RECENT PROGRESS IN MULTI-LOOP \& MULTI-SCALE INTEGRALS

Costas G. Papadopoulos

INPP, NCSR "Demokritos", 15310 Athens, Greece

HOCTools-II

Gearing Up for High-precision LHC Physics, August 23, 2022

Towards higher precision: NNLO and beyond

NNLO R'Evolution

\rightarrow Gavin Salam \rightarrow click to link

The two-loop $2 \rightarrow 2$ frontier

2-LOOP CALCULATIONS - INTERNAL MASSES

- Jet production
\rightarrow M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, "Single-jet inclusive rates with exact color at $\mathcal{O}\left(\alpha_{s}^{4}\right)$," JHEP 10 (2019), 262 \rightarrow X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss and J. Mo, "NNLO QCD corrections in full colour for jet production observables at the LHC," [arXiv:2204.10173 [hep-ph]].
- $t \bar{t}$ production
- $p p \rightarrow H+$ jet
- e and μ scattering
- HH, ZZ, ZH production
- Drell-Yan

2-LOOP CALCULATIONS - INTERNAL MASSES

- Jet production
\rightarrow M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, "Single-jet inclusive rates with exact color at \mathcal{O} (α_{s}^{4})," JHEP 10 (2019), 262
\rightarrow X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss and J. Mo, "NNLO QCD corrections in full colour for jet production observables at the LHC," [arXiv:2204.10173 [hep-ph]].
- $t \bar{t}$ production
\rightarrow R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maitre and C. Studerus, "Two-Loop Fermionic Corrections to Heavy-Quark Pair Production: The Quark-Antiquark Channel," JHEP 07 (2008), 129
\rightarrow M. Czakon, "Tops from Light Quarks: Full Mass Dependence at Two-Loops in QCD," Phys. Lett. B 664 (2008), 307-314
\rightarrow R. Bonciani, A. Ferroglia, T. Gehrmann, A. von Manteuffel and C. Studerus, "Two-Loop Leading Color Corrections to Heavy-Quark Pair Production in the Gluon Fusion Channel," JHEP 01 (2011), 102
\rightarrow R. Bonciani, A. Ferroglia, T. Gehrmann, A. von Manteuffel and C. Studerus, "Light-quark two-loop corrections to heavy-quark pair production in the gluon fusion channel," JHEP 12 (2013), 038
\rightarrow S. Di Vita, T. Gehrmann, S. Laporta, P. Mastrolia, A. Primo and U. Schubert, "Master integrals for the NNLO virtual corrections to $q \bar{q} \rightarrow t \bar{t}$ scattering in QCD: the non-planar graphs," JHEP 06 (2019), 117
\rightarrow L. Adams, E. Chaubey and S. Weinzierl, "Planar Double Box Integral for Top Pair Production with a Closed Top Loop to all orders in the Dimensional Regularization Parameter," Phys. Rev. Lett. 121 (2018) no.14, 142001
\rightarrow S. Badger, E. Chaubey, H. B. Hartanto and R. Marzucca, "Two-loop leading colour QCD helicity amplitudes for top quark pair production in the gluon fusion channel," JHEP 06 (2021), 163
- Elliptic Integrals \rightarrow understood and standardised
- NNLO $t \bar{t}+$ jet, unbreakable partner ... move to N^{3} LO for HL-LHC \& FCC

```
pp}->H+je
```\(e\) and \(\mu\) scatteringHH, ZZ, ZH production
- Drell-Yan

\section*{2-LOOP CALCULATIONS - INTERNAL MASSES}
- Jet production
\(\rightarrow\) M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, "Single-jet inclusive rates with exact color at \(\mathcal{O}\left(\alpha_{s}^{4}\right)\)," JHEP 10 (2019), 262 \(\rightarrow\) X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss and J. Mo, "NNLO QCD corrections in full colour for jet production observables at the LHC," [arXiv:2204.10173 [hep-ph]].
- \(t \bar{t}\) production
- \(p p \rightarrow H+\) jet
\(\rightarrow\) H. Frellesvig, M. Hidding, L. Maestri, F. Moriello and G. Salvatori, "The complete set of two-loop master integrals for Higgs + jet production in QCD," JHEP 06 (2020), 093
\(\rightarrow\) M. Bonetti, E. Panzer, V. A. Smirnov and L. Tancredi, "Two-loop mixed QCD-EW corrections to \(g g \rightarrow H g\)," JHEP 11 (2020), 045 \(\rightarrow\) M. Bonetti, E. Panzer and L. Tancredi, "Two-loop mixed QCD-EW corrections to \(q \bar{q} \rightarrow \mathrm{Hg}\), \(q \mathrm{~g} \rightarrow \mathrm{Hq}\), and \(\bar{q} g \rightarrow H \bar{q}\)," JHEP 06 (2022), 115
- e and \(\mu\) scattering
- \(\mathrm{HH}, \mathrm{ZZ}, \mathrm{ZH}\) production
- Drell-Yan

\section*{2-LOOP CALCULATIONS - INTERNAL MASSES}
- Jet production
\(\rightarrow\) M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, "Single-jet inclusive rates with exact color at \(\mathcal{O}\) (\(\alpha_{s}^{4}\))," JHEP 10 (2019), 262 \(\rightarrow\) X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss and J. Mo, "NNLO QCD corrections in full colour for jet production observables at the LHC," [arXiv:2204.10173 [hep-ph]].
- \(t \bar{t}\) production
- \(p p \rightarrow H+\) jet
- \(e\) and \(\mu\) scattering
\(\rightarrow\) J. M. Henn and V. A. Smirnov, "Analytic results for two-loop master integrals for Bhabha scattering I," JHEP 11 (2013), 041 \(\rightarrow\) S. Di Vita, S. Laporta, P. Mastrolia, A. Primo and U. Schubert, "Master integrals for the NNLO virtual corrections to \(\mu e\) scattering in QED: the non-planar graphs," JHEP 09 (2018), 016
\(\rightarrow\) C. Duhr, V. A. Smirnov and L. Tancredi, "Analytic results for two-loop planar master integrals for Bhabha scattering," JHEP 09 (2021), 120 \(\rightarrow\) R. Bonciani, A. Broggio, S. Di Vita, A. Ferroglia, M. K. Mandal, P. Mastrolia, L. Mattiazzi, A. Primo, J. Ronca and U. Schubert, et al. "Two-Loop Four-Fermion Scattering Amplitude in QED," Phys. Rev. Lett. 128 (2022) no.2, 022002
- HH, ZZ, ZH production
- Drell-Yan

\section*{2-LOOP CALCULATIONS - INTERNAL MASSES}
- Jet production
\(\rightarrow\) M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, "Single-jet inclusive rates with exact color at \(\mathcal{O}\left(\alpha_{s}^{4}\right)\)," JHEP 10 (2019), 262 \(\rightarrow\) X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss and J. Mo, "NNLO QCD corrections in full colour for jet production observables at the LHC," [arXiv:2204.10173 [hep-ph]].
- \(t \bar{t}\) production
- \(p p \rightarrow H+\mathrm{jet}\)
- \(e\) and \(\mu\) scattering
- \(H H, Z Z, Z H\) production
\(\rightarrow\) M. Grazzini, G. Heinrich, S. Jones, S. Kallweit, M. Kerner, J. M. Lindert and J. Mazzitelli, "Higgs boson pair production at NNLO with top quark mass effects," JHEP 05 (2018), 059
\(\rightarrow\) L. Chen, G. Heinrich, S. P. Jones, M. Kerner, J. Klappert and J. Schlenk, "ZH production in gluon fusion: two-loop amplitudes with full top quark mass dependence," JHEP 03 (2021), 125
\(\rightarrow\) J. Davies, PoS EPS-HEP2021 (2022), 606 doi:10.22323/1.398.0606
- Drell-Yan

\section*{2-LOOP CALCULATIONS - INTERNAL MASSES}
- Jet production
\(\rightarrow\) M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, "Single-jet inclusive rates with exact color at \(\mathcal{O}\left(\alpha_{s}^{4}\right)\)," JHEP 10 (2019), 262 \(\rightarrow\) X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss and J. Mo, "NNLO QCD corrections in full colour for jet production observables at the LHC," [arXiv:2204.10173 [hep-ph]].
- \(t \bar{t}\) production
- \(p p \rightarrow H+\) jet
- \(e\) and \(\mu\) scattering
- \(H H, Z Z, Z H\) production
- Drell-Yan
\(\rightarrow\) R. Bonciani, S. Di Vita, P. Mastrolia and U. Schubert, "Two-Loop Master Integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering," JHEP 09 (2016), 091
\(\rightarrow\) M. Heller, A. von Manteuffel and R. M. Schabinger, "Multiple polylogarithms with algebraic arguments and the two-loop EW-QCD Drell-Yan master integrals," Phys. Rev. D 102 (2020) no.1, 016025
\(\rightarrow\) T. Armadillo, R. Bonciani, S. Devoto, N. Rana and A. Vicini, "Two-loop mixed QCD-EW corrections to neutral current Drell-Yan," JHEP 05 (2022), 072 Use of complex masses
- ...

