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The usual question is what ML can do for us?
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The usual question is what ML can do for us?

An equally interesting question is
what can we do for the ML?

Underlying Link: Coarse Graining!
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New ideas in the field but attract attention!
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Introduction

Motivation |

@ Machine Learning methods have been used on several complex
problems, outperforming humans.
E.g. ldentifying Phase transitions, fitting on multiparamater spaces...
(Torlai, Mazzola, Carrasquilla, Troyer, Melko, Carleo 2018...)

@ Mostly serves as practical effective utility, but theoretically is still (to
some degree) a black box. How and why machine learning works so
well?

@ |t works by a "coarse graining”, learning important aspects and
capturing characteristics of the input distribution data, respecting
macroscopic patterns.

@ Several procedures in physics with same principles, especially the
Renormalization Group.
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Introduction

This Talk

o We attempt to investigate fundamental relations between the
process of learning and principles of physics or physical models.

@ To do that we need to choose a theory and employ ML methods on
a physical model: The Ising model.

@ Why Ising? It is binary, simple and has rich structure=phase
transitions.
@ We look for evidence of this relation at the "special points” of the
Ising Model: The points where phase transition occurs.
» These are the critical points of the Renormalization Group flow.
» There the theory is scale invariant!
» There certain thermodynamic properties take special values.

Dimitris Giataganas Stochastic Neural Networks as Thermodynamic Physical Systems



Introduction

Statements for the learning process:

@ The machine knows nothing about Hamiltonian, interactions and
phase transitions!

o It is trained using (many!) state configurations we generate with
Monte Carlo at a range of temperatures.

@ Our ML methods spontaneously identify the critical phase, what is
the reason?

@ A step further: Can we compute any observables with this process?
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Restricted Boltzmann Machines
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Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBM)

@ RBM: Energy based, undirected graphical models, which can be
interpreted as stochastic neural networks.

Hidden nodes

Weights

(.. Visible nodes
R

@ RBM: No connection between nodes of the same layer.

@ Two layers: one visible to represent data (e.g. one visible unit for
each pixel) and one hidden (e.g. model dependencies of the pixel of
images).

@ The hidden layer is where the network stores its internal abstract
representation of the training data.

@ W is the connection strength between visible and hidden neurons.
vi(h;) is the relevant state of the visible (hidden) unit.
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Restricted Boltzmann Machines

@ Energy function on states
E(V7 h) = —bjvi — cohoy — ha Wojvi |

b,c biases for the visible and hidden neurons; W is the matrix of
weights. i=1,...N, a=1,... M.
@ Weights and biases of a model (W, b, ¢) := model parameters 6.
@ Joint Probability Boltzmann-Gibbs distribution: Probability to
observe a state (v, h) via the energy of the model E.

—E(v,h)

€ —E(v
Pl =S F, Z=Y e
v,h

Z is the partition function and acts as a normalization.

@ The marginal probability of a visible vector v assigned by the network

=3 Zp v, h) H ebivi H (1 4 eCetWaivi)
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Restricted Boltzmann Machines

P(hlv)

P .
vOOO0 OO0 OO0

Data Reconstructed P(v|h)

@ Hidden variables are independent given the state of the visible
variables and vice versa. The conditional probabilities:

p(hlv) =T p(halv),  p(vih) = Hp(\/jlh)

@ The conditional probabilities of a single variable expressed in sigmoid
functions:

p(he = 1|v) = o(ca + Waivi) p(v; = 11h) = o(bj + ha Wy;j) ,
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Restricted Boltzmann Machines

Training an RBM

@ Training an RBM: Adjusting the RBM parameters 6, such that the
model probability distribution p(v) = % 3", p(v, h) represents the
given probability distribution g(v) as faithfully as possible.

@ Target: Minimize the distance between the distribution g of the
sample data and the reconstructed distribution p.
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Restricted Boltzmann Machines

Defining The Distance

A candidate is the Cross Entropy

H(q,p) == _ a(v)logp(v) .

vev

The convenient measure is the Kullback-Liebler divergence (=
information lost, relative entropy) between distributions g(v;) and
p(vi):

KL(q,p) = H(a,p) — H(q,q) = Y _ (a(v)log q(v) — q(v) log p(v))
veVv

Gibbs inequality: KL(q,p) > 0.
Training of RBM = minimize the KL measure.

(]

KL(g,p) = min = [[;p(v;) = max
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Restricted Boltzmann Machines

Training the RBM

@ Aim: Maximize p(v):
dlo
gp( ZP hlv 8eE+ZP Z (vIP)OsE .

