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The usual question is what ML can do for us?

An equally interesting question is
what can we do for the ML?
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The usual question is what ML can do for us?

An equally interesting question is
what can we do for the ML?

Underlying Link: Coarse Graining!
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New ideas in the field but attract attention!

UPCOMING WORKSHOP 
Machine Learning for High Energy Physics, on and off the 
Lattice,   ECT* Trento, 27 September - 1 October 2021 

Organising Committee: 
• Constantia Alexandrou (Cyprus) 
• Andreas Athenodorou (Pisa) 
• Kyle Cranmer (NYU) 
• Dimitrios Giataganas (NKUA) 
• Biagio Lucini (Swansea) 
• Enrico Rinaldi (RIKEN) 
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Motivation I

Machine Learning methods have been used on several complex
problems, outperforming humans.
E.g. Identifying Phase transitions, fitting on multiparamater spaces...

(Torlai, Mazzola, Carrasquilla, Troyer, Melko, Carleo 2018...)

Mostly serves as practical effective utility, but theoretically is still (to
some degree) a black box. How and why machine learning works so
well?

It works by a ”coarse graining”, learning important aspects and
capturing characteristics of the input distribution data, respecting
macroscopic patterns.

Several procedures in physics with same principles, especially the
Renormalization Group.
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This Talk

We attempt to investigate fundamental relations between the
process of learning and principles of physics or physical models.

To do that we need to choose a theory and employ ML methods on
a physical model: The Ising model.

Why Ising? It is binary, simple and has rich structure=phase
transitions.

We look for evidence of this relation at the ”special points” of the
Ising Model: The points where phase transition occurs.

I These are the critical points of the Renormalization Group flow.
I There the theory is scale invariant!
I There certain thermodynamic properties take special values.
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Statements for the learning process:

The machine knows nothing about Hamiltonian, interactions and
phase transitions!

It is trained using (many!) state configurations we generate with
Monte Carlo at a range of temperatures.

——————————————————————————————

Our ML methods spontaneously identify the critical phase, what is
the reason?

A step further: Can we compute any observables with this process?
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Restricted Boltzmann Machines (RBM)

RBM: Energy based, undirected graphical models, which can be
interpreted as stochastic neural networks.

RBM: No connection between nodes of the same layer.

Two layers: one visible to represent data (e.g. one visible unit for
each pixel) and one hidden (e.g. model dependencies of the pixel of
images).

The hidden layer is where the network stores its internal abstract
representation of the training data.

W is the connection strength between visible and hidden neurons.
vi (hj) is the relevant state of the visible (hidden) unit.
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Energy function on states

E (v , h) = −bivi − cαhα − hαWαivi ,

b,c biases for the visible and hidden neurons; W is the matrix of
weights. i = 1, . . .N, α = 1, . . .M .

Weights and biases of a model (W , b, c) := model parameters θ.

Joint Probability Boltzmann-Gibbs distribution: Probability to
observe a state (v , h) via the energy of the model E.

p(v , h) =
e−E(v ,h)

Z , Z =
∑
v ,h

e−E(v ,h)

Z is the partition function and acts as a normalization.

The marginal probability of a visible vector v assigned by the network

p(v) =
1

Z
∑
h

p(v , h) =
1

Z
∏
j

ebjvj
∏
α

(
1 + ecα+Wαivi

)
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Hidden variables are independent given the state of the visible
variables and vice versa. The conditional probabilities:

p(h|v) =
∏
α

p(hα|v) , p(v |h) =
∏
j

p(vj |h)

The conditional probabilities of a single variable expressed in sigmoid
functions:

p(hα = 1|v) = σ(cα + Wαivi ) , p(vj = 1|h) = σ(bj + hαWαj) ,
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Training an RBM

Training an RBM: Adjusting the RBM parameters θ, such that the
model probability distribution p(v) = 1

Z
∑

h p(v , h) represents the
given probability distribution q(v) as faithfully as possible.

Target: Minimize the distance between the distribution q of the
sample data and the reconstructed distribution p.
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Defining The Distance

A candidate is the Cross Entropy

H(q, p) = −
∑
v∈V

q(v) log p(v) .

The convenient measure is the Kullback-Liebler divergence (=
information lost, relative entropy) between distributions q(vi ) and
p(vi ):

KL(q, p) = H(q, p)− H(q, q) =
∑
v∈V

(q(v) log q(v)− q(v) log p(v))

Gibbs inequality: KL(q, p) ≥ 0.

Training of RBM = minimize the KL measure.

KL(q, p)→ min ⇒ ∏
j p(vj)→ max
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Training the RBM

Aim: Maximize p(v):

∂ log p(v)

∂θ
= −

∑
h

p(h|v)∂θE +
∑
v

p(v)
∑
h

p(v |h)∂θE .