\section*{The two-loop \(2 \rightarrow 3\) frontier}

\section*{5-POINT 2-LOOP - MASSLESS: ALL FAMILIES}
\(\rightarrow\) T. Gehrmann, J. M. Henn and N. A. Lo Presti, Phys. Rev. Lett. 116 (2016) no.6, 062001 [erratum: Phys. Rev. Lett. 116 (2016) no.18, 189903] [arXiv:1511.05409 [hep-ph]].
\(\rightarrow\) C. G. Papadopoulos, D. Tommasini and C. Wever, JHEP 04 (2016), 078 [arXiv:1511.09404 [hep-ph]].
\(\rightarrow\) D. Chicherin, T. Gehrmann, J. M. Henn, P. Wasser, Y. Zhang and S. Zoia, Phys. Rev. Lett. 123 (2019) no.4, 041603
\(\rightarrow\) D. Chicherin and V. Sotnikov, JHEP 20 (2020), 167
\(\rightarrow\) S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, M. Kraus, B. Page, E. Pascual, M. S. Ruf and V. Sotnikov, "Caravel: A C++ framework for the computation of multi-loop amplitudes with numerical unitarity," Comput. Phys. Commun. 267 (2021), 108069

(a)
penta-box

(b)
hexa-box

(c)
double-pentagon

FIG. 1: Integral topologies for massless five-particle scattering at two loops.
\(\rightarrow\) J. Henn, T. Peraro, Y. Xu and Y. Zhang, "A first look at the function space for planar two-loop six-particle Feynman integrals," JHEP 03 (2022), 056

\section*{5-POINT 2-LOOP - ONE LEG OFF-SHELL: ALL FAMILIES}
\(\rightarrow\) C. G. Papadopoulos, D. Tommasini and C. Wever, JHEP 04 (2016), 078 [arXiv:1511.09404 [hep-ph]].
\(\rightarrow\) C. G. Papadopoulos and C. Wever, JHEP 2002 (2020) 112
\(\rightarrow\) S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, JHEP 2011 (2020) 117
\(\rightarrow\) D. D. Canko, C. G. Papadopoulos and N. Syrrakos, JHEP 2101 (2021) 199
\(\rightarrow\) S. Abreu, H. Ita, B. Page and W. Tschernow, JHEP 03 (2022), 182 [arXiv:2107.14180 [hep-ph]].
\(\rightarrow\) A. Kardos, C. G. Papadopoulos, A. V. Smirnov, N. Syrrakos and C. Wever, [arXiv:2201.07509 [hep-ph]].

The three planar pentaboxes of the families \(P_{1}\) (left), \(P_{2}\) (middle) and \(P_{3}\) (right) with one external massive leg.

The five non-planar families with one external massive leg.

\section*{NNLO \(2 \rightarrow 3\)}

\section*{NNLO QCD: \(p p \rightarrow \gamma \gamma \gamma+X\)}

Figure 1. Predictions for the fiducial cross-section in LO (green), NLO (blue) and NNLO (red) QCD versus ATLAS data (black). Shown are predictions for six scale choices. The error bars on the theory predictions reflect scale variation only. For two of the scales only the central predictions are shown.

Figure 2. \(p_{T}\) distribution of the hardest photon \(\gamma_{1}\) (left), \(\gamma_{2}\) (center) and the softest one \(\gamma_{3}\) (right). Top plot shows the absolute distribution at NNLO (red), NLO (blue) and LO (green) versus ATLAS data (black). Middle plot shows same distributions but normalized to the NLO. Bottom plot shows central NNLO predictions for 6 different scale choices (only the central scale is shown) with respect to the default choice \(\mu_{0}=H_{T} / 4\). The bands represent the 7 -point scale variations about the corresponding central scales.
\(\rightarrow\) H. A. Chawdhry, M. L. Czakon, A. Mitov and R. Poncelet, JHEP 2002 (2020) 057

\section*{NNLO \(2 \rightarrow 3\)}

\section*{NNLO QCD: \(p p \rightarrow \gamma \gamma \gamma+X\)}
\[
\begin{aligned}
& \text { fiducial setup for } p p \rightarrow \gamma \gamma \gamma+X \text {; used in the ATLAS } 8 \mathrm{TeV} \text { analysis of Ref. [37] } \\
& \hline p_{T, \gamma_{2}} \geq 27 \mathrm{GeV}, \quad p_{T, \gamma_{2}} \geq 22 \mathrm{GeV}, \quad p_{T, \gamma_{s}} \geq 15 \mathrm{GeV}, \quad 0 \leq\left|\eta_{\gamma}\right| \leq 1.37 \text { or } 1.56 \leq\left|\eta_{\gamma}\right| \leq 2.37, \\
& \Delta R_{n} \geq 0.45, \quad m_{\gamma \gamma \gamma} \geq 50 \mathrm{GeV}, \quad \text { Frixione isolation with } n=1, \quad \delta_{0}=0.4, \text { and } E_{T}^{\text {ref }}=10 \mathrm{GeV} .
\end{aligned}
\]

Table 1: Definition of phase space cuts.

Figure 4: Fiducial cross sections for \(p p \rightarrow \gamma \gamma \gamma+X\) as a function of the centre-of-mass energy at LO (black dotted), at NLO (red dashed), and at NNLO (blue, solid) The green data point at 8 TeV corresponds to the cross section measured by ATLAS in Ref. [37].
\(\rightarrow\) S. Kallweit, V. Sotnikov and M. Wiesemann, Phys. Lett. B 812 (2021) 136013

\section*{NNLO \(2 \rightarrow 3\)}

\section*{NNLO QCD: \(p p \rightarrow 3\) jets \(+X\)}

FIG. 1: The three panels show the \(i\) th leading jet transverse momentum \(p_{T}\left(j_{i}\right)\) for \(i=1,2,3\) for the production of (at least) three jets. LO (green), NLO (blue) and NNLO (red) are shown for the central scale (solid line). 7-point scale variation is shown as a coloured band. The grey band corresponds to the uncertainty from Monte Carlo integration.
\(\rightarrow\) M. Czakon, A. Mitov and R. Poncelet, Phys. Rev. Lett. 127 (2021) no.15, 152001 [arXiv:2106.05331 [hep-ph]].
\(\rightarrow\) X. Chen, T. Gehrmann, N. Glover, A. Huss and M. Marcoli, [arXiv:2203.13531 [hep-ph]].

\section*{NNLO \(2 \rightarrow 3\)}
\(\rightarrow\) V. Sotnikov, [arXiv:2207.12295 [hep-ph]].
\begin{tabular}{lcccc}
\hline & Comment & \begin{tabular}{c}
Complete \\
analytic \\
results
\end{tabular} & \begin{tabular}{c}
Public \\
numerical \\
code
\end{tabular} & \begin{tabular}{c}
Cross \\
sections
\end{tabular} \\
\hline\(p p \rightarrow j j j\) & 1.c. & {\([9]\)} & {\([9]\)} & {\([1,2]\)} \\
\(p p \rightarrow \gamma \gamma j\) & 1.c. & {\([10,11]\)} & {\([10]\)} & {\([12]\)} \\
\(p p \rightarrow \gamma \gamma \gamma\) & 1.c. & {\([13,14]\)} & {\([13]\)} & {\([15,16]\)} \\
\(p p \rightarrow \gamma \gamma j\) & NLO loop & {\([3]\)} & & \\
\(g g \rightarrow \gamma \gamma g\) & induced & {\([4]\)} & {\([4]\)} & {\([17]\)} \\
\hline\(p p \rightarrow W b \bar{b}\) & 1.c. \(^{\star}\), on-shell \(W\) & {\([18]\)} & & \\
\(p p \rightarrow W(l v) b \bar{b}\) & 1.c. & {\([19,20]\)} & & {\([20]\)} \\
\(p p \rightarrow W(l v) j j\) & l.c. & {\([19]\)} & & \\
\(p p \rightarrow Z(l \bar{l}) j j\) & 1.c. & {\([19]\)} & & \\
\(p p \rightarrow W(l v) \gamma j\) & 1.c. & {\([21]\)} & & \\
\(p p \rightarrow H b \bar{b}\) & 1.c., \(b\)-quark & {\([22]\)} & & \\
\hline
\end{tabular}

Table 1: Known two-loop QCD corrections for five-point scattering processes at hardon colliders. "1.c." refers to the calculations in the leading-color approximation; "1.c. \({ }^{\star}\) " means that in addition non-planar 1.c. contributions are omitted. All public codes employ PentagonFunctions++ \([23,24]\) for numerical evaluation of special functions.

\section*{The three-loop \(2 \rightarrow 2\) frontier}

\section*{3-LOOP CALCULATIONS}

Figure 1. The nine integral families needed to describe all master integrals for three-loop massless four-particle scattering. The external legs are associated with the momenta \(p_{1}, p_{3}, p_{4}\) and \(p_{2}\) in clockwise order starting with the top left comer.
\(\rightarrow\) J. M. Henn, A. V. Smirnov and V. A. Smirnov, JHEP 07 (2013), 128
\(\rightarrow\) J. Henn, B. Mistlberger, V. A. Smirnov and P. Wasser, JHEP 04 (2020), 167

\section*{3-LOOP CALCULATIONS}

Figure 1. The F1 (top), F2 (bottom left) and F3 (bottom right) top-sector diagrams. The double line represents the massive particle and all external momenta are taken to be incoming.
\(\rightarrow\) S. Di Vita, P. Mastrolia, U. Schubert and V. Yundin, JHEP 09 (2014), 148
\(\rightarrow\) D. D. Canko and N. Syrrakos, JHEP 04 (2022), 134

\section*{3-LOOP CALCULATIONS}
\(\rightarrow\) F. Caola, A. Von Manteuffel and L. Tancredi, "Diphoton Amplitudes in Three-Loop Quantum Chromodynamics," Phys. Rev. Lett. 126 (2021) no.11, 112004
\(\rightarrow\) F. Caola, A. Chakraborty, G. Gambuti, A. von Manteuffel and L. Tancredi, "Three-loop helicity amplitudes for four-quark scattering in massless QCD," JHEP 10 (2021), 206
\(\rightarrow\) P. Bargiela, F. Caola, A. von Manteuffel and L. Tancredi, "Three-loop helicity amplitudes for diphoton production in gluon fusion," JHEP 02 (2022), 153
\(\rightarrow\) F. Caola, A. Chakraborty, G. Gambuti, A. von Manteuffel and L. Tancredi, "Three-Loop Gluon Scattering in QCD and the Gluon Regge Trajectory," Phys. Rev. Lett. 128 (2022) no.21, 212001
\(\rightarrow\) F. Caola, A. Chakraborty, G. Gambuti, A. von Manteuffel and L. Tancredi, "Three-loop helicity amplitudes for quark-gluon scattering in QCD," [arXiv:2207.03503 [hep-ph]].