@ Exponential compIeX|ty problem!

@ Certain Approximations on averaging of variables.
P(hlv)

S P
vO00 OO0 000

Data Reconstructed P(v|h)
@ Then gradient descent to update on the parameters
0— 0 —cAb

with € the learning rate.

min
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Restricted Boltzmann Machines

Learning process

Learning finished

t

hidden neurons
L J L J L J e o o O

AN
Optimizing W,

visible neurons

t

Input Monte-Carlo data
Data: 10 x 10 (2d) lattice, 1000 configs at each (T,H), where T=0, 0.5, ...,
9.5 and H=0, 0.5, ..., 4.5.
RBM: N, =100, N, < N,, learning rate: ¢ = 0.001, epoch = 10000 (renewal
procedure). Total ~ 10° steps to train the RBM.
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Restricted Boltzmann Machines

The RBM flow of Reconstructions

o With learning we have fixed the RBM parameters (b, ¢, W). Once
the training finished we generate the RBM flows.

@ Using the initial faithful spin distribution function \/j0 = 5.

@ The generation the RBM flows of n steps is derived as:

ho'b\ QO Qo
008 308

Data Reconstructed  P(v|h)

(= 5) = KD (= 0 (Wass; + a)) = v (= o(Woyhl) + b)) —

(0) (1)
v v

How can we interpret the outcome v("?
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Restricted Boltzmann Machines

Learning and Reconstruction

Output reconstructed data

= N\

S Iteratlve
° o [P

reconstructions
mﬂ&\/

Same RBM after learning

t

Q
Q

7|
N
:‘n‘.’\

u—

Input Monte-Carlo data

Learning finished

t

hidden neurons

"
Optimizing W, b
o

e o o e + s 20

visible neurons

t

Input Monte-Carlo data
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Ising Model

Ising Model

@ N-site square lattice with binary variables = spins s;. (Lenz 1920)

o Each site, labeled by the index 7, contains a spin s; with values +1
which represent the two possible states.

@ The Hamiltonian is
H = fJZS,-sJ- — HZS;,
(if) i

where (ij) the nearest neighbor pairs of the sites / and J,
J is the coupling of the nearest neighbors,
H is the external magnetic field.
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Ising Model

@ The magnetization M of this system is defined as the sum of all the
spins M =" s;.
@ The partition function of the system reads

Zz = E H eK$i5f+1+h$i

{s} i
where K :=J/T and h:= H/T.
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Ising Model

1-dim Ising Model

It is a spin chain and is exactly solvable. (Ising 1924)

B4

@ In the thermodynamic limit
N
Z = (eK cosh h + (efzK + €2 sinh? h)1/2>

And the magnetization per site

M sinh A

m:==— =

N \/sinh? h 4 e—4K .

@ Trivial Phase transition!
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Ising Model

2-dim Ising Model

It is exactly solvable without magnetic field. (Onsager 1944)
@ It has a 2nd order phase transition at

p 7iilog(1+\@)
C_TC_ 2 b

where the specific heat C = (0E/0T),, diverges.
@ The magnetization per site below the T,

m= (1 — sinh™* 2K)1/8 .

T<<Tc
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Ising Model

Renormalization Procedure: Key Idea

@ Successive decimation of degrees of freedom.

@ Macroscopic modes are respected while microscopic are integrated
out and averaged.

@ Results to effective field theory for long distance degrees of freedom
with given macroscopic laws.

@ “The guiding principle in formulating the new interactions (and the
process) is to reproduce as accurately as possible the observed
probability distribution.”

(Wilson 79)

@ Intuitive similarity with the RBM methods.

Lets be more precise.
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Ising Model

Renormalization Procedure

@ RG is a semi-group of transformations R.

e H' = R[H], R is a non-linear transformation of the coupling
parameters.
It does a coarse graining/decimation removing the degrees of
freedom N’ = N /b, while keeping the partition function invariant

Zw[H] ~ Zu[H].
L] NN

@Lj+1) | < | /

(

X0

(1) |6

W1

Ll Decimation,

<
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Ising Model

@ It is combined with a rescaling of lengths: r’ = r/b, to restore
spatial density and renormalization of physical variables to restore
the relative fluctuations.

[3 o o . A

@j+1) /
L N el < S G W °
(=10 [0 P‘ b I)ccmntiuy/ . Rescaling \

e o . <
(-1

T AN \<\°*

o A fixed point of the RG transformation defining a fixed point

Hamiltonian Hp, is a point in the coupling parameter space where
R[Ho] = Ho.