Exponential complexity problem!

Certain Approximations on averaging of variables.

Then gradient descent to update on the parameters

θ → θ − ε∆θ ,
with ε the learning rate.
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Learning process

Input Monte-Carlo data

Learning finished

visible neurons

hidden neurons

Output reconstructed data 

Iterative
reconstructions

Input Monte-Carlo data

Same RBM after learning

Optimizing 𝑊,𝑏

𝑊, 𝑏

𝑊, 𝑏

Data: 10 × 10 (2d) lattice, 1000 configs at each (T,H), where T=0, 0.5, ...,
9.5 and H=0, 0.5, ..., 4.5.

RBM: Nv = 100, Nh < Nv , learning rate: ε = 0.001, epoch = 10000 (renewal

procedure). Total ∼ 109 steps to train the RBM.
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The RBM flow of Reconstructions

With learning we have fixed the RBM parameters (b, c ,W ). Once
the training finished we generate the RBM flows.

Using the initial faithful spin distribution function v
(0)
j = sj .

The generation the RBM flows of n steps is derived as:

v
(0)
j (= sj)→ h(1)

α (= σ(Wαjsj + cα))→ v
(1)
j

(
= σ(Wαjh

(1)
α + bj)

)
→

h(2)
α → v

(2)
j → ...→ h(n)

α → v
(n)
j

How can we interpret the outcome v (n)?
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Learning and Reconstruction

Input Monte-Carlo data

Learning finished

visible neurons

hidden neurons

Output reconstructed data 

Iterative
reconstructions

Input Monte-Carlo data

Same RBM after learning

Optimizing 𝑊,𝑏

𝑊, 𝑏

𝑊, 𝑏
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Ising Model

N-site square lattice with binary variables = spins si . (Lenz 1920)

Each site, labeled by the index i , contains a spin si with values ±1
which represent the two possible states.

The Hamiltonian is

H = −J
∑
〈ij〉

si sj − H
∑
i

si ,

where 〈ij〉 the nearest neighbor pairs of the sites i and j ,
J is the coupling of the nearest neighbors,
H is the external magnetic field.
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The magnetization M of this system is defined as the sum of all the
spins M =

∑
i si .

The partition function of the system reads

Z =
∑
{s}

∏
i

eKsi si+1+hsi

where K := J/T and h := H/T .
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1-dim Ising Model

It is a spin chain and is exactly solvable. (Ising 1924)

In the thermodynamic limit

Z =
(
eK cosh h +

(
e−2K + e2K sinh2 h

)1/2
)N

And the magnetization per site

m :=
M

N
=

sinh h√
sinh2 h + e−4K

.

Trivial Phase transition!
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2-dim Ising Model

It is exactly solvable without magnetic field. (Onsager 1944)

It has a 2nd order phase transition at

Kc =
J

Tc
=

log
(
1 +
√

2
)

2
,

where the specific heat C = (∂E/∂T )H diverges.

The magnetization per site below the Tc

m =
(
1− sinh−4 2K

)1/8
.

The spin state configurations at different temperatures:
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Renormalization Procedure: Key Idea

Successive decimation of degrees of freedom.

Macroscopic modes are respected while microscopic are integrated
out and averaged.

Results to effective field theory for long distance degrees of freedom
with given macroscopic laws.

“The guiding principle in formulating the new interactions (and the
process) is to reproduce as accurately as possible the observed
probability distribution.”

(Wilson 79)

Intuitive similarity with the RBM methods.

Lets be more precise.
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Renormalization Procedure

RG is a semi-group of transformations R.

H′ = R[H], R is a non-linear transformation of the coupling
parameters.
It does a coarse graining/decimation removing the degrees of
freedom N ′ = N/b, while keeping the partition function invariant
ZN′ [H ′] ∼ ZN [H].
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It is combined with a rescaling of lengths: r ′ = r/b, to restore
spatial density and renormalization of physical variables to restore
the relative fluctuations.

A fixed point of the RG transformation defining a fixed point
Hamiltonian H0, is a point in the coupling parameter space where
R[H0] = H0.

Dimitris Giataganas Stochastic Neural Networks as Thermodynamic Physical Systems



Introduction Restricted Boltzmann Machines Ising Model RBM flow vs RG flow Conclusions

RG in 2-dim Ising model

Approximately the RG flow can be encoded in the coupling equation

K ′ =
3

8
log cosh 4K .

The fixed points are at K = 0,∞ and Kc ' 0.507.

Kc is an unstable critical point:
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Block-Spin decimation on the 2-dim Ising Lattice

Performing it just below Tc we quickly obtain the ordered state.