\section*{NNLO MAIN CHALLENGES}
- Matrix Elements

Assuming we know tree-order and one-loop matrix elements, then two-loop matrix elements
- Master Integrals
\(2 \rightarrow 3\) with up to 2 external masses
\(2 \rightarrow 2\) and \(2 \rightarrow 3\) with internal masses, especially top quark
\(2 \rightarrow 4\)
- Amplitude reduction

Integrand reduction two loops
\(\rightarrow\) J. Gluza, K. Kajda and D. A. Kosower, Phys. Rev. D 83 (2011), 045012
\(\rightarrow\) H. Ita, Phys. Rev. D 94 (2016) no 11.116015
\(\rightarrow\) V. Sotnikov, doi:10.6094/UNIFR/151540
\(\rightarrow\) S. Abreu, et al. Comput. Phys. Commun. 267 (2021), 108069
Tensor Coefficients
- RV and RR subtraction

STRIPPER for \(2 \rightarrow 3\) processes
colourful antenna subtraction: first steps for \(2 \rightarrow 3\) processes
CoLoRfulNNLO
Local analytic sector subtraction at NNLO

\section*{NNLO MAIN CHALLENGES}
- Matrix Elements

Assuming we know tree-order and one-loop matrix elements, then two-loop matrix elements
- Master Integrals
\(2 \rightarrow 3\) with up to 2 external masses
\(2 \rightarrow 2\) and \(2 \rightarrow 3\) with internal masses, especially top quark \(2 \rightarrow 4\)
Integrals with more than 11 (8) propagators reducible
- Amplitude reduction

Integrand reduction two loops
\(\rightarrow\) J. Gluza, K. Kajda and D. A. Kosower, Phys. Rev. D 83 (2011), 045012 \(\rightarrow\) H Ita Phys Rev D 94 (2016) no:11, 116015 \(\rightarrow\) V. Sotnikov, doi:10.6094/UNIFR/151540 \(\rightarrow\) S. Abreu, et al. Comput. Phys. Commun. 267 (2021), 108069
Tensor Coefficients
- RV and RR subtraction

STRIPPER for \(2 \rightarrow 3\) processes
colourful antenna subtraction: first steps for \(2 \rightarrow 3\) processes CoLoRfulNNLO
Local analytic sector subtraction at NNLO

\section*{NNLO MAIN CHALLENGES}
- Matrix Elements

Assuming we know tree-order and one-loop matrix elements, then two-loop matrix elements
- Master Integrals
\(2 \rightarrow 3\) with up to 2 external masses
\(2 \rightarrow 2\) and \(2 \rightarrow 3\) with internal masses, especially top quark \(2 \rightarrow 4\)
- Amplitude reduction

Integrand reduction two loops
\(\rightarrow\) J. Gluza, K. Kajda and D. A. Kosower, Phys. Rev. D 83 (2011), 045012
\(\rightarrow\) H. Ita, Phys. Rev. D 94 (2016) no.11, 116015
\(\rightarrow\) V. Sotnikov, doi:10.6094/UNIFR/151540
\(\rightarrow\) S. Abreu, et al. Comput. Phys. Commun. 267 (2021), 108069
Tensor Coefficients
\(\rightarrow\) S. Pozzorini, N. Schär and M. F. Zoller, JHEP 05 (2022), 161
- RV and RR subtraction

STRIPPER for \(2 \rightarrow 3\) processes
colourful antenna subtraction: first steps for \(2 \rightarrow 3\) processes
CoLoRfulNNLO
Local analytic sector subtraction at NNLO

\section*{NNLO MAIN CHALLENGES}
- Matrix Elements

Assuming we know tree-order and one-loop matrix elements, then two-loop matrix elements
- Master Integrals
\(2 \rightarrow 3\) with up to 2 external masses
\(2 \rightarrow 2\) and \(2 \rightarrow 3\) with internal masses, especially top quark \(2 \rightarrow 4\)
- Amplitude reduction

Integrand reduction two loops
\(\rightarrow\) J. Gluza, K. Kajda and D. A. Kosower, Phys. Rev. D 83 (2011), 045012
\(\rightarrow\) H. Ita, Phys. Rev. D 94 (2016) no.11, 116015
\(\rightarrow\) V. Sotnikov, doi:10.6094/UNIFR/151540
\(\rightarrow\) S. Abreu, et al. Comput. Phys. Commun. 267 (2021), 108069
Tensor Coefficients
\(\rightarrow\) S. Pozzorini, N. Schär and M. F. Zoller, JHEP 05 (2022), 161
- RV and RR subtraction

STRIPPER for \(2 \rightarrow 3\) processes
colourful antenna subtraction: first steps for \(2 \rightarrow 3\) processes CoLoRfulNNLO
Local analytic sector subtraction at NNLO

\section*{The current approach}
- \(m\) independent momenta, \(L\) loops, \(N=L(L+1) / 2+L m\) scalar products
- basis composed by \(D_{1} \ldots D_{N}\), allows to express all scalar products \(D_{i}=\left(\{k, I\}+p_{i}\right)^{2}-M_{i}^{2}\)
- Definition
\[
F\left[a_{1}, \ldots, a_{N}\right]=C_{L} \int \frac{1}{D_{1}^{a_{1}} \ldots D_{N}^{a_{N}}} \prod_{i=1}^{L}\left[d^{d} k_{i}\right]
\]
- Feynman parameters, Mellin-Barnes, Differential Equations
- Or numerical: SecDec, Weinzierl, Anastasiou\&Sterman

\section*{The current approach}
- \(m\) independent momenta, \(L\) loops, \(N=L(L+1) / 2+L m\) scalar products
- basis composed by \(D_{1} \ldots D_{N}\), allows to express all scalar products \(D_{i}=\left(\{k, l\}+p_{i}\right)^{2}-M_{i}^{2}\)
- Definition
\[
F\left[a_{1}, \ldots, a_{N}\right]=C_{L} \int \frac{1}{D_{1}^{a_{1}} \ldots D_{N}^{a_{N}}} \prod_{i=1}^{L}\left[d^{d} k_{i}\right]
\]
- Feynman parameters, Mellin-Barnes, Differential Equations
- Or numerical: SecDec, Weinzierl, Anastasiou\&Sterman

\section*{The current approach}
- \(m\) independent momenta, \(L\) loops, \(N=L(L+1) / 2+L m\) scalar products
- basis composed by \(D_{1} \ldots D_{N}\), allows to express all scalar products \(D_{i}=\left(\{k, l\}+p_{i}\right)^{2}-M_{i}^{2}\)
- Definition
\[
F\left[a_{1}, \ldots, a_{N}\right]=C_{L} \int \frac{1}{D_{1}^{a_{1}} \ldots D_{N}^{a_{N}}} \prod_{i=1}^{L}\left[d^{d} k_{i}\right]
\]
- Feynman parameters, Mellin-Barnes, Differential Equations
- Or numerical: SecDec, Weinzierl, Anastasiou\&Sterman

\section*{The current approach}
- \(m\) independent momenta, \(L\) loops, \(N=L(L+1) / 2+L m\) scalar products
- basis composed by \(D_{1} \ldots D_{N}\), allows to express all scalar products \(D_{i}=\left(\{k, l\}+p_{i}\right)^{2}-M_{i}^{2}\)
- Definition
\[
F\left[a_{1}, \ldots, a_{N}\right]=C_{L} \int \frac{1}{D_{1}^{a_{1}} \ldots D_{N}^{a_{N}}} \prod_{i=1}^{L}\left[d^{d} k_{i}\right]
\]
- Feynman parameters, Mellin-Barnes, Differential Equations

\author{
\(\rightarrow\) Z. Bern, L. J. Dixon and D. A. Kosower, Phys. Lett. B 302 (1993) 299. \\ \(\rightarrow\) V. A. Smirnov, Phys. Lett. B 460 (1999) 397
}
\(\rightarrow\) T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329].
\(\rightarrow\) J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, 251601 [arXiv:1304.1806 [hep-th]].
- Or numerical: SecDec, Weinzierl, Anastasiou\&Sterman

Anastasiou and G. Sterman, arXiv:1812.03753 [hep-ph].
\(\rightarrow\) S. Kromin, N. Schwanemann and S. Weinzierl, [arXiv:2208.01060 [hep-th]].

\section*{The current approach}
- \(m\) independent momenta, \(L\) loops, \(N=L(L+1) / 2+L m\) scalar products
- basis composed by \(D_{1} \ldots D_{N}\), allows to express all scalar products \(D_{i}=\left(\{k, l\}+p_{i}\right)^{2}-M_{i}^{2}\)
- Definition
\[
F\left[a_{1}, \ldots, a_{N}\right]=C_{L} \int \frac{1}{D_{1}^{a_{1}} \ldots D_{N}^{a_{N}}} \prod_{i=1}^{L}\left[d^{d} k_{i}\right]
\]
- Feynman parameters, Mellin-Barnes, Differential Equations
- Or numerical: SecDec, Weinzierl, Anastasiou\&Sterman
\(\rightarrow\) S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk and T. Zirke, Comput. Phys. Commun. 196 (2015) 470
\(\rightarrow\) S. Becker, C. Reuschle and S. Weinzierl, JHEP 1012 (2010) 013
\(\rightarrow\) C. Anastasiou and G. Sterman, arXiv:1812.03753 [hep-ph].
\(\rightarrow\) S. Kromin, N. Schwanemann and S. Weinzierl, [arXiv:2208.01060 [hep-th]].

\section*{Differential Equations Approach}
- The integral is a function of external momenta, so one can set-up differential equations by differentiating and using IBP
\[
F\left[a_{1}, \ldots, a_{N}\right] \rightarrow G\left[a_{1}, \ldots, a_{N}\right]
\]
\(p_{j}^{\mu} \frac{\partial}{\partial p_{i}^{\mu}} G\left[a_{1}, \ldots, a_{n}\right] \rightarrow \sum C_{b_{1}, \ldots, b_{n}} F\left[b_{1}, \ldots, b_{n}\right] \rightarrow \sum C_{a_{1}^{\prime}, \ldots, a_{n}^{\prime}} G\left[a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right]\)
- Find the proper basis; Bring the system of equations in a form suitable to express the MI in terms of GPs
\[
\begin{aligned}
& \partial_{m} f\left(\varepsilon,\left\{x_{i}\right\}\right)=\varepsilon A_{m}\left(\left\{x_{i}\right\}\right) f\left(\varepsilon,\left\{x_{i}\right\}\right) \\
& \partial_{m} A_{n}-\partial_{n} A_{m}=0 \quad\left[A_{m}, A_{n}\right]=0
\end{aligned}
\]
\(\star f\) not MI!
- Boundary conditions: expansion by regions or regularity conditions.