.
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Ising Model

RG in 2-dim Ising model

o Approximately the RG flow can be encoded in the coupling equation
3
K = 3 log cosh 4K .

@ The fixed points are at K = 0,00 and K. ~ 0.507.
@ K, is an unstable critical point:

1.2

0 0.2 0.4 0.6 08 1

AR ER e
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Ising Model

Block-Spin decimation on the 2-dim Ising Lattice

R
BT

ienlSEr Whn—
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RBM flow vs RG flow
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@ RBM flow vs RG flow
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RBM flow vs RG flow

Output reconstructed data

Y S /" Iterative
o * X reconstructions

Same RBM after learning

t

Input Monte-Carlo data

Learning finished

t

hidden neurons

n \%\
Optil w,b
%iﬂ s LN

visible neurons

t

Input Monte-Carlo data
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RBM flow vs RG flow

Zero Magnetic Field RBM Flow vs RG Flow

The RBM flow The RG flow
qo(v;) = r(hi) — — ... Ko—> Ki—> Ko — ... > K,
@) = {1 > {m— =
cee— {ng}

0 1 2 3 4 5

. T .
Reconstruction of T = 1 microstate,
which flows to T, = 2.27 critical
point.
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RBM flow vs RG flow

The RBM flow, starting at the "extremal” points:

S —— original 0.16 — coriginal
— — ir=1 — r=5
= e
T ous = oo — Noiw
— o.10
D o
.8 0.08 ﬁ
0075
E 0.06
O ooso i
o.0zs 0.02
0.000 o.on
o 1 2 3 4 5 6 T 0 1 2 3 4 5 6 T
Reconstruction of T=0 configs Reconstruction of T=6 configs

RBM flow spontaneously to the critical fixed point of the spin system!
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RBM flow vs RG flow

RBM Flows for Various Magnetic Field

@ When H # 0, no phase transition(critical fixed points), only trivial
fixed points!

H=0 H=0.5 H=1.0 H=0.0 0.5 1.0 1.5 2.0
0.25 0.25
— org —_org
1 1
2 2
0.20 5 0.20 5
—_10 —_ 10
—_ 20 —_— 20
015 — 50 015 — 50
— 100 — 100
— 200 m— 200
— 500
0.10 0.10
0.05 0.05
- -~
' \ = ﬁ . = A — -
0.00 T 0.00
0 B 0 o 5 10 o0 ] 10 0 5 10 0 5 10 0 5 100 5 10 0 5 10

@ There exist an RBM flow fixed point that does not match the RG
fixed point.

@ Puzzling Behavior!
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RBM flow vs RG flow

Probability © RBM fic

— itr=0

itr =5

= itr = 500

@ The flow forms a pattern after a small number of iterations already
already has a clear peak.

@ RBM fixed points and maximal points of specific heat in 2d Ising
model for reconstructed flows with fixed magnetic fields.

Ising thermodynamics relation to RBM flow instead of RG?
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RBM flow vs RG flow

Critical Exponents RBM Flow

From the recostructed configurations we can obtain the critical
exponents.

m

* RBM

— Bethe Approvimation

Around Critical Temperature observables exhibit power law behavior.

Bonus: Proximity of the RBM data to the mean field approximation.

(future direction)
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RBM flow vs RG flow

Critical Exponents RBM Flow

@ The magnetization around the critical point can be expanded to give

[T — T8

~ 1.222
m T

where the critical parameter is 5 = 1/8.

@ The recostructed configurations at around T, give with large errors

| T— TC|OA127

~ 0.931
m ~ 0.93 T

@ Good accuracy without assuming any knowledge of Hamiltonian in
the model.
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Conclusions

Conclusions

@ No prior knowledge about the criticality of the system and its
Hamiltonian for the RBM! It is trained to learn patterns of the spin
configurations.

v" The RBM flow of reconstruction approaches spontaneously the spin
configurations of the RG fixed points.

V" Critical Exponents computed successfully.

@ RBMs with standard Monte Carlo methods can be used as a
powerful tool to study physical models and to reconstruct the
thermodynamic quantities accurately.

@ Evidence that the RBM is fundamentally related to RG and / or
thermodynamics of physical systems!

+— Can we achieve full mappings of neural networks formalism to
physics formalisms?

— Upper bounds on the efficiency of Training?
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Conclusions
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Thank you
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