hand side of Eq.(1) is evaluated by HELAC-2LOOP. This is achieved by
expressing the n−particle 2−loop amplitude in terms on (n+ 2)−particle 1-loop
amplitude and then follow an appropriately adapted HELAC-1LOOP construction.
As in the one-loop case, a skeleton is constructed that includes all numerators
for a given process. For details please refer to [72].

In the table below we present the first results on the construction of the skele-
ton for several processes, in both leading-colour and full-colour approximations.

1 See references [66, 69] for details
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Process # Loop-Flavors Color Size Time Num/s

gg → gg 2 {g, c, c̄} Lead. 8.9 MB 15.017s 4560

gg → gg 2 {g, q, q̄, c, c̄} Full 110.6 MB 6m 54.574s 89392

gg → qq̄ 2 {g, q, q̄, c, c̄} Full 16.1 MB 3m 14.509s 13856

gg → ggg 2 {g, c, c̄} Lead. 300.0 MB 21m 42.609s 81480

Table 3. Skeleton data for several processes (Process), including the flavour of the
particles encountered in the loop (Loop-Flavors), the treatment of the colour (Color),
the disk size of the skeleton (Size), the time for its creation (on a single laptop) (Time)
and the number of numerators computed (Num/s).

5 Summary & Outlook

In the last few years, significant progress on the two-loop frontier has been
achieved. In this presentation, I have reviewed most of the major accomplish-
ments of this progress. For two-loop MI the current frontier is five-point two-loop
integral families with up to one massive leg. Based on their analytic represen-
tation numerical tools have been developed [73–75]. With the completion of the
HELAC-2LOOP framework, we expect that the numerical evaluation of two-loop
amplitudes with up to five external particles and with up to one external off-shell
momentum will be available. The successful application of the SDE approach to
MI families with internal masses [76, 77] paves the road for new results, signifi-
cantly widening the range of two-loop amplitudes to be computed. Based on all
these developments, NNLO QCD results are expected to be copiously produced
in the near future.
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