\section*{Differential Equations Approach}
- The integral is a function of external momenta, so one can set-up differential equations by differentiating and using IBP
\[
p_{j}^{\mu} \frac{\partial}{\partial p_{i}^{\mu}} G\left[a_{1}, \ldots, a_{n}\right] \rightarrow \sum C_{b_{1}, \ldots, b_{n}} F\left[b_{1}, \ldots, b_{n}\right] \rightarrow \sum C_{a_{1}^{\prime}, \ldots, a_{n}^{\prime}} G\left[a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right]
\]
- Find the proper basis; Bring the system of equations in a form suitable to express the MI in terms of GPs
\[
\begin{aligned}
& \partial_{m} f\left(\varepsilon,\left\{x_{i}\right\}\right)=\varepsilon A_{m}\left(\left\{x_{i}\right\}\right) f\left(\varepsilon,\left\{x_{i}\right\}\right) \\
& \partial_{m} A_{n}-\partial_{n} A_{m}=0 \quad\left[A_{m}, A_{n}\right]=0
\end{aligned}
\]
\(\star f\) not MI!
- Boundary conditions: expansion by regions or regularity conditions.

\section*{Differential Equations Approach}
- The integral is a function of external momenta, so one can set-up differential equations by differentiating and using IBP
\[
p_{j}^{\mu} \frac{\partial}{\partial p_{i}^{\mu}} G\left[a_{1}, \ldots, a_{n}\right] \rightarrow \sum C_{b_{1}, \ldots, b_{n}} F\left[b_{1}, \ldots, b_{n}\right] \rightarrow \sum C_{a_{1}^{\prime}, \ldots, a_{n}^{\prime}} G\left[a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right]
\]
- Find the proper basis; Bring the system of equations in a form suitable to express the MI in terms of GPs
\[
\begin{aligned}
& \partial_{m} f\left(\varepsilon,\left\{x_{i}\right\}\right)=\varepsilon A_{m}\left(\left\{x_{i}\right\}\right) f\left(\varepsilon,\left\{x_{i}\right\}\right) \\
& \partial_{m} A_{n}-\partial_{n} A_{m}=0 \quad\left[A_{m}, A_{n}\right]=0
\end{aligned}
\]
\(\star f\) not MI!
- Boundary conditions: expansion by regions or regularity conditions.
\(\rightarrow\) B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C 72 (2012) 2139 [arXiv:1206.0546 [hep-ph]].

\section*{Differential Equations Approach}
- Iterated Integrals \(\rightarrow\) K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831
- Multiple Polylogarithms, Symbol algebra
- Goncharov Polylogarithms
\[
\mathcal{G}\left(a_{n}, \ldots, a_{1}, x\right)=\int_{0}^{x} d t \frac{1}{t-a_{n}} \mathcal{G}\left(a_{n-1}, \ldots, a_{1}, t\right)
\]
- Elliptic Integrals
\(\rightarrow\) L. Adams and S. Weinzierl, Phys. Lett. B 781 (2018), 270-278
\(\rightarrow\) J. Broedel. C Duhr, F Dulat B Penante and I Tancredi HHEP 01 (2010) 023
- Numerical approach [one-mass double-pentagon]

Generalised power series expansion

\author{
\(\rightarrow\) M. Hidding, Comput. Phys. Commun. 269 (2021), 108125
}

AMFlow
Talk by Xiao Liu, \(\rightarrow\) click here

\section*{Differential Equations Approach}
- Iterated Integrals
- Multiple Polylogarithms, Symbol algebra
\(\rightarrow\) A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Phys. Rev. Lett. 105 (2010) 151605. \(\rightarrow\) C. Duhr, H. Gangl and J. R. Rhodes, JHEP 1210 (2012) 075 [arXiv:1110.0458 [math-ph]].
\(\rightarrow\) C. Bogner and F. Brown
- Goncharov Polylogarithms
\[
\mathcal{G}\left(a_{n}, \ldots, a_{1}, x\right)=\int_{0}^{x} d t \frac{1}{t-a_{n}} \mathcal{G}\left(a_{n-1}, \ldots, a_{1}, t\right)
\]
- Elliptic Integrals
\(\rightarrow\) L. Adams and S. Weinzierl, Phys. Lett. B 781 (2018), 270-278
\(\rightarrow\) J. Broedel. C. Duhr. F. Dulat. B. Penante and L. Tancredi. JHEP 01 (2019), 023
- Numerical approach [one-mass double-pentagon] Generalised power series expansion
\(\rightarrow\) F. Moriello, JHEP 01 (2020), 150
\(\rightarrow\) M. Hidding, Comput. Phys. Commun. 269 (2021), 108125
AMFlow
Talk by Xiao Liu, \(\rightarrow\) click here

\section*{Differential Equations Approach}
- Iterated Integrals
- Multiple Polylogarithms, Symbol algebra
- Goncharov Polylogarithms
\[
\mathcal{G}\left(a_{n}, \ldots, a_{1}, x\right)=\int_{0}^{x} d t \frac{1}{t-a_{n}} \mathcal{G}\left(a_{n-1}, \ldots, a_{1}, t\right)
\]
\(\rightarrow\) J. Vollinga and S. Weinzierl, Comput. Phys. Commun. 167 (2005), 177
- Elliptic Integrals
- Numerical approach [one-mass double-pentagon]

Generalised power series expansion
Moriello, JHEP 01 (2020), 150
\(\rightarrow\) M. Hidding, Comput. Phys. Commun. 269 (2021), 108125
AMFlow
Talk by Xiao Liu, \(\rightarrow\) click here

\section*{Differential Equations Approach}
- Iterated Integrals
- Multiple Polylogarithms, Symbol algebra
- Goncharov Polylogarithms
\[
\mathcal{G}\left(a_{n}, \ldots, a_{1}, x\right)=\int_{0}^{x} d t \frac{1}{t-a_{n}} \mathcal{G}\left(a_{n-1}, \ldots, a_{1}, t\right)
\]
\(\rightarrow\) J. Vollinga and S. Weinzierl, Comput. Phys. Commun. 167 (2005), 177
- Elliptic Integrals
\(\rightarrow\) J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, JHEP 01 (2019), 023
- Numerical approach [one-mass double-pentagon]

Generalised power series expansion
\(\rightarrow\) F. Moriello, JHEP 01 (2020), 150
\(\rightarrow\) M. Hidding, Comput: Phys. Commun. 269 (2021), 108125
AMFlow
Talk by Xiao Liu, \(\rightarrow\) click here

\section*{Differential Equations Approach}
- Iterated Integrals
- Multiple Polylogarithms, Symbol algebra
- Goncharov Polylogarithms
\[
\mathcal{G}\left(a_{n}, \ldots, a_{1}, x\right)=\int_{0}^{x} d t \frac{1}{t-a_{n}} \mathcal{G}\left(a_{n-1}, \ldots, a_{1}, t\right)
\]
- Elliptic Integrals
\(\rightarrow\) J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, JHEP 01 (2019), 023
- Numerical approach [one-mass double-pentagon]

Generalised power series expansion
\(\rightarrow\) F. Moriello, JHEP 01 (2020), 150
\(\rightarrow\) M. Hidding, Comput. Phys. Commun. 269 (2021), 108125
AMFlow
Talk by Xiao Liu, \(\rightarrow\) click here

\section*{The SDE approach}

\section*{5-POINT TWO-LOOP ONE-MASS}

The three planar pentaboxes of the families \(P_{1}\) (left), \(P_{2}\) (middle) and \(P_{3}\) (right) with one external massive leg.

The five non-planar families with one external massive leg.

\section*{Pentabox - One leg off-shell: P1}
\(\rightarrow\) J. M. Henn, Phys. Rev. Lett. 110 (2013) 251601
\(\rightarrow\) S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, JHEP 2011 (2020) 117
\(\rightarrow\) D. D. Canko, C. G. Papadopoulos and N. Syrrakos, JHEP 2101 (2021) 199
\[
d \vec{g}=\epsilon \sum_{a} d \log \left(W_{a}\right) \tilde{M}_{a} \vec{g}
\]
- Also from direct differentiation of MI wrt to \(x\). Just \(g\) in terms of FI.
\[
\frac{d \vec{g}}{d x}=\epsilon \sum_{b} \frac{1}{x-\ell_{b}} M_{b} \vec{g}
\]
- \(\ell_{b}\), are independent of \(x\), some depending only on the reduced invariants, \(\left\{S_{12}, S_{23}, S_{34}, S_{45}, S_{51}\right\} . M_{b}\) are independent of the invariants.
- number of letters smaller than in AIMPTZ representation
- Main contribution for us from AIMPTZ: the canonical basis (+ numerics)

\section*{Pentabox - One leg off-SHell: P1}
\(\rightarrow\) J. M. Henn, Phys. Rev. Lett. 110 (2013) 251601
\(\rightarrow\) S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, JHEP 2011 (2020) 117 \(\rightarrow\) D. D. Canko, C. G. Papadopoulos and N. Syrrakos, JHEP 2101 (2021) 199
\[
\begin{gathered}
d \vec{g}=\epsilon \sum_{a} d \log \left(W_{a}\right) \tilde{M}_{a} \vec{g} \\
\frac{d \log \left(W_{a}\right)}{d x}
\end{gathered}
\]
- Also from direct differentiation of MI wrt to \(x\). Just \(g\) in terms of FI.
\[
\frac{d \vec{g}}{d x}=\epsilon \sum_{b} \frac{1}{x-\ell_{b}} M_{b} \vec{g}
\]
- \(\ell_{b}\), are independent of \(x\), some depending only on the reduced invariants, \(\left\{S_{12}, S_{23}, S_{34}, S_{45}, S_{51}\right\} . M_{b}\) are independent of the invariants.
- number of letters smaller than in AIMPTZ representation
- Main contribution for us from AIMPTZ: the canonical basis (+ numerics)

\section*{Pentabox - one leg off-shell: P1}
\(\rightarrow\) J. M. Henn, Phys. Rev. Lett. 110 (2013) 251601
\(\rightarrow\) S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, JHEP 2011 (2020) 117
\(\rightarrow\) D. D. Canko, C. G. Papadopoulos and N. Syrrakos, JHEP 2101 (2021) 199
\[
d \vec{g}=\epsilon \sum_{a} d \log \left(W_{a}\right) \tilde{M}_{a} \vec{g}
\]
- Also from direct differentiation of MI wrt to \(x\). Just \(g\) in terms of FI.
\[
\frac{d \vec{g}}{d x}=\epsilon \sum_{b} \frac{1}{x-\ell_{b}} M_{b} \vec{g}
\]
- \(\ell_{b}\), are independent of \(x\), some depending only on the reduced invariants, \(\left\{S_{12}, S_{23}, S_{34}, S_{45}, S_{51}\right\} . M_{b}\) are independent of the invariants.
- number of letters smaller than in AIMPTZ representation
- Main contribution for us from AIMPTZ: the canonical basis (+ numerics)