Performing it at Tc we remain to the scale invariant state.

Performing it just above Tc we obtain the the random state.
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Input Monte-Carlo data
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visible neurons

hidden neurons

Output reconstructed data 

Iterative
reconstructions

Input Monte-Carlo data

Same RBM after learning

Optimizing 𝑊,𝑏

𝑊, 𝑏

𝑊, 𝑏

Dimitris Giataganas Stochastic Neural Networks as Thermodynamic Physical Systems



Introduction Restricted Boltzmann Machines Ising Model RBM flow vs RG flow Conclusions

Zero Magnetic Field RBM Flow vs RG Flow

The RBM flow
q0(vj ) → r1(hi ) → q1(vj ) → . . . →
q9(vj ) = {v0

j } → {h1
i } → {v1

j } →
. . . → {v9

j }

0 1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Reconstruction of T = 1 microstate,

which flows to Tc = 2.27 critical

point.

The RG flow
K0 → K1 → K2 → . . . → Kn116 The Renormalization Group in Real Space
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Figure 8.3: Graphical representation of successive decimations of the 2D Ising
model, as represented by the recursion relation (8.10). The straight line is
K ′ = K and the curve is the function K ′ = 1

8
ln(cosh 4K). The curves cross

at Kc = 0.50698. For any initial value K > Kc, the sequence of values
K1, K2, . . . determined by iterating the recursion relation, Kn = R(Kn−1),
approaches Kn → ∞. But, for an initial value K < Kc, the sequence of values
K1, K2, . . . approaches zero. Hence, K∗ = 0 and K∗ → ∞ are stable fixed
points of the RG transformation, while K∗ = Kc is an unstable fixed point.

of Kc = 3
8
ln(cosh 4Kc) and has the value Kc = 0.50698. For an initial value

K0 > Kc, the sequence of values Kn = R(Kn−1) increases without bound and
approaches infinity. Alternatively, for an initial value K < Kc, the sequence
Kn = R(Kn−1) decreases to zero. Thus, both K∗ = 0 and K∗ → ∞ are
now stable fixed points, while the fixed point K∗ = Kc is unstable. This is
depicted in Fig. 8.3.

The fixed points K∗ = 0 and K∗ → ∞ are the same fixed points that
were obtained for the 1D Ising model in Sec. 7.4. The difference is that, for
the 2D Ising model, both of these fixed points are now stable, with the fixed
point at K∗ = Kc being unstable. The fixed point K∗ = 0 is a trivial fixed
point corresponding to the high-temperature limit where the correlations
between neighboring spins vanish. The fixed point K∗ → ∞ is a critical
point in the RG picture, but only in the trivial sense because, although the
correlation length diverges at T = 0, there are no fluctuations because the

0.0 0.2 0.4 0.6 0.8 1.0 1.2
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The RBM flow, starting at the ”extremal” points:

RBM flow spontaneously to the critical fixed point of the spin system!
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RBM Flows for Various Magnetic Field

When H 6= 0, no phase transition(critical fixed points), only trivial
fixed points!

There exist an RBM flow fixed point that does not match the RG
fixed point.

Puzzling Behavior!
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2 3 4 5 6 7

0

1
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5

The flow forms a pattern after a small number of iterations already
already has a clear peak.

RBM fixed points and maximal points of specific heat in 2d Ising
model for reconstructed flows with fixed magnetic fields.

Ising thermodynamics relation to RBM flow instead of RG?
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Critical Exponents RBM Flow

From the recostructed configurations we can obtain the critical
exponents.

0.5 1.0 1.5 2.0 2.5 3.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Around Critical Temperature observables exhibit power law behavior.

Bonus: Proximity of the RBM data to the mean field approximation.
(future direction)
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Critical Exponents RBM Flow

The magnetization around the critical point can be expanded to give

m ∼ 1.222
|T − Tc |1/8

Tc

where the critical parameter is β = 1/8.

The recostructed configurations at around Tc give with large errors

m ∼ 0.931
|T − Tc |0.127

Tc

Good accuracy without assuming any knowledge of Hamiltonian in
the model.
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Conclusions

No prior knowledge about the criticality of the system and its
Hamiltonian for the RBM! It is trained to learn patterns of the spin
configurations.

X The RBM flow of reconstruction approaches spontaneously the spin
configurations of the RG fixed points.

X Critical Exponents computed successfully.

RBMs with standard Monte Carlo methods can be used as a
powerful tool to study physical models and to reconstruct the
thermodynamic quantities accurately.

Evidence that the RBM is fundamentally related to RG and / or
thermodynamics of physical systems!

7→ Can we achieve full mappings of neural networks formalism to
physics formalisms?

7→ Upper bounds on the efficiency of Training?
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