\section*{Pentabox - One leg off-shell: P1}

SDE parametrisation: \(n\) off-shell legs \(\rightarrow n-1\) off-shell legs + the \(x\) variable.
\(\rightarrow\) C. G. Papadopoulos, "Simplified differential equations approach for Master Integrals," JHEP 1407 (2014) 088
- \(p_{i}, i=1 \ldots 5\), satisfy \(\sum_{1}^{5} p_{i}=0\), with \(p_{i}^{2}=0, i=1 \ldots 5, p_{i \ldots j}:=p_{i}+\ldots+p_{j}\). The set of independent invariants: \(\left\{S_{12}, S_{23}, S_{34}, S_{45}, S_{51}, x\right\}\), with \(S_{i j}:=\left(p_{i}+p_{j}\right)^{2}\).
\[
\begin{gathered}
q_{1}^{2}=(1-x)\left(S_{45}-S_{12} x\right), s_{12}=\left(S_{34}-S_{12}(1-x)\right) x, s_{23}=S_{45}, s_{34}=S_{51} x \\
s_{45}=S_{12} x^{2}, s_{15}=S_{45}+\left(S_{23}-S_{45}\right) x
\end{gathered}
\]

\section*{Pentabox - One leg off-shell: P1}

\section*{4-POINT UP TO TWO LEGS OFF-SHELL}
\(\rightarrow\) J. M. Henn, K. Melnikov and V. A. Smirnov, JHEP 1405 (2014) 090
\(\rightarrow\) T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, JHEP 06 (2014), 032
\(\rightarrow\) F. Caola, J. M. Henn, K. Melnikov and V. A. Smirnov, JHEP 1409 (2014) 043
\(\rightarrow\) C. G. Papadopoulos, D. Tommasini and C. Wever, JHEP 1501 (2015) 072
\(\rightarrow\) T. Gehrmann, A. von Manteuffel and L. Tancredi, JHEP 09 (2015), 128

Figure 3. The parametrization of external momenta for the three planar double boxes of the families \(P_{12}\) (left), \(P_{13}\) (middle) and \(P_{23}\) (right) contributing to pair production at the LHC. All external momenta are incoming.

Figure 4. The parametrization of external momenta for the three non-planar double boxes of the families \(N_{12}\) (left), \(N_{13}\) (middle) and \(N_{34}\) (right) contributing to pair production at the LHC. All external momenta are incoming.

As well as planar and nonplanar double box with one off-shell leg expressed in UT basis.

\section*{Pentabox - ONE LEG OFF-SHELL: P1-3}
\[
\frac{d \mathbf{g}}{d x}=\epsilon \sum_{a} \frac{1}{x-\ell_{a}} \mathbf{M}_{a} \mathbf{g}
\]

\section*{Pentabox - one leg off-shell: P1-3}
\[
\begin{aligned}
& \frac{d \mathbf{g}}{d x}=\epsilon \sum_{a} \frac{1}{x-\ell_{a}} \mathbf{M}_{a} \mathbf{g} \\
& \mathbf{g}=\epsilon^{0} \mathbf{b}_{0}^{(0)}+\epsilon\left(\sum \mathcal{G}_{a} \mathbf{M}_{a} \mathbf{b}_{0}^{(0)}+\mathbf{b}_{0}^{(1)}\right) \\
& +\epsilon^{2}\left(\sum \mathcal{G}_{a b} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{b}_{0}^{(0)}+\sum \mathcal{G}_{a} \mathbf{M}_{a} \mathbf{b}_{0}^{(1)}+\mathbf{b}_{0}^{(2)}\right) \\
& +\epsilon^{3}\left(\sum \mathcal{G}_{a b c} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{M}_{c} \mathbf{b}_{0}^{(0)}+\sum \mathcal{G}_{a b} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{b}_{0}^{(1)}+\sum \mathcal{G}_{a} \mathbf{M}_{a} \mathbf{b}_{0}^{(2)}+\mathbf{b}_{0}^{(3)}\right) \\
& +\epsilon^{4}\left(\sum \mathcal{G}_{a b c d} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{M}_{c} \mathbf{M}_{d} \mathbf{b}_{0}^{(0)}+\sum \mathcal{G}_{a b c} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{M}_{c} \mathbf{b}_{0}^{(1)}\right. \\
& \left.+\sum \mathcal{G}_{a b} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{b}_{0}^{(2)}+\sum \mathcal{G}_{a} \mathbf{M}_{a} \mathbf{b}_{0}^{(3)}+\mathbf{b}_{0}^{(4)}\right)+\ldots \\
& \mathcal{G}_{a b b}:=\mathcal{G}\left(\ell_{a}, \ell_{b}, \ldots ; x\right)
\end{aligned}
\]

\section*{Pentabox - one leg off-shell: Boundary conditions}
- starting from the full equation
\[
\frac{d \vec{g}}{d x}=\epsilon \frac{1}{x} M_{0} \vec{g}+\mathcal{O}\left(x^{0}\right)
\]
- using all letters \(W_{a}\), with the solution (\(\mathbf{b}:=\sum_{i=0}^{4} \epsilon^{i} \mathbf{b}_{0}^{(i)}\))
\[
\mathbf{g}_{0}=\mathbf{S} e^{\epsilon \log (x) \mathbf{D}} \mathbf{S}^{-1} \mathbf{b}
\]
- \(\mathbf{S}\) and \(\mathbf{D}\) are obtained through Jordan decomposition of the \(\mathbf{M}_{0}\)
- Resummed: \(\mathbf{R}_{0}=\mathbf{S} \boldsymbol{e}^{\epsilon \log (x) \mathbf{D}} \mathbf{S}^{-1}\)
- What we know about:
\[
\mathbf{R}_{0}=\sum_{i} x^{n_{i} \varepsilon} \mathbf{R}_{0 i}+\sum_{j} \varepsilon x^{n_{j} \varepsilon} \log (x) \mathbf{R}_{0 j 0}
\]

\section*{Pentabox - one leg off-shell: Boundary conditions}
- IBP reduction in terms of Master Integrals
\[
\mathrm{g}=\mathbf{T G}
\]
\(\rightarrow\) D. D. Canko, C. G. Papadopoulos and N. Syrrakos, arXiv:2009.13917 [hep-ph]. Masters.m
- Expansion by regions. [no logarithmic terms]
\[
G_{i}=\sum_{x \rightarrow 0} x^{b_{j}+a_{j} \varepsilon} G_{i}^{(j)}
\]
- Linear equations:
\[
\mathbf{g}_{0}:=\mathbf{R}_{0} \mathbf{b}=\left.\lim _{x \rightarrow 0} \mathbf{T G}\right|_{O\left(x^{0+a_{j} \varepsilon}\right)}
\]
- Matrix \(\mathbf{T}\) is horrible-looking depending on \(x, \varepsilon\) and \(S_{i j}\). But
\[
\mathbf{R}_{0} \mathbf{b} \rightarrow \varepsilon, x, \text { Rationals } \otimes \text { polyLogs } \quad G_{i}^{(j)} \rightarrow \text { Simple }\left[S_{i j}\right] \otimes \text { polyLogs }
\]
so we can afford IBP reduction with only \(x, \varepsilon\) symbolic: i.e. FIRE6 or Kira2.

\section*{Pentabox - ONE LEG OFF-SHELL: Boundary conditions}
- No regions in the top-sector are needed.
- To obtain expressions for regions, \(G_{i}^{(j)}\), in Feynman parameter space, we use FIESTA asyexpand, for \(x \rightarrow 0\) limit (SDE).
- In most cases integration is straightforward and the resulting \({ }_{2} F_{1}\) hypergeometric functions are expanded with HypExp.
- In few cases we use Mellin-Barnes techniques using the MB, MBSums and XSummer along with the in-house (A. Kardos) package Gsuite.
- Boundary terms only depends on 12 Goncharov
\[
\begin{gathered}
G\left[0,1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right], G\left[1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right], G\left[0,0,1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right], G\left[0,1,1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right] \\
G\left[1,0,1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right], G\left[0,0,0,1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right], G\left[0,0,1,1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right] \\
G\left[0,1,0,1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right], G\left[0,1,1,1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right], G\left[1,0,0,1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right], G\left[1,0,1,1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right] \\
G\left[1,1,0,1,-\frac{\mathrm{S} 12-\mathrm{S} 34}{\mathrm{~S} 51}\right]
\end{gathered}
\]
- and 4 Logarithms \(\{\log [-S 12], \log [-S 45], \log [S 12-S 34], \log [-S 51]\}\).

\footnotetext{
\(\rightarrow\) D. D. Canko, C. G. Papadopoulos and N. Syrrakos, arXiy:2009.13917 [hep-ph]. Boundaries, m \(\curvearrowright\)
}

\section*{Pentabox - One Leg off-SHELL: Kinematical Regions}
- Euclidean region:
\[
\left\{\mathrm{S} 12 \rightarrow-2, \mathrm{~S} 23 \rightarrow-3, \mathrm{~S} 34 \rightarrow-5, \mathrm{~S} 45 \rightarrow-7, \mathrm{~S} 51 \rightarrow-11, x \rightarrow \frac{1}{4}\right\}
\]
no letter \(I\) in the region \([0, x]\), all boundary terms real. [very fast GiNaC]
\begin{tabular}{|c|c|c|c|c|}
\hline Family & \(\mathrm{W}=1\) & \(\mathrm{~W}=2\) & \(\mathrm{~W}=3\) & \(\mathrm{~W}=4\) \\
\hline\(P_{1}\left(g_{72}\right)\) & \(17(14)\) & \(116(95)\) & \(690(551)\) & \(2740(2066)\) \\
\hline\(P_{2}\left(g_{73}\right)\) & \(25(14)\) & \(170(140)\) & \(1330(1061)\) & \(4950(3734)\) \\
\hline\(P_{3}\left(g_{84}\right)\) & \(22(12)\) & \(132(90)\) & \(1196(692)\) & \(4566(2488)\) \\
\hline
\end{tabular}

TABLE: Number of GP entering in the solution, as explained in the text.
- with timings, running the GiNaC Interactive Shell ginsh, given by 1.9, 3.3, and 2 seconds for \(P_{1}, P_{2}\) and \(P_{3}\) respectively and for a precision of 32 significant digits
- A very different canonical basis, several elements start at \(\epsilon^{4}\).

\section*{Pentabox - one leg off-shell: Kinematical Regions}
- One-scale integrals - closed form
\[
\begin{aligned}
& \left(-s_{34}\right)^{-\epsilon}=\left(-S_{51}\right)^{-\epsilon} x^{-\epsilon} \\
& \left(-s_{45}\right)^{-\epsilon}=\left(-S_{12}\right)^{-\epsilon} x^{-2 \epsilon} \\
& \left(-s_{15}\right)^{-\epsilon}=\left(-S_{45}\right)^{-\epsilon}\left(1-\frac{S_{45}-S_{23}}{S_{45}} x\right)^{-\epsilon} \\
& \left(-p_{1 s}\right)^{-\epsilon}=(1-x)^{-\epsilon}\left(-S_{45}\right)^{-\epsilon}\left(1-\frac{S_{12}}{S_{45}} x\right)^{-\epsilon} \\
& \left(-s_{12}\right)^{-\epsilon}=x^{-\epsilon}\left(S_{12}-S_{34}\right)^{-\epsilon}\left(1-\frac{S_{12}}{S_{12}-S_{34}} x\right)^{-\epsilon},
\end{aligned}
\]
- One-scale integrals - expanded form
\[
\begin{aligned}
& \log [-\mathrm{p} 1 \mathrm{~s}-i \delta] \rightarrow G[1, x]+G\left[\frac{\mathrm{~S} 45}{\mathrm{~S} 12}, x\right]+\log [-\mathrm{S} 45], \\
& \log [-\mathrm{s} 34-i \delta] \rightarrow \log [-\mathrm{S} 51]+\log [x], \\
& \log [-\mathrm{s} 12-i \delta] \rightarrow G\left[\frac{\mathrm{~S} 12-\mathrm{S} 34}{\mathrm{~S} 12}, x\right]+\log [\mathrm{S} 12-\mathrm{S} 34]+\log [x], \\
& \log [-s 45-i \delta] \rightarrow \log [-S 12]+2 \log [x], \\
& \log [-\mathrm{s} 15-i \delta] \rightarrow G\left[\frac{\mathrm{~S} 45}{-\mathrm{S} 23+\mathrm{S} 45}, x\right]+\log [-\mathrm{S} 45]
\end{aligned}
\]

\section*{Pentabox - one leg off-shell: Kinematical Regions}
- In general many letters will be now in \([0, x]\). This has two consequences:
(1) Need to fix infinitesimal imaginary part of \(\frac{l_{i}}{x}\)
(2) Increasing CPU time in GiNaC.
- Since the \(\mathcal{F}\) polynomial maintains the sign of the \(i 0\) prescription of Feynman propagators with all original invariants assuming \(s_{i j}\left(p_{1 s}\right) \rightarrow s_{i j}\left(p_{1 s}\right)+i \delta\), we determine the corresponding infinitesimal imaginary part of \(\frac{l_{i}}{x}\) from
\[
\begin{gathered}
p_{1 s}+i \delta=(1-x)\left(S_{45}-S_{12} x\right), s_{12}+i \delta=\left(S_{34}-S_{12}(1-x)\right) x, \\
s_{23}+i \delta=S_{45}, s_{34}+i \delta=S_{51} x, \\
s_{45}+i \delta=S_{12} x^{2}, s_{15}+i \delta=S_{45}+\left(S_{23}-S_{45}\right) x
\end{gathered}
\]
with \(S_{i j} \rightarrow S_{i j}+i \delta \eta_{i j}, x \rightarrow x+i \delta \eta_{x}\),
- Building a Fibration Basis using for instance PolyLogTools.

\section*{Pentabox - one leg off-shell: Validation}
- All regions of AIMPTZ checked @precision
- One-loop pentagon at order \(\mathcal{O}\left(\varepsilon^{4}\right)\) [any order, analytic]
\(\rightarrow\) N. Syrrakos, "Pentagon integrals to arbitrary order in the dimensional regulator," arXiv:2012.10635 [hep-ph].
- Taken the limit \(x=1\) in all families to obtain the result for on-shell planar 5box

SDE is not only capable to produce analytic results for off-shell MI but it can also give, almost for free, the on-shell MI.
- Evaluating phase-space points for \(p p \rightarrow W^{+}{ }_{j_{1} j_{2}}\) generated by HELAC-PHEGAS, i.e. arbitrary floating points.

\section*{HEXABOX - ONE LEG OFF-SHELL}

\[
\begin{aligned}
& r_{1}=\sqrt{\lambda\left(p_{1 s}, s_{23}, s_{45}\right)} \\
& r_{2}=\sqrt{\lambda\left(p_{1 s}, s_{24}, s_{35}\right)} \\
& r_{3}=\sqrt{\lambda\left(p_{1 s}, s_{25}, s_{34}\right)} \\
& r_{4}=\sqrt{\operatorname{det} \mathbb{G}\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} \\
& r_{5}=\sqrt{\Sigma_{5}^{(1)}} \\
& r_{6}=\sqrt{\Sigma_{5}^{(2)}}
\end{aligned}
\]

\section*{HEXABOX - ONE LEG OFF-SHELL}
- For topology \(N_{1}\), the square roots \(r_{1}\) and \(r_{4}\) appear in its alphabet and are rationalized.
\[
\partial_{x} \mathbf{g}=\epsilon\left(\sum_{i=1}^{I_{\max }} \frac{\mathbf{M}_{i}}{x-I_{i}}\right) \mathbf{g}
\]
\(I_{\text {max }}=21\) from 39 letters in the original alphabet
- For topologies \(N_{2}\) and \(N_{3}\), the square roots appearing are \(\left\{r_{1}, r_{2}, r_{4}, r_{5}\right\}\) and \(\left\{r_{1}, r_{3}, r_{4}, r_{6}\right\}\) not simultaneous rationalisation possible !
The more general form of the SDE takes the form:
\[
\partial_{x} \mathbf{g}=\epsilon\left(\sum_{a=1}^{I_{\max }} \frac{d L_{a}}{d x} \mathbf{M}_{a}\right) \mathbf{g}
\]
where most of the \(L_{a}\) are simple rational functions of \(x\), as in (1), whereas the rest are algebraic functions of \(x\) involving the non-rationalisable square roots.
- One-dimensional integration based on weight-2 functions
\(\rightarrow\) S. Caron-Huot and J. M. Henn, JHEP 06 (2014), 114

\section*{HEXABOX - ONE LEG OFF-SHELL: WEIGHT 2}

For instance element 11 of \(N_{2}\) is given as
\[
\begin{aligned}
g_{11}^{(2)} & =8\left(2 \mathcal{G}(0,-y)\left(\mathcal{G}(1, y)-\mathcal{G}\left(\frac{\tilde{S}_{45}}{\tilde{S}_{12}}, y\right)\right)+2 \mathcal{G}\left(0, \frac{\tilde{S}_{45}}{\tilde{S}_{12}}, y\right)-\mathcal{G}(1, y) \log \left(\frac{\tilde{S}_{45}}{\tilde{S}_{12}}\right)\right. \\
& \left.+\log \left(\frac{\tilde{S}_{45}}{\tilde{S}_{12}}\right) \mathcal{G}\left(\frac{\tilde{S}_{45}}{\tilde{S}_{12}}, y\right)-2 \mathcal{G}(0,1, y)\right)
\end{aligned}
\]
where the new parametrization of the external momenta is given by
\[
q_{1} \rightarrow \tilde{p}_{123}-y \tilde{p}_{12}, q_{2} \rightarrow y \tilde{p}_{2}, q_{3} \rightarrow-\tilde{p}_{1234}, q_{4} \rightarrow y \tilde{p}_{1}
\]
with the new momenta \(\tilde{p}_{i}, i=1 \ldots 5\) satisfying as usual, \(\sum_{1}^{5} \tilde{p}_{i}=0, \tilde{p}_{i}^{2}=0, i=1 \ldots 5\), with \(\tilde{p}_{i \ldots j}:=\tilde{p}_{i}+\ldots+\tilde{p}_{j}\). The set of independent invariants is given by \(\left\{\tilde{S}_{12}, \tilde{S}_{23}, \tilde{S}_{34}, \tilde{S}_{45}, \tilde{S}_{51}, y\right\}\), with \(\tilde{S}_{i j}:=\left(\tilde{p}_{i}+\tilde{p}_{j}\right)^{2}\). The explicit mapping between the two sets of invariants is given by
\[
\begin{gathered}
q_{1}^{2}=(1-y)\left(\tilde{S}_{45}-\tilde{S}_{12} y\right), s_{12}=\tilde{S}_{45}(1-y)+\tilde{S}_{23} y, s_{23}=-y\left(\tilde{S}_{12}-\tilde{S}_{34}+\tilde{S}_{51}\right), \\
s_{34}=\tilde{S}_{51} y, s_{45}=y\left(\tilde{S}_{23}-\tilde{S}_{45}-\tilde{S}_{51}\right), s_{15}=y\left(\tilde{S}_{34}-\tilde{S}_{12}(1-y)\right) .
\end{gathered}
\]

\section*{HEXABOX - ONE LEG OFF-SHELL: WEIGHT 2}
- By identifying \(f_{-}=y\) and \(f_{+}=y \frac{\tilde{S}_{12}}{\tilde{S}_{45}}\), which in terms of (50) are given as
\[
f_{ \pm}=\frac{S_{45}+x\left(-S_{23}-S_{34}+2 S_{51}+S_{12} x\right) \pm r_{2}}{2\left(S_{12}-S_{34}+S_{51}\right) x}
\]
we can write the DE for this element in the simple and compact form
\[
\frac{d}{d x} g_{11}^{(2)}=-8\left(\operatorname{dlog}\left(\frac{f_{+}-1}{f_{-}-1}\right) \log \left(f_{-} f_{+}\right)-\operatorname{dlog}\left(\frac{f_{+}}{f_{-}}\right) \log \left(\left(f_{-}-1\right)\left(f_{+}-1\right)\right)\right) .
\]

The form of the DE makes the determination of the ansatz rather straightforward, with the result
\[
g_{11}^{(2)}=-8\left(-\log \left(f_{-} f_{+}\right)\left(\mathcal{G}\left(1, f_{-}\right)-\mathcal{G}\left(1, f_{+}\right)\right)+2 \mathcal{G}\left(0,1, f_{-}\right)-2 \mathcal{G}\left(0,1, f_{+}\right)\right)
\]
- Concerning the other non-rationalisable square root in the family \(N_{2}, r_{5}\), it also appears for the first time at weight 2 in the basis element 73 only (see the ancillary file), which is one of the new integrals to be calculated.
\[
g_{73}^{(2)}=16 \log \left(f_{-} f_{+}\right)\left(\mathcal{G}\left(1, f_{-}\right)-\mathcal{G}\left(1, f_{+}\right)\right)-32\left(\mathcal{G}\left(0,1, f_{-}\right)-\mathcal{G}\left(0,1, f_{+}\right)\right)
\]
with
\[
f_{ \pm}=\frac{S_{45}\left(2 S_{12} x-S_{34} x+S_{51}\right)+x\left(S_{23} S_{34}-S_{12} S_{23}+x S_{12} S_{51}\right) \pm r_{5}}{2 S_{45}\left(S_{12}-S_{34}+S_{51}\right)}
\]

\section*{HEXABOX - ONE LEG OFF-SHELL: INTEGRAL REP.}

Weight 3:
The differential equation (1) can be written in the form:
\[
\partial_{x} g_{I}^{(3)}=\sum_{a}\left(\partial_{x} \log L_{a}\right) \sum_{J} c_{I J}^{a} g_{J}^{(2)}
\]

Since the lower limit of integration corresponds to \(x=0\), we need to subtract the appropriate term so that the integral is explicitly finite. This is achieved as follows:
\[
\partial_{x} g_{I}^{(3)}=\sum_{a} \frac{I_{a}}{x} \sum_{J} c_{I J}^{a} g_{J, 0}^{(2)}+\left(\sum_{a}\left(\partial_{x} \log L_{a}\right) \sum_{J} c_{I J}^{a} g_{J}^{(2)}-\sum_{a} \frac{I_{a}}{x} \sum_{J} c_{I J}^{a} g_{J, 0}^{(2)}\right)
\]
where \(g_{l, 0}^{(2)}\) are obtained by expanding \(g_{l}^{(2)}\) around \(x=0\) and keeping terms up to order \(\mathcal{O}\left(\log (x)^{2}\right)\), and \(I_{a} \in \mathbb{Q}\) are defined through
\[
\partial_{x} \log L_{a}=\frac{l_{a}}{x}+\mathcal{O}\left(x^{0}\right)
\]

\section*{HEXABOX - ONE LEG OFF-SHELL: INTEGRAL REP.}

The DE can now be integrated from \(x=0\) to \(x=\bar{x}\), and the result is given by
\[
g_{l}^{(3)}=g_{l, \mathcal{G}}^{(3)}+b_{l}^{(3)}+\int_{0}^{\bar{x}} \mathrm{~d} x\left(\sum_{a}\left(\partial_{x} \log L_{a}\right) \sum_{J} c_{I J}^{a} g_{J}^{(2)}-\sum_{a} \frac{l_{a}}{x} \sum_{J} c_{I J}^{a} g_{J, 0}^{(2)}\right)
\]
with \(b_{l}^{(3)}\) being the boundary terms at \(\mathcal{O}\left(\epsilon^{3}\right)\) and
\[
g_{l, \mathcal{G}}^{(3)}=\left.\int_{0}^{\bar{x}} \mathrm{~d} x \sum_{a} \frac{l_{a}}{x} \sum_{J} c_{L J}^{a} g_{J, 0}^{(2)}\right|_{\mathcal{G}}
\]
with the subscript \(\mathcal{G}\), indicating that the integral is represented in terms of GPLs (see ancillary file), following the convention
\[
\int_{0}^{\bar{x}} d x \frac{1}{x} \mathcal{G}(\underbrace{0, \ldots 0}_{n} ; x)=\mathcal{G}(\underbrace{0, \ldots 0 ; \bar{x}}_{n+1}) .
\]

Alternative for the analytical aficionados (AA): work out linear letters \(\rightarrow\) Goncharov MPL

\section*{HEXABOX - ONE LEG OFF-SHELL: INTEGRAL REP.}

Weight 4:
At weight 4, the differential equation (1) can be written in the form:
\[
\partial_{x} g_{l}^{(4)}=\sum_{a}\left(\partial_{x} \log L_{a}\right) \sum_{J} c_{I J}^{a} g_{J}^{(3)}
\]
which after doubly-subtracting, in order to obtain integrals that are explicitly finite as in (1), is written as
\[
\partial_{x} g_{J}^{(4)}=\sum_{a} \partial_{x}\left(\log L_{a}-L L_{a}\right) \sum_{J} c_{I J}^{a} g_{J}^{(3)}+\sum_{a} \partial_{x}\left(L L_{a}\right) \sum_{J} c_{I J}^{a}\left(g_{J}^{(3)}-g_{J, 0}^{(3)}\right)+\sum_{a} \frac{l_{a}}{x} \sum_{J} c_{I J}^{a} g_{J, 0}^{(3)}
\]
where \(L L_{a}\) are obtained by expanding \(\log \left(L_{a}\right)\) around \(x=0\) and keeping terms up to order \(\mathcal{O}(\log (x))\), and
\[
g_{l, 0}^{(3)}=g_{l, \mathcal{G}}^{(3)}+b_{l}^{(3)}
\]

\section*{HEXABOX - ONE LEG OFF-SHELL: INTEGRAL REP.}

Now, by integrating by parts we can write the final result as follows:
\[
\begin{aligned}
g_{I}^{(4)}= & g_{I, \mathcal{G}}^{(4)}+b_{I}^{(4)}+\left(\sum_{a} \log L_{a} \sum_{J} c_{I J}^{a} g_{J}^{(3)}\right)-\left(\sum_{a} L L_{a} \sum_{J} c_{I J}^{a} g_{J, 0}^{(3)}\right) \\
& -\int_{0}^{\bar{x}} \mathrm{~d} x \sum_{a}\left(\log L_{a}-L L_{a}\right) \sum_{J} c_{I J}^{a} \sum_{b} \frac{I_{b}}{x} \sum_{K} c_{J K}^{b} g_{K, 0}^{(2)} \\
& -\int_{0}^{\bar{x}} \mathrm{~d} x \sum_{a} \log L_{a} \sum_{J} c_{I J}^{a}\left(\sum_{b}\left(\partial_{x} \log L_{b}\right) \sum_{K} c_{J K}^{b} g_{K}^{(2)}-\sum_{b} \frac{I_{b}}{x} \sum_{K} c_{J K}^{b} g_{K, 0}^{(2)}\right)
\end{aligned}
\]
with \(a, b\) running over the set of contributing letters, \(I, J, K\) running over the set of basis elements, \(b_{l}^{(4)}\) being the boundary terms at \(\mathcal{O}\left(\epsilon^{4}\right)\) and
\[
g_{I, \mathcal{G}}^{(4)}=\left.\int_{0}^{\bar{x}} \mathrm{~d} x\left(\sum_{a} \frac{l_{a}}{x} \sum_{J} c_{I J}^{a} g_{J, 0}^{(3)}\right)\right|_{\mathcal{G}}
\]
where the subscript \(\mathcal{G}\) indicates that the integral is represented in terms of GPLs (see ancillary file).
analytic continuation \(\rightarrow\) applying fibration on \(b_{l}^{(1 \ldots 4)}\) and \(g\) up to weight two

\section*{HEXABOX - ONE LEG OFF-SHELL: BOUNDARY TERMS}
- The pure basis elements can be written in general as follows:
\[
\begin{equation*}
g=C e^{2 \gamma_{E} \epsilon} \int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{d^{d} k_{2}}{i \pi^{d / 2}} \frac{P\left(\left\{D_{i}\right\},\left\{S_{i j}, x\right\}\right)}{\prod_{i \in \tilde{S}} D_{i}^{a_{i}}} \tag{1}
\end{equation*}
\]
where \(D_{i}, i=1 \ldots 11\), represent the inverse scalar propagators, \(\tilde{S}\) the set of indices corresponding to a given sector, \(S_{i j}, x\) the kinematic invariants, \(P\) is a polynomial, \(a_{i}\) are positive integers and \(C\) a factor depending on \(S_{i j}, x\).
- This form is usually decomposed in terms of FI, \(F_{i}\),
\[
g=C \sum c_{i}\left(\left\{S_{i j}, x\right\}\right) F_{i}
\]
with \(c_{i}\) being polynomials in \(S_{i j}, x\).

\section*{HEXABOX - ONE LEG OFF-SHELL: BOUNDARY TERMS}
- An alternative approach, would be to build-up the Feynman parameter representation for the whole basis element, by considering the integral as a tensor integral in its Feynman parameter representation.
\[
\begin{aligned}
& \rightarrow \text { J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C } 71 \text { (2011), } 1516 \text { [arXiv:1010.1667 [hep-ph]]. } \\
& \rightarrow \text { S. C. Borowka, [arXiv:1410.7939 [hep-ph]]. }
\end{aligned}
\]

Then, by using the expansion by regions approach
\[
\begin{aligned}
& \rightarrow \text { B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C } 72(2012), 2139[a r X i v: 1206.0546[\text { hep-ph }]] . \\
& \rightarrow \text { A. V. Smirnov, Comput. Phys. Commun. } 204(2016), 189-199[a r X i v: 1511.03614[\mathrm{hep}-\mathrm{ph}]] . \\
& \qquad b=\sum_{l} N_{I} \prod_{i \in S_{I}} d x_{i} U_{I}^{a_{I}} F_{I}^{b_{i}} \Pi_{I}
\end{aligned}
\]
where \(I\) runs over the set of contributing regions, \(U_{l}\) and \(F_{l}\) are the limits of the usual Symanzik polynomials, \(\Pi_{l}\) is a polynomial in the Feynman parameters, \(x_{i}\), and the kinematic invariants \(S_{i j}\), and \(S_{/}\)the subset of surviving Feynman parameters in the limit.
- In this way a significant reduction of the number of regions to be calculated is achieved, namely from 208 to 9 . Notice that in contrast to the approach described in the previous paragraphs, only the regions \(x^{-2 \epsilon}\) and \(x^{-4 \epsilon}\) contribute to the final result, making thus the evaluation of the region-integrals simpler.
- Moreover, this approach overpasses the need for an IBP reduction of the basis elements in terms of MI.

\section*{HEXABOX - ONE LEG OFF-SHELL: PERFORMANCE}

As a proof of concept, we have implemented the final formulae in Mathematica. We use NIntegrate to perform the one-dimensional integrals, after expressing all weight-2 functions in terms of classical polylogarithms following reference
\(\rightarrow\) H. Frellesvig, D. Tommasini and C. Wever, JHEP 03 (2016), 189 [arXiv:1601.02649 [hep-ph]].
- The user can easily assess the performance of this straightforward implementation by running the provided codes and look at the minimum number of digits in agreement with the high-precision results from Abreu et. al, as well as at the number of integrand evaluations performed by NIntegrate.
- Notice that the integrand expressions involve logarithms and classical polylogarithms \(\mathrm{Li}_{2}\) that are evaluated using very little CPU time.
- The parts of the formulae that can be represented in terms of GPLs up to weight four, as well as the results for the \(N_{1}\) family, for which we have all basis elements in terms of GPLs up to weight four, are evaluated with GiNaC, as implemented in PolyLogTools.
\(\rightarrow\) J. Vollinga, Nucl. Instrum. Meth. A 559 (2006), 282-284 [arXiv:hep-ph/0510057 [hep-ph]]. \(\rightarrow\) C. Duhr and F. Dulat, JHEP 08 (2019), 135 [arXiv:1904.07279 [hep-th]].

\section*{HEXABOX - ONE LEG OFF-SHELL: PERFORMANCE}
- In the current implementation we use the default parameters for GiNaC and the default parameters for NIntegrate with the exception of WorkingPrecision and PrecisionGoal, in order to obtain reasonable results within reasonable time, taking into account that the provided implementation serves merely as a demonstration of the correctness of our representations.
- For the Euclidean point the precision is typically of the order of 32 digits, which is compatible with GiNaC setup.
- For the physical point, the typical precision is of the order of 25 digits, which is compatible with the expected one taking into account the numerical value of the infinitesimal imaginary part assigned to the kinematical invariants.

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5 -point with up to one off-shell leg.
- Speed-up numerical evaluation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5 -point with up to one off-shell leg.
- Speed-up numerical evaluation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5 -point with up to one off-shell leg.
- SDE@1-loop \(\rightarrow\) N. Syrrakos, "One-loop Feynman integrals for \(2 \rightarrow 3\) scattering involving many scales including internal masses," JHEP 10 (2021), 041 [arXiv:2107.02106 [hep-ph]].
- SDE@3-loop \(\rightarrow\) D. D. Canko and N. Syrrakos, "Planar three-loop master integrals for \(2 \rightarrow 2\) processes with one external massive particle," [arXiv:2112.14275 [hep-ph]].
- UT basis determination \(\rightarrow\) more criteria as experience dictates
\(\rightarrow\) H. Frellesvig and C. G. Papadopoulos, JHEP 04 (2017), 083
\(\rightarrow\) J. Henn, B. Mistlberger, V. A. Smirnov and P. Wasser, JHEP 04 (2020), 167 \(\rightarrow\) P. Wasser, "Scattering Amplitudes and Logarithmic Differential Forms,"
\(\rightarrow\) C. Dlapa, X. Li and Y. Zhang, JHEP 07 (2021), 227
- Boundary terms determination \(\rightarrow\) for UT basis elements
- Speed-up numerical evaluation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \(\rightarrow\) one-dimensional integral representation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \(\rightarrow\) one-dimensional integral representation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \(\rightarrow\) one-dimensional integral representation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \(\rightarrow\) one-dimensional integral representation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \(\rightarrow\) one-dimensional integral representation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Summary \& Outlook}
- Non-planar families
- We have completed the hexa-box families, \(N_{1}, N_{2}, N_{3}\).
- Checks against AIMPTZ group results successful.
- Next task: double-pentagon families, \(N_{4}, N_{5}\).
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \(\rightarrow\) one-dimensional integral representation
- Massive internal particles.
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

\section*{Acknowledging}

\section*{Thank you for your attention !}

\section*{HOCTools-II: post-doc}

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the 2nd Call for H.F.R.I. Research Projects to support Faculty Members \& Researchers (Project Number: 2674).

\section*{Backup slides}

\section*{Backup slides}

\section*{PENTABOX - ONE LEG OFF-SHELL: P2-3}

The two-loop diagram representing the decoupling basis element.
- Basis element 46 for P2 (53 for P3) known from double box P23 family; starts at \(\mathcal{O}\left(\epsilon^{4}\right)\). [decoupling]
\[
\begin{gathered}
q_{1} \rightarrow P_{123}-y P_{12}, q_{2} \rightarrow y P_{1}, q_{3} \rightarrow P_{4}, q_{4} \rightarrow-P_{1234}, q_{5} \rightarrow y P_{2} \\
q_{1} \rightarrow p_{123}-x p_{12}, q_{2} \rightarrow p_{4}, q_{3} \rightarrow-p_{1234}, q_{4} \rightarrow x p_{1}, q_{5} \rightarrow x p_{2} \\
q_{1}^{2}=(1-y)\left(S_{45}^{\prime}-S_{12}^{\prime} y\right), s_{12}=S_{45}^{\prime}-\left(S_{12}+S_{23}^{\prime}\right) y, s_{23}=\left(S_{34}^{\prime}-S_{12}(1-y)\right) y, \\
s_{34}=S_{45}^{\prime}, s_{45}=-\left(S_{12}^{\prime}-S_{34}^{\prime}+S_{51}^{\prime}\right) y, s_{15}=S_{45}^{\prime}+S_{23}^{\prime} y \\
q_{1}^{2}=(1-x)\left(S_{45}-S_{12} x\right), s_{12}=\left(S_{34}-S_{12}(1-x)\right) x, s_{23}=S_{45}, s_{34}=S_{51} x, \\
s_{45}=S_{12} x^{2}, s_{15}=S_{45}+\left(S_{23}-S_{45}\right) x
\end{gathered}
\]

\section*{Pentabox - one leg off-shell: P2-3}
\[
d \vec{g}=\left[\sum_{b} d \log \left(x-\ell_{b}\right) M_{b}+\sum_{c} d \log \left(y-\ell_{c}\right) \bar{M}_{c}+d \log \left(W_{58}(x, y)\right) \tilde{M}_{58}\right] \vec{g}
\]
- all letters \(W_{a}\), except \(W_{58}\), are linear functions only of \(x\) or \(y\).
- \(M\) matrices have zeroes in the row and the column corresponding to the basis element 46 for P2 (53 for P3).
- \(\bar{M}\) matrices have non-zero matrix elements only in the row and the column corresponding to the basis element 46 for P2 (53 for P3).
- \(\tilde{M}\) matrix have non-zero matrix elements only in the column corresponding to the basis element 46 for P2 (53 for P3).
\[
\frac{d \vec{g}^{\prime}}{d x}=\sum_{a} \frac{1}{x-\ell_{a}} M_{a} \vec{g}^{\prime}
\]

\section*{Differential Equations Approach}
\(\rightarrow\) J. M. Henn, K. Melnikov and V. A. Smirnov, JHEP 1405 (2014) 090
\[
\begin{gathered}
\partial_{\xi} \vec{f}=\epsilon A_{\xi} \vec{f}, \quad \xi=x, y, z \\
d \vec{f}(x, y, z ; \epsilon)=\epsilon d \tilde{A}(x, y, z) \vec{f}(x, y, z ; \epsilon), \\
\tilde{A}=\sum_{i=1}^{15} \tilde{A}_{\alpha_{i}} \log \left(\alpha_{i}\right) \\
\vec{f}=\sum_{i=0}^{4} \vec{f}^{(i)} \epsilon^{i}+\mathcal{O}\left(\epsilon^{5}\right) \\
\partial_{x} \vec{f}^{(n)}=A_{x} \vec{f}^{(n-1)}, \quad \partial_{y} \vec{f}^{(n)}=A_{y} \vec{f}^{(n-1)}, \quad \partial_{z} \vec{f}^{(n)}=A_{z} \vec{f}^{(n-1)} \\
\vec{f}^{(n)}(x, y, z)=\vec{h}^{(n)}(y, z)+\int_{0}^{x} \mathrm{~d} \bar{x} A_{x}(\bar{x}, y, z) \vec{f}^{(n-1)}(\bar{x}, y, z)
\end{gathered}
\]

\section*{Differential Equations Approach}
\[
\begin{gathered}
\partial_{y} \vec{h}^{(n)}(y, z)=B_{y} \vec{h}^{(n-1)}(y, z), \\
\vec{h}^{(n)}(y, z)=\vec{g}^{(n)}(z)+\int_{0}^{y} \mathrm{~d} \bar{y} B_{y}(\bar{y}, z) \vec{h}^{(n-1)}(\bar{y}, z), \\
\partial_{y} \vec{h}^{(n)}(z)=C_{z} \vec{g}^{(n-1)}(z) . \\
\vec{g}^{(n)}(z)=\vec{e}^{(n)}+\int_{0}^{z} \mathrm{~d} \bar{z} C_{z}(\bar{z}) \vec{g}^{(n-1)}(\bar{z}),
\end{gathered}
\]
a typical asymptotic in the limit \(x \rightarrow 0, y \rightarrow 1, z \rightarrow 1\) reads
\[
f \sim f_{a} x^{-n_{1} \epsilon}+f_{b} x^{-n_{2} \epsilon}[(z-y)(1-z)]^{-n_{3} \epsilon},
\]

\[
\begin{align*}
& g_{29}^{\mathrm{P} 12}=\epsilon^{4} s^{2} t G_{1,1,1,1,1,1,1,0,0}, \tag{7.31}\\
& f_{29}^{\mathrm{P} 12} \sim-\frac{e^{2 i \pi \epsilon} x^{-4 \epsilon}}{4}+x^{-3 \epsilon} N_{1}-\frac{x^{-2 \epsilon}}{2}\left(2+\frac{\pi^{2} \epsilon^{2}}{6}+7 \zeta_{3} \epsilon^{3}+\frac{\pi^{4} \epsilon^{4}}{3}\right)
\end{align*}
\]```

